| Brett Esry |
![]() |
|
| Chapin & University Distinguished Professor | ||
| Address: | 325 Cardwell Hall | |
| Phone: | (785) 532-1620 | |
| E-mail: | esry@phys.ksu.edu | |
| Personal Webpage | ||
| Ph.D. University of Colorado, 1997 | ||
| B.S. Kansas State University, 1993 | ||
Research Area
Atomic, Molecular & Optical Physics
One of my main efforts is studying ultracold ~nK to µK) atomic systems. Within this increasingly broad area, my group is studying three-body collisions as well as matter wave propagation through microfabricated waveguides. Neither topic has received much attention until recently, and our group is one of only a few in the world capable of carrying out the three-body collision calculations.
One of the collision processes we are interested in produces a molecule from three free atoms (three-body recombination) and is a significant loss mechanism for experiments on degenerate quantum gases. These experiments aim at understanding phenomena such as superfluidity and superconductivity, and three-body recombination must be characterized in order to interpret the experiments. In the past year, we have investigated the limits of low-energy approximations to the recombination rates. We have also looked into the other three-body processes that can occur in the experiments --- collision induced vibrational relaxation and collision induced dissociation. We found their low-energy expansion and their dependence on the scattering parameters.
Another main thrust of my work is understanding the dynamics of a molecule in an intense laser field. My group is working on ways to solve the time-dependent Schrödinger equation for this highly non-perturbative system. Even the simplest molecule H2+, however, requires the solution of a six-dimensional time-dependent equation --- a nontrivial job for even the biggest supercomputers. We have explored various approximation schemes on our way to a complete solution.
Research Support
Recent Selected Publications