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Abstract

Tabulated dipole matrix elements of the form ⟨n′l′j′||x||nlj⟩ can often be found in the literature.

However, very often transition matrices between m-resolved states must be used. Furthermore,

transitions between hyperfine-split levels must often be known. Finally, transition matrices between

hyperfine-resolved and -unresolved levels may be required. Here, we present such matrix elements

in terms of the unresolved elements.
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I. INTRODUCTION

Suppose I want to do a computation that requires me to know dipole transition matri-

ces. And suppose I need to know transition matrices between fine-structure-resolved (FSR)

states. Or suppose I need to know transition matrices between hyperfine-structure-resolved

(HFSR)transitions. Finally, suppose I need to know transition matrices between FSR and

HFSR states. In principle, I could deduce all of these knowing just the reduced matrix ele-

ments ⟨γ′l′||x||γl⟩. That is, given these reduced matrix elements I should be able to deduce

the following:

⟨γ′l′m′
l|xq|γlml⟩ , for all possible ml and m′

l (1a)

⟨γ′l′j′|x|γlj⟩ , given s, for all possible j and j′ (1b)⟨
γ′l′j′m′

j|xq|γljmj

⟩
, given s, for all possible mj and m′

j (1c)

⟨γ′l′j′IF ′|x|γljIF ⟩ , for all possible F and F ′ (1d)

⟨γ′l′j′IF ′m′
F |xq|γljIF ′m′

F ⟩ , for all possible mF and m′
F . (1e)

⟨γ′l′j′FmF |xq|γljmj⟩ , for all possible F , mF , and mj. (1f)

II. THE SOLUTION

From Edmonds[1], Eq. 5.4.1,

⟨γ′j′m′|Tk|γjm⟩ = (−1)j
′−m′

 j′ k j

−m′ q m

 ⟨γ′j′||T ||γj⟩ (2)

In Eq. 2, the matrix-like expression is the Wigner 3-J symbol and q takes on values of

-1, 0, +1 which correspond, respectively, to left-circularly polarized, linearly polarized, and

right circularly polarized light. The argument k refers to the order of the transition. That

is, k = 1 refers to dipole radiation, k = 2 means quadrupole radiation, etc. In this document

we limit ourselves to electric dipole radiation, the operator for which we represent by x. We

can use Eq. 2 to directly compute the matrix elements in expressions 1a, 1c and 1e:
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⟨γ′l′m′
l|xq|γlml⟩ = (−1)l

′−m′
l

 l′ 1 l

−m′
l q ml

 ⟨γ′l′||x||γl⟩ (3a)

⟨
γ′l′j′m′

j|xq|γljmj

⟩
= (−1)j

′−m′
j

 j′ 1 j

−m′
j q mj

 ⟨γ′l′j′||x||γlj⟩ (3b)

⟨γ′l′j′IF ′m′
F |xq|γljIF ′m′

F ⟩ = (−1)F
′−m′

F

 F ′ 1 F

−m′
F q mF

 ⟨γ′l′j′IF ′||x||γljIF ⟩ (3c)

Now from Edmonds[1], Eq. 7.1.8,

⟨γ′j1j
′
2J

′|Tk|γj1j2J⟩ = (−1)j1+j2+J ′+k
√

(2J + 1) (2J ′ + 1)

 j′2 J ′ j1

J j2 k

 ⟨γ′j′2||Tk||γj2⟩ , (4)

where the expression in curly braces is the Wigner 6-J symbol. We can use Eq. 4 to help us

with expressions 1b and 1d:

⟨γ′sl′j′|xq|γslj⟩ = (−1)s+l+j′+1
√
(2j + 1) (2j′ + 1)

 l′ j′ s

j l 1

 ⟨γ′l′||x||γl⟩ , (5a)

⟨γ′Ij′F ′|xq|γIjF ⟩ = (−1)I+j+F ′+1
√

(2F + 1) (2F ′ + 1)

 j′ F ′ I

F j 1

 ⟨γ′j′||x||γj⟩ .

(5b)

In the derivation of the matrix element in Eq. 1f, we follow O. L. Weaver[2] who uses

Biedenharn’s notation for vector coupling coefficients. These will be converted at the end

to Wigner coefficients. Note that Weaver uses m for mj.

A typical matrix element we need is

⟨nljFMF |xq (|n1l1j1m1⟩ |IMI⟩) . (6)

That is,

C
j I F

m′ M ′
I MF

(⟨nljm′| ⟨IM ′
I) |xq (|n1l1j1m1⟩ |IMI⟩) =

⟨nlj||x||n1l1j1⟩√
2j + 1

C
j1 1 j

m1 q m′
δMIM

′
I
C

j I F

m′ M ′
I MF

.

(7)
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But there’s a problem here: we need a matrix element from |n1l1j1m1⟩ in the unresolved

hyperfine manifold to a particular state nljFMF ⟩ in the hyperfine-resolved manifold. There-

fore the matrix element has to somehow “know” which MI it is coming from. Fortunately,

the triangle rule bails us out: For the vector coupling coefficients to be non-zero, m1+q = m′

and m′ +MI = MF . Therefore our desired matrix element (6) is

⟨nljFMF |xq|n1l1j1m1⟩ =

⟨nlj||x||n1l1j1⟩√
2j + 1

C
j1 1 j

m1 q m′
C

j I F

m′ MI MF

,
(8)

with

m′ = m1 + q (9a)

MI = MF −m′. (9b)

In terms of Wigner coefficients, and incorporating Eqs. 9, this becomes

⟨nljFMF |xq|n1l1j1m1⟩ = (−1)j1−1+m1+q+j−I+MF ⟨nlj||x||n1l1j1⟩
√
2F + 1×

 j1 1 j

m1 q −(m1 + q)

 j I F

m1 + q MF − (m1 + q) −MF

 .

(10)

III. SUMMARY OF RESULTS

The original goal was to express all transition matrix elements in terms of ⟨γ′l′||x||γl⟩.

However, the actual transition rate also depends on the transition wavelength. Therefore if

the fine-structure splitting is sufficiently large, for example for the alkali D-lines, it is possible

that using ⟨γ′l′||x||γl⟩ to obtain ⟨γ′l′j′||x||γlj⟩ may not be sufficiently accurate. Therefore,

we assume that reduced matrix elements of the form ⟨γ′l′j′||x||γlj⟩ are available and we

need only tabulate matrix elements in terms of this reduced matrix element. By combining

the above results, these are summarized as:
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⟨
n′l′j′m′

j|xq|nljmj

⟩
= (−1)j

′−m′
j

 j′ 1 j

−m′
j q mj

 ⟨n′l′j′||x||nlj⟩ (11)

⟨n′l′j′IF ′|x|nljIF ⟩ = (−1)I+j+F ′+1
√

(2F + 1)(2F ′ + 1)× j′ F ′ I

F j 1

 ⟨n′l′j′||x||nlj⟩
(12)

⟨n′l′j′IF ′m′
F |xq|nljIFmF ⟩ = (−1)I+j+1+2F ′−m′

F×

√
(2F + 1)(2F ′ + 1)

 F ′ 1 F

−m′
F q mF

 ⟨n′l′j′||x||nlj⟩
(13)

⟨n′l′j′IF ′m′
F |xq|nljmjI⟩ = (−1)j+mj−1+q+j′−I+m′

F

√
2F ′ + 1× j 1 j′

mj q −(mj + q)

 j′ I F ′

mj + q m′
F − (mj + q) −m′

F

 ⟨n′l′j′||x||nlj⟩
(14)

⟨n′l′j′IF ′|xq|nljI⟩ =????× ⟨n′l′j′||x||nlj⟩ (15)
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