

Coulomb Explosion Imaging and Ionization of CH₂I₂ in Strong Laser Pulses

Abstract

Halomethanes, including the diiodomethane (CH_2I_2) molecule, are responsible for the production of reactive halides leading to ozone destruction.¹ Through exploitation of an ultrafast, 25 fs pulse pump-probe setup and high-resolution reaction microscope, timeresolved Coulomb explosion (CE) imaging was established. As a result, ion fragments and dissociation channels subsequent to CH_2I_2 ionization and Coulomb explosion were classified. Furthermore, vibrations within the molecule's structure after excitation were observed.

Pump-Probe Concept

The objective of a pump-probe experiment is to capture a "snapshot" of a structure's molecular motion. The process begins as a "pump" pulse excites vibrations in a molecule. Subsequently, a "probe" pulse further ionizes and, due to Coulomb repulsion, the molecule explodes, see figure below.

- Molecule: CH₂I₂
 - Ionization Potential: 9.34 eV
 - Vapor Pressure: 141 torr (0° C)
 - Vibrational Periods: 300 fs

Kyle Jensen^{1,2}, Balram Kaderiya¹, Farzaneh Ziaee¹, Lee Pearson¹, Kanaka Raju Pandiri¹, Jyoti Rajput¹, Daniel Rolles¹, Artem Rudenko¹ Kansas State University¹, Simpson College²

Original Image: Maharjan, C. M Momentum imaging studies of electron and ion dynamics in a strong laser field. 2007.

Through the use of an ultrafast pump-probe setup and high-resolution techniques, Coulomb explosion imaging was achieved. We classified various ion fragments Furthermore, we observed bending vibrations within the molecular structure after dissociation. Future work will be conducted to establish a complete movie of the molecule's motion as well as study different light-

1. Nichols, S. R. Strong field dynamics and control of molecular

"This material is based upon work supported by National

