CATHODE DISCHARGE SIMULATION

William Kyle Dr. Glenn Horton-Smith

DUNE RECAP

It's a Giant Capacitor

That Does Physics

REVIEW OF CPA RESULTS

What's the Difference

Log Plot of Current (A) vs Time (s)

7

Log Plot of Energy (J) vs Time (s)

Adding the Field Cage

 After presenting this to the DUNE HV group, I was then asked if I could adding in a simulation of the field cage discharging as they are fed by the same HV cable. So I did that for both of the side lengths of the field cage.

Comparison

 Then, I made a SPICE circuit simulation of the field cage discharge to compare with my results

Probe1	C1	C2	C3	C4	C5	C6	C7		Ċ9	C10
	33.7pF	33.7pF	33.7pF	33.7pF	33.7pF	33.7pF	33.7pF	33.7pF	33.7pF	33.7pF
	⊒IC=177000V	IC=174000V	IC=171000V	⊒IC=168000V	⊒IC=165000V	IC=162000V	IC=159000\∕	⊒IC=156000V	⊒IC=153000\∕	IC=150000V
R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11
500MΩ	500MΩ	500MQ	500MQ	500ΜΩ	500ΜΩ	500ΜΩ	500ΜΩ	500ΜΩ	500MQ	500ΜΩ
Probe2	C60	C61	C62	C63	C64	C65	C66	C67	C68	C69
	63.13pF	63.13pF	63.13pF	63.13pF	63.13pF	63.13pF	63.13pF	63.13pF	63.13pF	63.13pF
	IC=3000V I	C=3000V	IC=3000V	IC=3000V	IC=3000V	IC=3000V	IC=3000V	IC=3000V	IC=3000V	IC=3000V
	C55 33.7pF IC=15000V R56 500MΩ C114 C114 G3.13pF IC=3000V	C56 33.7pF IC=12000V R57 500MΩ C115 IC=3000V	C57 33.7pF IC=9000V R58 500MΩ C116 63.13pF IC=3000V	C58 33.7pF IC=6000V R59 500MΩ C117 I 63.13pF IC=3000V	C59 33.7pF IC=3000V R60 500MΩ	Probe3				

Comparing Results

PYTHON

Direct Comparison of FTCS and SPICE

 Shown data is for one complete side of the field cage on the shorter dimension of CPA / LArTPC of 1.15 m (vs long side of 6.0 m)

INDUCED CURRENT AT APA

What's the Goal Here

- We have plenty of knowledge/understanding of what sort of behavior we should see from Voltage/E field in LArTPC/at APA in steady state of detector operation.
- However, the fields resultant of the CPA during a discharge are vastly more complicated, due to the non uniformities and wide ranges of voltages of different elements across the Cathode.
- Therefore, finding any sort of exact solutions to even the quasistatic approximations of the electric fields all but impossible, and completely impractical for our needs.
- So, I instead decided that I could get a close enough approximation to provide meaningful outputs using just the monopole term of a multipole expansion to get Voltages res. from cathode, at z=3.6m=dist. btw the APA and the CPA.

Method Used for Monopole Approx.

- However, what I did wasn't a monopole approximation of the CPA as a whole. Rather, I realized that our FTCS method was already breaking up the CPA into many sections of CPA at set V's, and with defined sizes and relative locations.
- So, I decided to do a monopole term approx. separately for each individual CPA section, (in this case: 5 cm x 5 cm sections)
- I.e. Since the CPA has a know Capacitance/m², I could find a C for each.05x.05 m section: C = (Capacitance/m²)*(.05²). Hence, as Q=C/V, and our simulation give a V of each section at every time-step, we also know a total charge, (the monopole moment), of each section.

Monopole Method Cont'd

• We know the equations describing a point charge to be:

$$V(r) = \frac{1}{4\pi\epsilon} \frac{Q}{r} \quad \stackrel{s.t.}{\to} \quad \vec{E}(r) = \frac{1}{4\pi\epsilon} \frac{Q}{r^2} \hat{r}$$

 And from our previously assumed geometry of CPA and APA as a finite parallel plate capacitor:

$$C_{\parallel plates} = \frac{\epsilon A}{d} = \frac{\epsilon (0.05m)^2}{3.6m} \therefore C_{\parallel plates} = \epsilon \left(\frac{1}{1440}m\right)$$

• Hence:

$$V\left(r\right) = \frac{V_{element}}{5760\pi r} \text{ where } r = \sqrt{(x-xc)^2 + (y-yc)^2 + (3.6m)^2} \text{ and } (xc,yc) = center \ of \ CPA \ element$$

What Results Do We Get From This?

Mathematica Test of Initial Cond.

Python IC Result

Getting Induced Charge on APA from Voltage

 Assumed a conducting plane at 0V and used boundary conditions equation of

$$\frac{\partial V_{above}}{\partial n} - \frac{\partial V_{below}}{\partial n} = -\frac{\sigma}{\epsilon}$$

 This gives us a surface charge (sigma) for each element at each time step.

$$I = \sum_{i} \left(\frac{\Delta \sigma_i A}{\Delta t} \right)$$

 We wanted worst case scenario so we summed over the 6m length of the anode plane

