Fall 2022 Departmental Exams

Quantum Mechanics Study Guide

1. Let

v = B0 }) - irme.o)|-5).

where ‘i%> are the spin-up and spin-down states and Y}, are spherical harmonics.

(a) If you measure S, what is the probability that you will get h/27
(b) If you do get /2 in (a), what is the new state after the measurement?
(¢) If you measure L, after (b), what is the probability that you will get —Ah?

2. As a mechanism for downward transitions from excited states of atoms and molecules, sponta-
neous emission competes with thermally stimulated emission (stimulated emission for which
blackbody emission is the source). Show that at room temperature thermal stimulation dom-
inates for transition frequencies well below 5 THz, whereas spontaneous emission dominates
for frequencies well above 5 THz.

Planck’s formula for the energy density of thermal radiation is

h w3
p) = o — &
. . . wih
and Einstein’s A and B coefficients are related as A = 2—33 .
m2c

3. Consider a simple harmonic oscillator in one dimension. The Hamiltonian is

P mwla?

H=-—
2m+ 2

At time ¢ = 0, the wavefunction is

3 4
¥(,0) = ¢vo(@) + ¥a(x),
where v, (x) denotes the eigenstate of the oscillator with energy E, = hw(n + 1/2).

(a) Write ¢(x,t) for t > 0 in terms of ¥o(z) and a(z).

(b) What is the parity of ¢(z,¢)? Does it change with time?

(c) Find the expectation value of the energy. Does it change with time?
(d) Find (¢|x|y) for all times.



4. The result of a measurement shows that the electron spin is along the +x direction at ¢ = 0.
For t > 0, the electron enters in a uniform magnetic field that is parallel to the +z direction.
Calculate the quantum mechanical probability as a function of time for finding the electron
in each of the following states:

(a) Sy =1/2
(b) Sy = —1/2
(¢) S.=1/2

(d) S, =—1/2

The Pauli matrices are
101 10— |10
9r=11 0 A A 7= 10 -1

and the magnetic moment jip of an electron is proportional to its spin (fip = 75 , Where ~ is
a constant called the gyromagnetic ratio).

5. Consider a helium-like ion. The two electrons are in the 2p and 3p states. The energy levels
will have definite total angular momentum (J = L + ).
(a) What J-values can occur and how many energy levels of each J can there be?

(b) How do your answers change if the electrons are both in 3p states?

6. Consider a physical system that has two stationary states |1) and |2), with energies Fy < Eo
and Hamiltonian Hy
Hy i) = E; |i) i=0, 1.

The system is modified by a time-independent, real-valued perturbation V', and the modified
eigenenergies and stationary states are given by

(Ho+V)[v+) = Ex [ihs) .

(a) Assuming (1|V|1) = (2|V|2) =0 and (1|V|2) = V12, deteremine the energy eigenvalues
F+ and normalized eigenstates 1+ of the perturbed system.

(b) See what happens to Ey as Via — 0; does the result make sense? Explain!

(c¢) Find the normalized eigenfunctions in terms of Ey, Ey, and Vis.



7. A pair of electrons occupies two 3p levels (they are in the 3p? configuration).

(a) Using LS-coupling, what terms written as 2541+ are possible for the two electrons if
the Pauli exclusion principle is not applied?

(b) Which terms are possible after the Pauli exclusion principle is applied? Explain.

8. The potential for the isotropic harmonic oscillator (in 3D) is given by V(r) = mw?r?/2.

(a) Show that the eigenfunctions of the Hamiltonian can be expressed in the form R,;Y,.
In spherical coordinates, the Laplacian (acting on placeholder t) is

2 0r or r2sin 6 06 00 r2sin? 9 0%¢

(b) The problem is separable in Cartesian coordinates. Use this to show that the eigen-
energies can be expressed as E, = (n + %)ﬁw You may use the 1D harmonic oscillator
eigenenergy expression without derivation.

(c¢) Find the degeneracy of the lowest three energy eigenvalues.

9. In non-relativistic mechanics, the relation between the kinetic energy 7" and the momentum
p of a particle is T = p?/2m. This relation is modified by the theory of relativity, but for
sufficiently low speeds, it is sufficient to keep the lowest order correction and T' can be written

as
2 4

p p
T= 2m  8m3c2 2)
The second term acts a perturbation to the non-relativistic Hamiltonian (since H =T + V).
Use time-independent perturation theory to determine the lowest order correction to the
energy levels of the one-dimensional simple harmic oscillatordue to this perturbation.

Hint: You do not need the wave functions of the harmonic oscillator. Use the ladder operators

~

1
G — ——
= vV 2hmw

and recall that (|n) are the eigenstates of the non-relativistic simple harmonic oscillator)

(Fip + mwi) (3)

(a) the ladder operators act on |n) as

ayln) = VAT I+ 1) (1)
a_|n) =+/n|n—1) (5)
(b) The commutator of the ladder operators is [6_,a+] = 1

(¢) The non-relativistic simple harmonic oscillator Hamiltonian is H = hw(ata— + 3)



10. Neutral K-mesons are created in one of two states: ‘K 0> or ‘f( 0>. These states are not
eigenstates of the Hamiltonian H that describes the system. Instead

HI|K®) =m|K°) +€|K°) (6)
H‘KO>26‘KO>+m‘KO> (7)

Show that if the state |KO> is created at time t=0, then the probability that the state is }K0>
at a later time oscillates between 1 and 0.

11. Consider two non-interacting spin-1/2 particles described by the Hamiltonian for the 2D
infinite-square-well potential

pi | s
H=t 2
5+ +V(z1) + V(x2) (8)

where V(z;) = oo for x; < 0 and x; > a and V(z;) =0 for 0 < z; < a, with ¢ = 1,2. Except
for part (c) below, assume that the electrons are in the spin state in which the total spin S
is zero.

Derive the eigenfunctions and eigenenergies of this Hamiltonian.

(a)
(b)
()
(d) Show that the energy of the second S = 0 state is the same as in part (c). Find the
wavefunction of this state.

Find the energy and wavefunction of the ground state.

Find the energy and wavefunction of the lowest state with S = 1.

12. A particle is in the ground state of an infinite square well (V(z) = 0 for 0 < x < L, and
V(x) = oo everywhere else). At t = 0, the wall at x = L is suddenly moved to x = 2L.

(a) Determine the eigenstates and eigenvalues of the Hamiltonian before ¢ = 0.

(b) Calculate the probability that, long time after ¢ = 0, the system is in the ground state
of the new potential.

(c) Identify the lowest excited state that has a non-zero probability of being occupied long
after ¢t = 0.

Hint: sinasinb = 1 [cos(a — b) — cos(a + b)]

13. Calculate the reflection coeflicient for a particle of mass m incident on a finite square well of
depth Vj and width a. For what value(s) of incident energy is the reflection coefficient zero?



14.

15.

In an experiment you make repeated measurements of the energy of a system. You find that
for one-fourth of the measurements you obtain the value E7; for one-third of the measurements
you obtain the energy value E5; and for the remaining measurements you obtain the value
Ejs.

(a) Using only this information write as complete a time dependent wave function for this
state as you can. For parts of the wave function that you cannot specify use general
functions and indicate why you cannot specify it (them).

(b) Is this wave function uniquely determined by the experimental evidence? If so, how? If
not, are there further experiments which you could do to make a unique determination?

Let |a) be a state of the harmonic oscillator such that
i |a) = ala),

where a_ is the lowering operator (its Hermitian conjugate, a, is the raising operator) and
a is a compler number. |«) is called a coherent state of the harmonic oscillator.

(a) Calculate the expectation values (z), (z?), , (p) and (p?) for the state |a).

(b) Show that 0,0, = h/2. That is, the uncertainty product takes its smallest possible
value. The coherent state |a) is a minimum uncertainty state.

Hint: The ladder operators are

1
4y = ——r
vV 2hmw

Recall that (|n) are the eigenstates of the non-relativistic simple harmonic oscillator)

(Fip + mwz). (9)

(a) the ladder operators act on |n) as

a4 |n) =vn+1|n+1) (10)
a_|n)y =+vnn—1) (11)
(b) The commutator of the ladder operators is [6_,a+] = 1

(¢) The non-relativistic simple harmonic oscillator Hamiltonian is H = hw(a4a— + 3)

16. A two-dimensional harmonic oscillator has the potential

1
V(z,y) = imwQ(azz + 49%).

(a) Calculate the energies of the first three lowest states, and identify the degrees of degen-
eracy for each energy.

(b) If there is an additional small coupling term W (z,y) = axy present, where a is a small
constant. Calculate the first-order correction to the energy of each of the three states.



17. Consider particles of energy E and mass m incident from the left striking a §-function potential

at z = 0 given by
_ R2Q

m

Vi(x) o(z),

where 2 is a positive constant.

(a) Obtain the general forms of the wave functions for x < 0 and = > 0.
(b) What are the boundary conditions for the wave function and its first derivative at x = 07

(c) Obtain expressions for the reflection and transmission coefficients.

18. Matrix representations of angular momentum operators for L = 1 are

010 0 —i 0 10 0
Ly=h|1 0 1 Ly=hli 0 —i L.=hl0 0 0
010 0 i 0 00 —1

(a) The system is prepared in the state with L, = 1 and then L, is measured. Determine the
possible outcomes and their probabilities, and the expectation value of the measurement.

(b) Conside the state
1/2
) =] 1/2 (12)
1/V2
in the L, basis.
i. If L? is measured and the result is +1, what is the state after this measurement?
How probable is the result?
ii. If L, is measured, what are the possible outcomes and respective probabilities?

19. Suppose we put a delta-function bump in the center of the infinite square well (V(x) is zero
for 0 < x < a, and infinite everywhere else):

H' =ad(z —a/2) (13)

(a) Find the eigenstates and eigenvalues of the unperturbed Hamiltonian. Leave the nor-
malization constants as A,,, where n labels the states.

(b) Find the first order correction to the allowed energies. Are there any states for which
this correction in zero?

(c) Using

0 H' 0
oy A "

m#n

find the first three non-zero terms in the expansion of the correction to the ground state
wavefunction.



20. Any state [¢)) of a two-level system can be represented as [1)) = a|0) + b|1), where a and b
are complex numbers and |0) and |1) are an orthonormal basis in the Hilbert space of the
system. Note that ¢ i), where ¢ is any finite complex number (other than 0) represents the
same state in the sense that the computed outcomes of all measurements (possible values
obtained and their probabilities) are identical for |¢) and c|i)). We can choose the complex
number ¢ to normalize the vector and to set its phase.

(a)

Show that any arbitrary state of the system can be written in the form
) = cos(6/2) |0) + sin(6/2)e" |1) ,

where 0 <0 <7 and 0 < ¢ < 27.

Using a three dimensional Cartesian coordinate system (z,y, z) and the spherical coor-
dinates 6, ¢, show on a figure where the following states lie on a unit sphere:

i. 10) and |1)

i [+) = 1/v2(|0) +[1)) and |-) = 1/v/2(|0) - |1))

iii. [i) =1/v2(]0) +]1)) and |-i) = 1/v/2(/0) - i]1))
Show that any pair of diametrically opposite points on the unit sphere represent or-
thonormal states and therefore can serve as a basis.
Start with an arbitrary point (6, ¢) on the unit sphere and describe the geometric effect
of applying the following operators. (Hint: Start with cos(6/2)|0)+sin(6/2)e' |1), apply
the transform and the rewrite the transformed vector in the same form, but with 6', ¢'.
How is this new point on the sphere related to the old one, in terms of their locations on
the sphere?)

i 2 =10) (0 — 1) (1

i, X =1[1) (0] +0) (1

iii. ¥ = 1) (0] — |0) (1]
In optics, the sphere represents all possible polarizations of a transverse electromagnetic

wave and is called the Poincaré sphere, and in quantum optics it represents all possible
states of a two-level system and is called the Bloch sphere.



