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Abstract 

 In this research, the carrier-envelope phase (CE phase) evolution of the pulse train from 

a Kerr-lens mode-locked chirped-mirror dispersion compensated Ti:Sapphire laser oscillator was 

stabilized.  The offset frequency corresponding to the rate of change of the CE phase was 

obtained by spectrally broadening the oscillator pulses in a photonic crystal fiber and interfering 

the f and 2f components.  An offset frequency linewidth of 100 mHz was obtained and could be 

locked over several hours.  The effect of path length drift in the interferometer used for CE phase 

stabilization of the laser oscillator was investigated.  By stabilizing the path length drift, the 

interferometer noise was reduced by several orders of magnitude.   

The CE phase drift through a grating-based chirped-pulse multi-pass amplifier was 

investigated.  Varying the grating separation by 1µm in the stretcher was found to cause a shift 

of 2.17.3 ± rad of the CE phase.  The CE phase could be stabilized to within 160 mrad rms error 

by feedback controlling the grating separation.  By locking the path length in the f-to-2f 

interferometer used to stabilize the CE phase of the oscillator pulses, the fast (>3 Hz) CE phase 

drift of the amplified laser pulses was reduced from 79 to 48 mrad. 

  It was also found that the CE phase could be shifted and set to any value within a 2π 

range by changing the grating separation.  Also, the CE phase could be continuously modulated 

within a 2π range while maintaining a relative phase error of 171 mrad.  The CE phase shift of a 

grating-based compressor was found to be stabilized to 230 mrad rms.  

  The effect of laser power fluctuation on the CE phase measurement was also 

investigated.  It was found that a 1% fluctuation of the laser energy caused a 160 mrad error in 

the CE phase measurement.  A two-step model is proposed to explain the phase-energy coupling 

in the CE phase measurement.  The model explains the experimentally observed dependence of 

the group delay between the f and 2f pulses on the laser energy.   

Few-cycle pulses were CE phase stabilized to 134 mrad rms and were used to perform 

above-threshold ionization and high harmonic generation. 
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Abstract 

In this research, the carrier-envelope phase (CE phase) evolution of the pulse train from a 

Kerr-lens mode-locked chirped-mirror dispersion compensated Ti:Sapphire laser oscillator was 

stabilized.  The offset frequency corresponding to the rate of change of the CE phase was 

obtained by spectrally broadening the oscillator pulses in a photonic crystal fiber and interfering 

the f and 2f components.  An offset frequency linewidth of 100 mHz was obtained and could be 

locked over several hours.  The effect of path length drift in the interferometer used for CE phase 

stabilization of the laser oscillator was investigated.  By stabilizing the path length drift, the 

interferometer noise was reduced by several orders of magnitude.  This reduced CE phase noise. 

The CE phase drift through a grating-based chirped-pulse multi-pass amplifier was 

investigated.  Varying the grating separation by 1µm in the stretcher was found to cause a shift 

of 2.17.3 ± rad of the CE phase.  The CE phase could be stabilized to within 160 mrad rms error 

by feedback controlling the grating separation.  By locking the path length in the f-to-2f 

interferometer used to stabilize the CE phase of the oscillator pulses, the fast (>3 Hz) CE phase 

drift of the amplified laser pulses was reduced from 79 to 48 mrad. 

  It was also found that the CE phase could be shifted and set to any value within a 2π 

range by changing the grating separation.  Also, the CE phase could be continuously modulated 

within a 2π range while maintaining a relative phase error of 171 mrad.  The CE phase shift of a 

grating-based compressor was found to be stabilized to 230 mrad rms.  

  The effect of laser power fluctuation on the CE phase measurement was also 

investigated.  It was found that a 1% fluctuation of the laser energy caused a 160 mrad error in 

the CE phase measurement.  A two-step model is proposed to explain the phase-energy coupling 

in the CE phase measurement.  The model explains the experimentally observed dependence of 

the group delay between the f and 2f pulses on the laser energy.   

Few-cycle pulses were CE phase stabilized to 134 mrad rms and were used to perform 

above-threshold ionization and high harmonic generation. 
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CHAPTER 1 - Introduction 

As the width of a laser pulse approaches few or single cycles in duration, the electric field 

amplitude changes rapidly within half of the cycle. The fast variation of the electric field within 

the pulse envelope is the origin of carrier-envelope (CE) phase effects in a variety of high field 

processes such as above-threshold ionization (ATI) and high order harmonic generation (HHG) 

[1, 2]. The CE phase can affect the high order harmonic generation process even when the 

excitation laser is long. [3]  

Other processes are susceptible to the CE phase.  For example, CE phase effects have 

been predicted in the dissociation of molecules [4] and in electron emission from metal surfaces. 

[5] CE phase even played a role in terahertz-emission spectroscopy with few-cycle pulses. [6] 

Advances in CE phase control have allowed researchers access to controlling such processes as 

injected photocurrents in semiconductors [7] and in sub-single-cycle pulse trains generated with 

Raman sidebands. [8] 

The repetition rate of femtosecond oscillators is on the order of 80 MHz, which is set by 

the cavity length. The spacing of the pulse train is ~12 ns, which matches the opening time of 

most Pockels cell pulse pickers. Chirped pulse amplifiers run at kilohertz or even lower 

repetition rates.  Currently, commercially available Ti:Sapphire laser oscillators can produce <10 

fs pulses. [9] The durations of amplified laser pulses are around 30 fs, due to gain narrowing, 

which can be shortened to ~5 fs in hollow-core fiber /chirped-mirror compressors [10-12] or 

filamentation setups. [13,14] Also, adaptive phase modulation in conjunction with spectral 

broadening in a hollow-core fiber filled with neon gas has been shown to produce high power 

two-cycle pulses. [15]  
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In order to study processes susceptible to the CE phase, the CE phase of the laser 

oscillator must be locked and any CE phase drift through the amplification process must be 

corrected.  Furthermore, the CE phase drift during the nonlinear spectral broadening followed by 

pulse compression must be corrected.  The stabilization of the laser oscillator CE phase and the 

measurement of the phase drift of the amplified laser pulses is well-established. [16] However, 

those systems employed material-based stretchers and compressors which could not be scaled up 

to several mJ in energy.  The CE phase stabilization of the amplifiers was accomplished by 

feeding back to the oscillator locking electronics, which added extra stress to the CE phase 

stabilization.  The effects of power fluctuation on the CE phase measurement of the amplified 

laser pulses had not been fully investigated. [16] Finally, no CE phase effects in strong field 

atomic physics studies had been researched using CE phase stabilized grating-based chirped 

pulse amplifiers (CPA). 

In this work, those issues were addressed.  The CE phase of the Ti:Sapphire laser 

oscillator used to seed a grating-based CPA laser system was stabilized.  The effects of path 

length drift, which previously had not been addressed, in the f-to-2f used to detect the offset 

frequency for CE phase stabilization were studied.  Path length drift was found to impart extra 

CE phase noise on the pulses leaving the laser oscillator. [17]   

The CE phase stable pulses were amplified to several mJ in the CPA and the CE phase 

drift was corrected by changing the stretcher grating separation. [18] This separated the oscillator 

CE phase stabilization and the amplifier CE phase stabilization which increased the time over 

which the oscillator could be locked.   In a second CPA laser, the compressor grating separation 

was used to correct the CE phase drift. [19] This work showed that either the stretcher or 

compressor could be used to stabilize the CE phase drift.   
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The measurement of the CE phase drift of the amplified laser pulses was found to be 

susceptible to energy fluctuation. [20] Previously, the power fluctuation issue had only been 

partially investigated. [16] A two-step model was proposed for explaining the coupling between 

the laser energy and CE phase. [21] Furthermore, the CE phase drift of few-cycle pulses obtained 

from a hollow-core fiber chirped-mirror compressor was stabilized.  The nonlinear interaction in 

the fiber for spectral broadening was found to be susceptible to energy fluctuations. [11] 

Previous work had not addressed this issue. 

The CE phase stabilized pulses from the grating-based CPA were used to perform stereo 

above-threshold ionization [18] and high-harmonic generation. [22] The results indicated the 

high CE phase stability of the laser system.  
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CHAPTER 2 - CE Phase and the CE Phase Offset Frequency 

2.1 Definition of CE Phase 
The electric field of a transform limited laser pulse at a fixed point in space can be 

mathematically represented as )cos()()( 0 CEcttEtE φω += , where )(0 tE is the temporal pulse 

amplitude, cω is the carrier-frequency, and CEφ is the CE phase.  The CE phase, or absolute 

phase, of the laser pulse denotes the offset between the peak of the electric field oscillation with 

respect to the pulse envelope at 0=t .  The situation is depicted in Figure 2.1. 

 
Figure 2.1 Laser pulse displaying the CE Phase: Electric field (solid curve) and Pulse 

Envelope (dashed curve). 
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In Figure 2.1, the peak of the carrier-wave oscillation is offset from the peak of the pulse 

envelope.  For this particular pulse, the CE phase was 2
π .  Also, the figure was created by 

assuming a Gaussian pulse envelope and is 5 fs in duration. 

To further demonstrate the CE phase, four pulses whose CE phase values change by 

2
π are shown in Figure 2. 

 
Figure 2.2 Four pulses with different CE phase values. 

 

The above figure shows the electric field plotted as a function of time for a laser pulse 

train with a varying CE phase.  The pulses in Figure 2.2 are similar to the pulse train that would 

be emitted by a CE phase stabilized Ti:Sapphire laser oscillator.  In the figure, repf is the 

repetition rate of the pulse train (pulses/second) and the inverse of that value is the time between 

pulses.  If you view the electric field peak in the first pulse ( 0=CEφ ) as the phase is changed 

from 0 to 2
3π in 2

π steps, the electric field appears to advance towards the leading edge of the 

pulse.  The field can be thought of “slipping” through the leading edge as the CE phase increases 

in value. 
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Researchers in the ultrafast field often refer to pulses with 0=CEφ as “cosine-like” and 

pulses with 2
3πφ =CE as “sine-like.” [1] The intermediate CE phase values are also important.  

In Figures 2.1 and 2.2, the pulses used for demonstration of the CE phase were only a few-cycles 

of oscillation of the carrier-wave in duration in order to allow the CE phase shift to be clearly 

seen.  However, as the laser pulse duration increases, many cycles of the carrier-wave occur 

underneath the pulse envelope.  The cycle time of the carrier-wave is calculated as
c

cycleT ω
π2= .  

For a Ti:Sapphire laser with an 800 nm central wavelength, the cycle time is 2.67 fs.  A few-

cycle pulse and a multi-cycle pulse are shown in Figure 2.3. 

 
Figure 2.3 Electric fields in the time domain of a few-cycle and multi-cycle pulse: a) 7 fs 

pulse, b) 20 fs pulse 

 

In the figure, the pulse on the left is 7 fs in duration and the pulse on the right is 20 fs in 

duration.  The pulses were given a CE phase value of 2
3π .   For the 7 fs pulse, ~2.5 oscillations 

of the electric field occur near the envelope maximum.  Alternately, for the 20 fs pulse, ~7.4 

oscillations of the field occur near the envelope maximum.  As can be seen from the figure, the 

difference in amplitude between adjacent electric field peaks near the envelope maximum is 

shown to decrease as the laser pulse duration increases.  In the simulation for the 20 fs pulse, the 
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ratio between the highest electric field peak and the adjacent peak was ~0.98.  For the 7 fs pulse, 

the ratio was ~0.90.  The ratio will be different, though, for other values of the CE phase. 

Thus, no matter how long a pulse is, one peak of the carrier-wave is always higher in 

amplitude than the adjacent peaks near the envelope maximum.  The CE phase can always be 

defined.  However, even though the CE phase can be defined for a laser pulse composed of a 

large number of cycles of oscillation of the carrier-wave, it becomes irrelevant for time-domain 

applications since the difference in electric field peak amplitudes becomes very small.  The 

pulse-to-pulse CE phase shift, though, is important in the frequency domain, due to the 

frequency comb property of a mode-locked laser, even if the laser pulse is long and will be 

discussed in the next section. 

2.2 Origin of the CE Phase in Ti:Sapphire Laser Oscillators 

2.2a Mode-Locking and Cavity Modes 

Mode-locked Ti:Sapphire lasers provide periodic trains of laser pulses with durations on 

the femtosecond level.  Laser oscillators producing 6 fs pulses even exist. [9] The CE phase is a 

direct consequence of the mode-locking process as it is the interplay between the laser pulses and 

the dispersion in the cavity which lead to the CE phase.  Mode-locking is the process by which 

the longitudinal modes of the laser cavity oscillate in phase, interfering constructively and 

destructively along the longitudinal axis.  This leads to the production of a regular train of pulses 

whose properties depend on the number of modes locked in phase, laser cavity length, 

dispersion, and gain bandwidth of the laser crystal.  In this section, a brief theory of mode-

locking in Ti:Sapphire lasers is discussed. [23] 

A typical Ti:Sapphire laser cavity is shown in Figure 2.4.  The cavity consists of a laser 

crystal, focusing mirrors, and a highly reflective output coupler.  The pump is focused into the 

laser crystal to create a population inversion, which starts the lasing process.   
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Figure 2.4 Laser Cavity: OC: output coupler 

 

The cavity, though, can only support integer multiples of the cavity frequencies, which is 

a consequence of electromagnetic theory.  By solving Maxwell’s equations in the cavity, the 

cavity modes are given by nL
mcfm 2= , where c is the speed of light, n is the average index of 

refraction of the cavity, L is the cavity length, and m is the mode index.  The quantity 

nL represents the total optical path length through the cavity.  For the sake of this section, the 

index of refraction is assumed to be constant across the laser gain bandwidth.  The case of 

dispersion, which gives the CE phase, will be discussed in the next section.  The difference 

between two modes is given by: 

nL
cff mm 21 =−+               (2.1) 

The quantity c
nL2 gives the time for a pulse to traverse the cavity.  The inverse of that quantity 

is then the repetition rate, repf of the laser. [23] 

 Since the modes are evenly spaced, a regular comb of lines arises in the frequency 

domain.  This kind of structure is called a frequency comb.  The situation is shown in Figure 2.5.   
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Figure 2.5 Cavity modes 

 

For most mode-locked lasers, the spacing between the modes is usually tens of MHz up 

to GHz.  The width of the modes is given by the cavity finesse. [24] 

However, when lasing occurs, only the modes underneath the gain spectrum of the laser 

crystal will be excited.  The emitted radiation does not extend to all possible frequencies 

supported by the cavity.  For optical frequencies, the mode index m is on the order of 610 .  For 

Ti:Sapphire, the gain bandwidth is ~120 THz ( 1210 Hz).  [25] 

 
Figure 2.6 Mode structure and laser gain spectrum.  The dashed arrow represents a large 

increase in frequency in order to show DC on the same scale. 
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The large numbers of modes excited when the laser crystal is pumped do not necessarily 

oscillate in phase.  Also, the excited modes do not all have the same amplitude.  In this case, the 

oscillations average out in the time domain, leading to a continuous-mode (CW).  For 

Ti:Sapphire, the CW mode is an oscillation occurring around ~800 nm.  It should be reiterated 

here that the phase of the modes is not the same concept as the CE phase.  The two are separate 

concepts, with the CE phase only being valid when the laser is in the pulsed mode (mode-

locked). 

To understand this further, consider a fixed point in the cavity.  The electric field of 

M oscillating modes is a superposition given by: 

∑
−

=

+=
1

0
)]2(exp[]exp[)(

M

m
mrepmc tmfiEtitE ϕπω ,      (2.2) 

where mE is the temporal amplitude of each individual mode and mϕ is the phase of each mode.  

To simplify, each mode can be assumed to have the same amplitude.  Then, 0EEm = . The 

amplitude of the modes is not so important.  The phase is the important parameter as it 

determines whether or not the electric fields interfere destructively and constructively. When the 

phases, mϕ  of each mode are different, the fields do not oscillate in phase. [26] 

However, once mode-locking has been achieved, the phases of the modes can be taken to 

be a constant value and the same for each mode.  The resulting sum is a geometric series and can 

be summed as:  

)](exp[
1]2exp[
1]2exp[

]2exp[]exp[]exp[)( 0

1

0
00 ϕω

π
π

πωϕ +
−

−
== ∑

−

=

ti
tfi
tfiM

tmfitiiEtE c
rep

rep
M

m
repc      (2.3) 

where 0ϕ is the constant mode phase value.  The intensity of the resultant field is then given by: 

)2
2(sin

)2
2(sin

)()(
2

2
2

tf

tfM
tEtI

rep

rep

π

π
==  .           (2.4) 

The expression shows that locking the modes of the laser leads to a regular train of pulses 

separated by the cavity mode spacing. 

The pulse duration can also be estimated from the previous derivation.  Since the pulse 

duration depends on the available spectral bandwidth, the number of modes locked together will 
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determine the spectral bandwidth.  The pulse duration can be estimated as
rep

p Mf
1

≈τ .  As the 

number of modes contributing to the spectral bandwidth increases, the pulse duration decreases. 

[26]  

The shortening of the pulse duration is important when discussing the physical 

mechanism producing the mode-locking.  In a Ti:Sapphire laser, the physical mechanism used is 

the Kerr Effect.  The Kerr Effect is the self-focusing of light in a medium due to an intensity 

dependent refractive index.  For a material, the refractive index can be written 

as )()( 20 tInntn += , where 0n is the linear refractive index, 2n is the non-linear index, and )(tI is 

the laser intensity.  For Ti:Sapphire, 16
2 105.10 −×=n cm2/W. [25] 

As the light is focused into the laser crystal, the intensity profile of the light causes the 

index of refraction to be higher for the high intensity portions of the light and lower for the low 

intensity portions.  Thus, the material effectively becomes a converging lens.  The high intensity 

portions of the light are focused more strongly and are amplified more than the low intensity 

portions.  As the light circulates the cavity, the low intensity portions experience a higher loss 

and are suppressed.  This leads to a shortening of the pulse.  Since shorter pulse durations (higher 

intensity) are favored by the Kerr Lens, more modes contribute to the bandwidth of the pulse to 

shorten the duration.  This causes the modes to oscillate in phase. 

An important point here is that the second order (group-velocity dispersion) and higher-

order dispersions must be controlled in order to keep the pulse duration short enough to facilitate 

the Kerr-Lens mode-locking (KLM).  This is usually accomplished by using a pair of prisms or 

by using chirped mirrors.  The interplay of all of the effects, the Kerr Lens, the dispersion, and 

cavity losses leads to the formation of a soliton-like pulse. [23]   

Another important point is that the mode-locking process for a Ti:Sapphire laser is not 

self-starting.  The CW mode is preferred.  In order to start the mode-locking, an intensity 

fluctuation must be applied to the laser to create the Kerr Lens.  This is usually accomplished by 

rapidly moving a cavity mirror or by shaking the table on which the laser is mounted. [23] 

2.2b CE Phase Offset Frequency 

In the previous section, the mode-structure of a laser cavity and the process of mode-

locking were discussed.  This led to an equally spaced frequency comb where the spacing was 
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given by nL
c

2 .  However, in a real laser cavity, the refractive index varies with frequency.  In 

this case, the phase and group velocities of a pulse traveling through the cavity are different.  

This is the origin of the CE phase and is discussed in this section. 

As a laser pulse travels, the carrier-wave travels at the phase velocity and the envelope 

travels at the group velocity.  The phase velocity is given by kv p
ω= and the group velocity is 

given by
cdk

dvg ω
ω )(= .  If the medium does not possess a frequency dependent refractive index, 

then gp vv = .  However, this is only true in vacuum and only approximately true in air.   

If you consider a single laser pulse in the pulse train emitted by the mode-locked laser, it 

can be written as: 

)(exp()()( 0 titEtE cω=              (2.5) 

where )(0 tE is the envelope of the field.  When the group and phase velocities are equal, the 

electric field of the pulse train can be expressed as: 

∑
+∞=

−∞=

−⊗=
m

m
RTcPT mttitEtE )()exp()()( 0 τδω  ,                                                                           (2.6) 

where m is the pulse index, 
rep

RT f
1=τ , and the summation is a comb function.  The pulse train 

is simply the convolution of a single pulse with a comb function, which gives pulses separated 

by the repetition rate of the laser. 

In the frequency domain, the pulse train is mathematically described as: 

∑
∞=

−∞=

−−=
m

m
rep

c
PT mfffEfE )()2(~)(~

0 δπ
ω ,                                                                  (2.7) 

where m  is now the mode index as previously defined and the summation is also a comb 

function.  This description gives the comb of mode orders underneath the laser spectrum.  This is 

exactly what is described by Figure 2.6. [27] 

Now, in the case where the group and phase velocities are different, a CE phase shift will 

arise in the pulse and will be different for each pulse in the pulse train.  The CE phase shift of a 

pulse as it travels through a medium can be derived by starting with the following expression: 

)( nnkL gCE −=Δφ                                                                                                                  (2.8) 
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where ck ω= , L is the length of the medium,  gn is the group index of refraction, and n is the 

index of refraction.  Note that the group index of refraction is defined as
g

g v
cn = .  Equation 

2.8 can further simplified as: 

)11(
pg

CE vv
L −=Δ ωφ                                                                                                                  (2.9) 

By making the substitution: 

c
d
dnn

vg

ω
ω+

=
1 ,                                                                                                               (2.10) 

Equation 2.9 becomes: 

ω
ωφ

d
dn

c
L

CE

2

=Δ .                                                                                                               (2.11) 

This is the expression using frequency.  However, experimentalists typically work with 

wavelengths.  In this case, by the making the substitution: 

λω
π

ω
λ

λω d
dnc

d
d

d
dn

d
dn

3

2−
== ,                                                                                                   (2.12) 

Equation 2.11 becomes: 

λ
πφ

d
dnLCE 2−=Δ                                                                                                                (2.13) 

Equation 2.13 is the simplest expression to use for calculations since the 
λd

dn are tabulated for 

materials at different wavelengths.  Also, note that all of the expressions assume evaluation of 

the derivatives and values at the central wavelength (central frequency).  For example, fused 

silica has 017288.0−=
λd

dn  µm-1 at 800 nm central wavelength.  A theoretical plot is shown in 

Figure 2.7. [27] 
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Figure 2.7 Theoretical plot for the CE phase shift through fused silica at 800 nm central 

wavelength. 

 

The plot shows that for roughly 58 micron of fused silica, the CE phase will shift by π2  

radians.  Thus, a small amount of material will impart a large CE phase shift.  Considering that 

the crystal in the laser cavity is a few mm in length, the CE phase will shift by a large amount as 

it travels through the cavity. 

If you take L to be the length of the laser cavity and account for all of the dispersive 

elements, Equations 2.11 and 2.13 will give the total CE phase shift through the cavity.  Thus, 

for the jth pulse exiting the cavity, the total CE phase can be written as CECE j φφφ Δ+= 0 , where 

0φ is the CE phase of the 0th pulse.  The next step is to derive the frequency domain expression, 

similar to Equation 2.7, for the case where dispersion exists. 

The electric field of the pulse train, including the CE phase shift, can be expressed as: 

∑
+∞=

−∞=

+−Δ+−=
j

j
RTcCEcRTPT jtijtEtE 0)((exp[)()( φτωφωτ                                                    (2.14) 

The Fourier transform of Equation 2.14 is given by: 

∑ ∫
+∞=

−∞=

−−−+−Δ=
j

j
cRTRTcCEPT dttijtEjiE ])(exp[)()])((exp[)(~

0 ωωτφτωφω                (2.15) 
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Let ∫ −= dttitEE )exp()()(~ ωω .  Also, using the Fourier shift theorem given by: 

∫ ∫ −−=−− dxxixfgidxxigxf )exp()()exp()exp()( ααα                                                    (2.16) 

Equation 2.15 becomes: 

)](exp[)(~)exp()(~
0 ∑

+∞=

−∞=

−Δ−=
j

j
RTCEc jjiEiE ωτφωωφω                                                    (2.17) 

Finally, after applying the Poisson Summation Formula, Equation 2.17 becomes: 

∑
+∞=

−∞=

−−Δ−=
m

m
RTCEc mEiE )2()(~)exp()(~

0 πωτφδωωφω                                                    (2.18) 

Equation 2.18 shows that the frequency comb, by adding a pulse to pulse CE phase shift, 

becomes translated.  The frequencies of the comb are then given by: 

RT

CE

RT
m

mf
πτ
φ

τ 2
Δ

−=                                                                                                                (2.19) 

Equation 2.19 can be further simplified to: 

0fmff repm +=                                                                                                                (2.20) 

where 
π

φ
20

repCE f
f

Δ
−= .  The negative sign is dropped by convention as long as the sign of the 

CE phase shift is changed as well, which is not so important.  The offset frequency 0f  is 

physically a positive number.  The shifted frequency comb is shown in Figure 2.8. [27] 
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repm mfff += 0

0frepf

f

)( fI

 
Figure 2.8 Shifted frequency comb.  The dashed arrow represents a large increase in 

frequency in order to show DC on the same axis. 

 

In the figure, the dashed lines represent the modes of the laser when the phase and group 

velocities of the pulse are equal.  The solid lines represent the shifted modes of the laser 

underneath the gain spectrum in the presence of dispersion.  In this case, the frequencies are 

given by Equation 2.20.   

Thus, as the CE phase changes from pulse-to-pulse in the emitted laser pulse train, the 

mode spectrum is shifted as shown in Figure 2.8.  In fact, the offset frequency is also defined as: 

π
φφ

π 22
1

0
repCECE f

dt
d

f
Δ

==                                                                                                    (2.21) 

 

 The offset frequency, though, does not maintain a constant value in the laser cavity due 

to fluctuations of the dispersion.  The optical mounts in the cavity can shift, causing the path 

length to change and thereby changing the dispersion.  Also, temperature shifts and air pressure 

changes can affect the dispersion encountered by the pulse circulating through the cavity.  Thus, 

the CE phase changes as the offset frequency shifts.  Since the pulse-to-pulse CE phase shift is 

related to the frequency domain, methods can be employed to lock the offset frequency to a set 

value and thus stabilize the phase shift between pulses in the pulse train to a known value. 
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2.3 Stabilization of the CE Phase 

2.3a Review of the Technology 

CE phase technology has been around for almost 12 years.  With the development of 

KLM Ti:Sapphire laser oscillators, few-cycle pulses were available to researchers.  Measurement 

of the CE phase or absolute phase of the pulses from such a laser was and still is to this day a 

major goal of researchers.  Thus far, no group has managed to definitively measure the absolute 

phase of a pulse.  The first attempt at measuring the pulse-to-pulse CE phase shift from a 

Ti:Sapphire laser oscillator was made in 1996. [28] In the experiment, the group used a 

Michelson interferometer to perform an interferometric cross-correlation of pulses from a sub-10 

fs Ti:Sapphire laser in order to measure the relative phase shift between the pulses.  The group 

used a pair of intracavity fused-silica wedges to introduce a CE phase shift. The investigation 

identified the main sources of CE phase noise in the laser and suggested that the intracavity pulse 

energy be used as a feedback mechanism for stabilizing the CE phase drift. [28]   

A major paper on the subject was published in 1999. [29] In this paper, the methods for 

obtaining the offset frequency 0f were outlined and investigated.  The methods investigated all 

involved comparing different parts of the laser spectrum using nonlinear processes or external 

oscillators.  The group also investigated the bandwidth requirements and the number of nonlinear 

steps involved in obtaining the offset frequency.  It was deduced that comparing comb orders 

through difference frequency generation (DFG) or second harmonic generation (SHG) would be 

the simplest since the method would involve only one nonlinear process.  However, in order to 

implement either SHG or DFG, the laser spectrum would have to cover an octave.  Such octave 

spanning spectra were not available at the time. The research group, though, was able to observe, 

but not lock, the offset frequency using a frequency interval bisection scheme.  The offset 

frequency was found to arise in the MHz range.  This paved the way for future research. [29]  

Shortly after, in 2000, microstructure fibers with zero-dispersion points in the near 

infrared were introduced as a technology. [30]   It was shown that an octave-spanning could be 

produced through the nonlinear processes induced through focusing a Ti:Sapphire laser into the 

small core. Then, using the new fiber technology, researchers were able to generate the offset 

frequency by frequency doubling the low frequency components of the octave-spanning 

spectrum and heterodyne beating them with the overlapping high frequency portions. [31,32]  
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This method is called f-to-2f self-referencing and is the method used by most groups.  Once the 

researchers had generated the offset frequency, they were able to lock it to a known value and 

thus stabilize the CE phase shift of the pulse-train.  

Since that time, the CE phase stabilization of Ti:Sapphire laser oscillators has advanced 

rapidly.  The state of the art is obtaining the offset frequency from octave-spanning [33] or near 

octave-spanning lasers [9] The popular method of f-to-2f self-referencing will be discussed in the 

next section. 

2.3b f-to-2f Self-Referencing 

The f-to-2f self-referencing method is a very simple scheme for obtaining the offset 

frequency.  It requires only one nonlinear process in conjunction with spectral broadening of the 

laser spectrum over an octave.  The nonlinear process used is SHG.  Thus, the comb orders to be 

compared have a ratio of 2:1 or 22 =
m

m

f
f

, where m is the comb order. [29] Once an octave-

spanning is obtained, the low frequency is doubled and the high frequency, mf 2  interferes with 

the frequency-doubled low-frequency component, mf  .  Mathematically, the interference 

between the two comb orders is represented as:   

0002 )2()(22 ffmffmfff reprepmm =+−+=−                                                                (2.22) 

Figure 2.9 displays the process graphically. 

 
Figure 2.9 f-to-2f self-referencing 
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From the process, the offset frequency is obtained and appears in the tens of MHz range. 

[29] In this range, it is easy to track using spectrum analyzers.  The next section discusses ways 

to lock the phase. 

2.3c Locking the Offset Frequency 

The offset frequency, which is directly related to the CE phase shift, can be locked and 

manipulated by several methods.  First, the most popular method is to lock the offset frequency 

to a fraction of the repetition rate of the laser oscillator.  In this case, the CE phase shift evolves 

linearly from pulse-to-pulse.  By Equation 2.21, that evolution is known.  Second, the offset 

frequency can be locked to an external reference, such as an RF oscillator. [34] This method is 

used by many in the frequency metrology community.  Yet, another method, which was shown 

in 2005 [35] locked the offset frequency to zero frequency, which made the CE phase shift the 

same for every pulse in the pulse-train emitted by the laser.   

The offset frequency, though, is susceptible to fluctuations of the laser parameters and to 

the environment in which the laser is housed.  For example, the offset frequency was found to 

sweep through 100 MHz in the time period of milliseconds when the laser was on an open table. 

[29] This was due to air pressure and temperature variations of the cavity.  The offset frequency 

is also susceptible to intracavity laser energy variations and to vibrations of the laser cavity.  

Ti:Sapphire lasers with intracavity prisms for dispersion compensation are especially susceptible 

to vibrations due to optical path length change.  Thus, in order to accomplish CE phase 

stabilization, the laser used should be passively stable. 

Two methods are commonly employed to lock the offset frequency to a value.  The first 

involves quickly tilting a mirror in the cavity to change the optical path length of the pulse.  This 

method only works in lasers utilizing prisms for dispersion compensation.  By changing the path 

length, the amount of dispersion experienced by the pulse is varied, which causes the offset 

frequency to change. [36] The second method involves varying the pump power.  By varying the 

pump power, the nonlinearity in the Ti:Sapphire crystal is changed.  A pulse traveling through 

the crystal will experience a different amount of dispersion and thus vary the offset frequency. 

This can be understood by the Kerr effect.  The dispersion in the Ti:Sapphire crystal is given by 

InnIn 20)( +=  .  As the pump power is modulated, the intensity in the crystal changes thereby 
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changing the dispersion.  Varying the pump power is the only way to lock the offset frequency in 

lasers using chirped mirrors for dispersion compensation. [37,38]  The next chapter discusses the 

experimental details of the CE phase stabilization of the Kansas Light Source oscillator.  
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CHAPTER 3 - Stabilization of the CE Phase of the KLS Oscillator 

 3.1 The KLSI Laser Oscillator 
The foundation of the Kansas Light Source laser system consists of a chirped mirror 

dispersion-compensated KLM Ti:Sapphire laser oscillator (Femtolasers Scientific Pro S).  This 

laser is used to seed a multi-pass grating-based amplifier, which will be described in a later 

chapter.  The KLSI laser oscillator is shown in Figure 3.1. 

 
Figure 3.1 The KLSI Laser Oscillator. M1-M8: cavity mirrors, AOM: acousto-optic 

modulator, OC: output coupler, CP: compensating plate 

 

In the laser oscillator, a pump beam from the diode-pumped-solid-state (DPSS) laser 

(Coherent Verdi VI) centered at 532 nm central wavelength, was focused into the Ti:Sapphire 

crystal by the lens.  The absorbed energy created the population inversion in the crystal while the 

transmitted pump energy traveled out of the cavity through M1.  In this laser, the Ti:Sapphire 

crystal was about 2.3 mm long and cut at Brewster’s angle.  The pump laser and the 

corresponding laser emission were horizontally polarized.  The output coupler was cut at an 



 

 22

angle of 10 degrees to prevent back reflections of secondary reflections into the cavity, which 

would disturb the laser operation.  The compensating plate was cut at the same angle and placed 

close to the output coupler in order to compensate the spatial dispersion. 

Once lasing had occurred, two stable modes of operation existed for the laser, though an 

unstable hybrid mode did exist, called a Q-switch mode, but was undesirable for applications.  

The first mode was the CW mode.  The CW mode had a central wavelength of ~800 nm, which 

corresponded to the peak of the gain curve of the Ti:Sapphire crystal.  This mode was the 

preferred mode of operation for the laser.  Of course, the mode-locked state was second.  In this 

laser, the intracavity chirped mirrors provided the dispersion compensation, which kept the pulse 

short and the intensity high in the laser crystal. 

Stable mode-locking existed for only two regions, called stability zones.  The stability 

range is given by fd 2−=δ , where d is the distance between M1 and M5 and f was the focal 

length of the focusing mirrors.  Experimentally, determining the best position of the crystal and 

focusing mirrors which would yield a mode-locked state was found by optimizing the CW 

operation to yield the highest output power.   This power was generally around 620 mW.  Then, 

the distance between M1 and M5 would be slowly changed to decrease the power to roughly 400 

mW.  The mode-locking only started at the edge of a stability zone.  In order to start the mode-

locking, either M5 or the OC/CP, which were mounted on translation stages, were rapidly 

moved.  This gave the needed intensity fluctuation in the crystal, which initiated the mode-

locking. 

Once mode-locking had been started, the laser remained in that state unless stopped.  The 

mode-locking provided ~5.3 nJ energy output pulses at a repetition rate of ~76 MHz, which 

corresponded to a cavity length of almost 2 m.  The temporal separation of pulses in the pulse 

train was ~13 ns.  The polarization of the output pulses was horizontal. 

The additional components added to the oscillator layout were the acousto-optic 

modulator (AOM) in the pump beam path and the translation stage on which the output coupler 

and compensating plates were mounted.  The AOM was used to modulate the pump power in 

order to lock the offset frequency and stabilize the CE phase.  The translation stage was used to 

move the offset frequency to the locking frequency used.  By moving the translation stage, the 

dispersion in the cavity was changed, which changed the offset frequency.  These components 

will be further discussed in an upcoming section.   
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The output spectrum of the laser is shown in Figure 3.2. 

 
Figure 3.2 Kansas Light Source Oscillator Spectrum 

 

The spectrum of the laser pulses from the Kansas Light Source laser is broad.  In this 

figure, the FWHM is 98.5 nm.  By optimizing the laser cavity, a broader spectrum can be 

obtained.  However, this is the typical spectrum obtained. 

If a pulse from the oscillator is assumed to be transform-limited and a Gaussian pulse-

shape is assumed, then the pulse duration can be estimated by the fourier time-bandwidth 

product πτ 2ln2=Δ ppf , where pfΔ is the spectral FWHM and pτ is the pulse duration.  For 

the spectrum in Figure 3.2, the spectral width is 131064.4 ×=Δ pf Hz.  This yielded a theoretical 

pulse duration of ~9.5 fs.  Typically, though, the pulse duration will be longer due to higher-

order dispersion from the output coupler, compensating plate, and Ti:Sapphire crystal. [39]  

Also, recalling the discussion of cavity modes from Chapter 2, the number of modes 

contributing to the mode-locking can be estimated from Figure 3.2.  Since the spectrum extends 

from roughly 700 to 900 nm, the spectral width is about 13106.9 × Hz.  Assuming the laser 
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repetition rate was about 76 MHz, the number of modes contained in the spectrum was 

~ 6102.1 × .    

The spectrum obtained from the oscillator, though, was not wide enough to employ the f-

to-2f self-referencing method discussed in Chapter 2.  It did not span an octave in frequency.  In 

the next section, the method used to obtain the offset frequency will be discussed. 

3.2 Self-Referencing Setup 

3.2a PCF Setup 

In order to detect the offset frequency, 0f described in chapter 2, the laser spectrum from 

the KLS oscillator had to be broadened over an octave since the laser bandwidth extended from 

only 700 to 900 nm.  In order to accomplish this task, a photonic crystal fiber (PCF) was used. 

PCF technology is relatively new, only being around since the early part of the century.  

A normal fiber guides the light by total internal reflection between a high-index core and a lower 

index cladding. [40] A PCF, though, has a hybrid high/low index structure, which is used to give 

the fiber unique dispersive properties.  The zero-dispersion (second-order) point of the fiber can 

be shifted to match the central wavelength of the in-coupled laser.  Second-order dispersion leads 

to a chirping of the pulse and thus a temporal broadening.  In fact, the fiber properties can also be 

manipulated to exhibit negative group-velocity dispersion at a desired wavelength.  This slows 

the temporal broadening of the pulse through the fiber, allowing a higher intensity to be 

maintained along the length of the fiber.  The high intensity would then yield higher nonlinear 

effects.  For spectral broadening, nonlinear effects such as self-phase modulation, self-

steepening, and four-wave mixing occur along the interaction.  Those nonlinear processes 

broaden the spectrum of the in-coupled laser. [40] 

An important point here is that the nonlinear processes occurring inside the fiber are 

wave-mixing processes.  In the wave-mixing process, adjacent laser comb orders are 

added/subtracted to yield new lines, which broaden the spectrum. [40] This preserves the comb 

structure of the incident laser beam as the comb orders are still separated by the laser repetition 

rate.  If this were not true, then the f-to-2f self-referencing method would not work.  The comb 

orders obtained from the spectral broadening must be the same as for the in-coupled laser light. 
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The PCF used in the self-referencing setup for the KLS laser was purchased from 

Menlosystems GmbH and comes standard in their XPS 800 setup for CE phase stabilization.  

The PCF setup is shown in Figure 3.3. 

 
Figure 3.3 PCF setup for spectral broadening. 

 

On the left side of the figure is the input of the PCF.  The face of the fiber was cut at an 

angle of 10 degrees to prevent back reflections from going back to the oscillator and disrupting 

the mode-locking.  In order to facilitate coupling of the laser to the setup, the input fiber was a 

standard 780 nm optical fiber.  The fiber had a numerical aperture of NA=0.13 and a mode-field 

diameter of 5 micron.  Note that mode-field diameter is not exactly a measure of the fiber 

diameter, but a measure of the beam width which propagates in the core and cladding.  The 

larger diameter in-coupling fiber provided an easier way to couple into the smaller core PCF.  

This is shown in the diagram where the in-coupling fiber is spliced to the PCF.  The in-coupled 

light propagated through the in-coupling fiber and into the 2 micron PCF.  The length of the fiber 

setup was 60 mm and was sealed off completely from the outside environment.  The PCF itself 

was composed of a solid silica core surrounded by air holes.  The zero-dispersion point of the 

fiber was around 780 nm. [41] 

3.2b Spectral Broadening with the PCF 

In the experiment, the pulses from the KLS laser were bounced once off of two chirped 

mirrors (-65 fs2 / bounce) and then focused into the fiber setup by an f=7.5 mm aspheric lens.  An 

aspheric lens was used to reduce spherical aberration of the focused laser and to match the NA of 

the in-coupling fiber. 
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The output spectra obtained from focusing the KLS laser into the PCF are shown in 

Figure 3.4. 

 
Figure 3.4 PCF output spectra: a) low wavelength portion of the spectrum, b) spectrum 

measured with a >700 nm filter 

 

In Figure 3.4, each portion of the spectrum had to be measured separately with the 

spectrometer, which could not measure the broad spectrum without including 2nd order 

diffractions in the long-wavelength portion.  For example, b) was measured with a >700 nm 

longpass filter to prevent the 2nd order diffractions from 500 nm from showing up around 1 

micron.  In the experiment, approximately 200 mW of mode-locked output power from the KLS 

oscillator were coupled into the PCF.  The output power of the light emerging from the PCF was 

~50 mW, giving a throughput of 25%.  At times, the power could be higher or lower depending 

on the input beam mode, input laser power, and geometric coupling. 

As can be seen from the data, the original spectrum of the KLS laser, which originally 

extended from ~700 to 900 nm, was broadened to cover ~500 to 1075 nm.  Such a broad 

spectrum was over an octave and sufficient for f-to-2f self-referencing to obtain the offset 

frequency.  Of course, adjustment of the in-coupled laser power and laser polarization would also 

affect the spectral broadening.  The PCF itself was not symmetric in structure, leading to a 

polarization dependent nonlinearity.  Changing the laser polarization would adjust the spectral 

width and the amplitude at different wavelengths. 
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Changing the laser power had the most dramatic effect on the spectrum obtained from the 

PCF.  The situation when the in-coupled laser had a lower power is shown in Figure 3.5. 

 
Figure 3.5 PCF output at lower power: a) 6 mW output power, b) 18 mW output power 

 

As can be seen from the figure, at the lower output power of 6 mW, the spectrum tended 

to shift toward lower wavelengths, but was still not broad enough for offset frequency detection.  

When the output power was three times larger, the spectrum started to become much broader and 

started to shift toward longer wavelengths.  Experimentally, the broad spectrum necessary for 

obtaining the offset frequency usually emerged at powers over 35 mW.  However, the offset 

frequency signal-to-noise ratio was always better when the power was closer to 50 mW. 

3.2c f-to-2f Setup 

The f-to-2f self-referencing required the second harmonic generation of a portion of the 

spectrum from the PCF around 1064 nm.  Then, the second harmonic would be overlapped and 

interfered with the corresponding low wavelength at 532 nm.  If you look at Figure 3.4, the 1064 

nm component was in the extreme end of the spectrum obtained from the PCF and appeared to 

have little energy.  However, the amplitude, or energy, of the spectral components around 1064 

nm could be increased by changing the polarization of the laser input to the PCF or by adjusting 

the geometric coupling to the fiber. 

The optical layout designed to obtain the offset frequency is shown in Figure 3.6. 
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Figure 3.6 f-to-2f Interferometer for self-referencing; λ/2: half-waveplate, AL: aspheric 

lens, PCF: photonic crystal fiber, MO: microscope objective, DBS: dichroic beamsplitter, 

L: lens, PPKTP: periodically-poled KTP, PBS: polarizing beamsplitter cube, F: filter, S: 

slit, APD: avalanche photodiode 

 

In the setup, 200 mW, which was half of the output from the KLS laser oscillator, was 

passed through a half-waveplate, was used to adjust the spectral broadening in the PCF by 

exploiting the non-symmetric nature of the PCF structure, and then focused in to the PCF by an 

f=7.5 mm lens.  The light leaving the PCF, which was then a broad spectrum, was collimated by 

a microscope objective having a numerical aperture of 0.40, which was identical to the NA of the 

fiber.  A half-waveplate was then used to adjust the polarization of the beam to horizontal 

polarization since the PPKTP crystal was cut for Type I (o-o-e) phase matching.  The long-

wavelength portion and the short-wavelength portion of the white light were split by a dichroic 

beamsplitter.  Figure 3.7 shows the portion of the white-light that propagated through each arm 

of the interferometer. 
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Figure 3.7 Reflected and transmitted spectra from the dichroic beamsplitter: a) reflected 

spectrum, b) transmitted spectrum. 

 

As is shown, the short-wavelength components traveled through the lower arm of the 

interferometer and the long-wavelength components were sent to the top arm for frequency 

doubling. 

A PPKTP crystal was used to obtain the second harmonic because of its high conversion 

efficiency and for the fact that it displayed zero walk-off.  The crystal was periodically-poled, 

which meant that the sign of the nonlinearity changed as the phase of the second harmonic light 

and the fundamental light became unmatched.  This yielded a higher intensity and allowed the 

beams to be overlapped. Most f-to-2f interferometers use a BBO crystal.  A BBO uses 

birefringent phase-matching which resulted in walk-off between the fundamental and second 

harmonic light.  The walk-off reduced the nonlinear interaction and made alignment difficult. 

The long-wavelength components were focused into the 5 mm thick PPKTP crystal, 

which was cut for Type I phase-matching for SHG of 1064 nm, by an f=50 mm lens.  The second 

harmonic was collimated by an identical lens.  The mirror after the SHG setup was designed for 

high-reflectivity of 532 nm light.  This mirror acted as a spectral cleaner as it transmitted almost 

all other wavelengths.  The second harmonic light was also vertically polarized.  A half-

waveplate was used to rotate the polarization of the second harmonic light to horizontal so it 

could pass through the polarizing beampslitter cube (PBS). 
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Alternately, the short-wavelength portion of the light was passed through a delay stage.  

A half-waveplate was placed before the dichroic beamsplitter to adjust the amplitude of the 

fundamental green light that would be reflected from the polarizing beampslitter.  The function 

of the PBS should be noted.  The cube was basically two right angle prisms cemented together 

with a special coating along the interface.  Horizontally polarized light was transmitted and 

vertically polarized light was reflected.  Thus, the fundamental green light was reflected and the 

second harmonic beam from the top arm was transmitted.   

At this point in the interferometer, the two beams were spatially overlapped and adjusting 

the delay stage allowed for temporal overlapping, but their respective polarizations were 

different.  In order to overlap the electric fields of the two beams, a half-waveplate was placed 

before a second PBS.  The half-waveplate was rotated such that the two beams’ polarizations 

were rotated roughly 45 degrees, giving each beam a combination of horizontal and vertical 

polarization.  After passing through the polarizing beamsplitter, the two beams were spatially 

and temporally overlapped in addition to having the same polarization.  The next step was to 

spectrally filter the beam and choose only the wavelengths which would contribute to obtaining 

the offset frequency. 

In order to accomplish this task, the beam was directed to a grating, which spatially 

separated the wavelengths.  An interference filter, with a 2 nm FWHM bandpass centered at 532 

nm, was placed in the position of the 532 nm light.  The transmitted light was then further 

spectrally filtered with a slit and then focused onto the detector in the avalanche photodiode 

(APD) by an aspheric lens.  The spectrum entering the APD is shown in Figure 3.8. 
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Figure 3.8 Spectrum focused into the APD. 

 

A good signal-to-noise (S/N) ratio was obtained by focusing only the components from 

the fundamental green light that overlapped with the frequency doubled infrared components into 

the APD.  Any other frequencies would only contribute as noise and would decrease the S/N.   

The number of comb orders contributing to the spectrum in Figure 3.8 can also be 

estimated using the same method as for the oscillator spectrum in section 1 of this chapter.  

Assuming the laser repetition rate is 76 MHz and the comb lines within the 2 nm FWHM 

contribute the most energy, the number of comb orders contributing to the beat signal is ~28000.  

So, in the actual interference process where the offset frequency is obtained, many lines are 

actually contributing to the beat signal.   

The interference signal obtained is shown in Figure 3.9.  The detected frequencies are the 

result of the f-to-2f self-referencing method.  The offset frequency, 0f is near 20 MHz and the 

repetition rate, repf is near 76 MHz.  The mirror frequency, which is the difference in the 

repetition rate and the offset frequency, is also shown.   
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Figure 3.9 Signal obtained from the f-to-2f interferometer. 

 

3.3 Phase-Locking Loop 
The phase-locking loop used to lock the offset frequency was also from Menlosystems 

GmbH.  It consisted of several modules including a PI controller, phase detector, and frequency 

distributor.  The phase-locking bandwidth, the frequency range over which it could track and 

control a frequency, of the Menlosystems unit was ~ 1 MHz.  The system locked the offset 

frequency to one-quarter of the laser repetition rate.  A division by four was chosen so that every 

fourth pulse leaving the oscillator would have the same CE phase when the offset frequency was 

locked.  A flowchart of the phase-locking system is shown in Figure 3.10. 
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Figure 3.10 Phase-locking system. 

 

The basic scheme of the phase-locking system is shown in the figure.  First, the repetition 

rate of the laser was detected and divided by four.  At the same time, the offset frequency was 

obtained from the f-to-2f interferometer.  The divided repetition rate and offset frequency were 

compared in a phase detector, which output an error signal to the proportional-integral (PI) 

controller.  The PI controller provided an output to the AOM driver, which drove the AOM in 

the laser cavity. 

Another view of the phase-locking system is provided in Figure 3.11. 
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Figure 3.11 Schematic of the phase-locking loop. 

 

The above figure displays the routes of the signals through the system.  The repetition 

rate divided by four was sent to the “down” input of the phase detector while the offset 

frequency signal was sent to the “up” input.  A spectrum analyzer and oscilloscope were used to 

monitor the signals. 

The phase detector could measure a phase difference of π16± .  Mathematically, 

])
4

(2exp[)( 11 t
f

iVtV repπ−=  is the signal from the frequency distribution unit and 

)]()(2exp[)( 0022 titfiVtV ϕπ −−= is the signal from the APD, where )(0 tϕ is a temporally varying 

phase offset.  The phase detector measures the signal: 
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t rep ϕπϕ +−=                                                                                           (3.1) 
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When 
4
repf

and 0f are not equal, the phase changes linearly with time, leading to a sawtooth 

waveform, which corresponds to the π16±  measurement of the phase difference.  When the two 

frequencies are equal, then the phase is locked to zero.   

The sawtooth waveform for unequal frequencies is shown in Figure 3.12. 

 
Figure 3.12 Phase detector output 

 

In the figure, the sawtooth waveform represents the measurement of the π16±  range.  

The vertical axis was calibrated by measuring the voltage of the waveform with an oscilloscope 

and then dividing the total voltage difference by π32 . 

This signal was then sent to the PI controller of the Menlosystems unit, where a 

proportional and integral gain was applied to the error signal.  A diagram of the PI controller 

circuit is in Figure 3.13. 
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Figure 3.13 PI controller circuit diagram. 

 

In the circuit, the input is the error signal from the phase detector.  Optional external and 

internal offsets can be applied to the error signal.  Then, a proportional gain is applied to the 

signal.  Subsequently, an integral gain and a high frequency gain are added to the signal.  Then, 

the signal has a fine gain applied and if needed, an output offset.  Finally, the signal is sent to the 

output driver when the lock is engaged. [41] 

The output driver sent a voltage to the AOM driver, which then amplified the signal and 

sent it to the AOM in the pump beam path of the oscillator.  The AOM worked as a Bragg 

diffraction device, which was essentially a transmission grating.  The sound field applied to the 

acousto-optic crystal acted as the grating.  As the voltage applied to the AOM changed, part of 

the laser beam was deflected into the first order diffraction.  The 0-order beam was used to pump 

the KLS laser.  The action of the AOM is shown in Figure 3.14. [42] 
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Figure 3.14 AOM, Bθ : Bragg angle 

3.4 Results and Discussion 
The linewidth of the offset frequency is shown in Figure 3.15. 

 
Figure 3.15 Linewidth of the offset frequency when the phase-locking loop was engaged. 
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The width of the offset frequency was measured with a spectrum analyzer utilizing a fast 

FFT algorithm.  This result shows that the offset frequency could be locked to within a 100 mHz 

linewidth.  The criterion for CE phase locking is that the offset frequency should be locked to 

less than 1 Hz.  A 1 Hz drift would yield a ~1 rad pulse-to-pulse shift in the CE phase due to the 

time-frequency relationship.  The width of the peak could be further resolved for longer 

observation times using the FFT analyzer.  The measurement in Figure 3.15 could in fact be less 

than 100 mHz.  Extending the time scale over which the offset frequency was observed would 

yield a finer frequency bandwidth.  This is not so important since the linewidth was verified to be 

much less than 1 Hz.   

Typically, the offset frequency can be locked for five to tens of minutes in normal lab 

operation, i.e. when people are working on the table; the lab door is opened and closed, etc.  The 

time can be even less if the laser is unstable.  However, when the optical table is not perturbed 

and the laser is operating in a very stable state, the offset frequency can be locked over many 

hours.  The offset frequency amplitude then becomes the limiting factor.  The offset frequency 

must remain ~35 dB in amplitude within a 100 kHz bandwidth in order for the electronics to 

track the signal. [41]  The coupling to the fiber can shift, though, as the optical mounts relax.  

The offset frequency amplitude plotted over three hours is shown in Figure 3.16. 
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Figure 3.16 Offset frequency amplitude vs. time. 

 

As is shown, the amplitude of the offset frequency started around 36 dB and slightly 

increased in value.  The amplitude then decreased over the first hour and then stayed around ~33 

dB during the remaining period of the locking time.  The amplitude was not adjusted during this 

period.   

An example of the phase detector output and the AOM control voltage during operation 

of the phase-locking loop are shown in Figure 3.17. 
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Figure 3.17 a) AOM control voltage, b) Phase detector output. 

 

The data was collected over a five minute run.  The two spikes in the phase detector 

output occurred when the optical table near the laser oscillator was momentarily perturbed.  The 

perturbation led to a large spike in phase error showing the need for stability of the lab 

conditions during CE phase stabilization. 

The AOM control voltage started at a value of ~440 mV, which was the center of the 

locking range.  As the locking began to slip, near 300 s, the control voltage reached to ~200 mV.  

In fact, at a value of ~100 mV, the locking loop failed and the offset frequency could no longer 

be locked.  The AOM control voltage kept between 100 mV to 800 mV at roughly 400 mV 

during normal locking operation.  The locking failed at the extreme ends of that range.  Also, the 

control voltage showed a slow drift in addition to a fast drift.  By applying a high-pass filter 

(>500 mHz) to the AOM control voltage output showed that the fast variation was ~1%. 

The rms deviation of the phase detector output for the time period between the first spike 

in phase error and the second spike is shown in Figure 3.18. 
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Figure 3.18 Phase detector output stability. 

 

The phase detector output showed an 81 mrad rms phase error which shows that the 

difference between the offset frequency and one-quarter of the repetition rate was almost zero. 

A better measurement of the quality of the phase-locking loop was obtained by 

measuring the phase noise spectrum and then calculating the accumulated phase error.  Using a 

dynamic signal analyzer, the power spectrum of the phase detector signal could be measured 

while the phase-locking loop was in operation.  Recall that the phase detector signal is given by 

Equation 3.1 and is graphically displayed in Figure 3.18.  Mathematically, the two-sided power 

spectral density (PSD) is given by: 
2
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fS πϕϕ                                                                               (3.2) 

where T is the observation time and f is frequency and )(tϕ  is the phase detector signal.  The 

limit is taken in the integral to avoid divergence.  Experimentally, though, the one-sided PSD is 

measured, which is twice the value of the two-sided PSD. [43] The accumulated CE phase error 

can be calculated over a certain time range by integrating the one-sided PSD over frequency.  
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Then, the accumulated phase error, or integrated phase error as it is commonly called, is 

represented as: 

∫ −=
max

1
,

2 )(
f

T

sideone dffSϕϕσ                                                                                                      (3.3) 

This value gives the noise of the CE phase locking loop directly.  Researchers in the field define 

the coherence time of the CE phase locking to be the observation time at which the accumulated 

phase error is ~1 rad or 1~2
ϕσ rad. [44] 

Ideally, the integration would be done for frequencies very close to DC all the way up to 

the repetition rate of the laser.  However, for very high frequencies (>1 MHz), the phase-locking 

loop is unable to compensate those errors.  Also, for frequencies 410>  Hz, the noise is on the 

level of the noise floor of the detection system.  So, it is experimentally sufficient to measure the 

noise up to ~100 kHz. 

The PSD of the phase noise from the phase detector and the integrated phase error is 

shown in Figure 3.19. 

 
Figure 3.19 PSD of the phase detector signal (black curve) and integrated phase error (blue 

curve). 
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The above data was taken by piecing together frequency spans that approached DC.  This 

required the offset frequency to be locked over 3 hours as the spans close to DC took almost an 

hour to accumulate the required time samples.  The accumulated phase error for the longest 

observation time measured was ~260 mrad for 1 s of observation time.  Much of the low 

frequency noise was mechanical noise from the optical mounts in the oscillator and 

interferometer used for phase locking.  The peak at ~1 kHz was most likely from small back 

reflections from the Pockels cell, which picked a 1 kHz pulse train from the 76 MHz oscillator 

pulse train.  The noise, though, began to roll off near 410 Hz. 

This phase noise measurement, though, represents a good stability of the phase-locking 

system employed.  Compared to other groups, this noise is lower.  For example, in [45], who 

used a prism-based laser, the integrated phase error was ~1 rad for a measurement time of 1 s.  

Actually, prism-based lasers have been found to be noisier than mirror based lasers, since beam 

pointing effects are much more severe in those lasers.  Pointing jitter leads to variations in the 

offset frequency and thus the CE phase.   

An improvement to the measurement in Figure 3.19 would be to measure the out-of-loop 

phase noise.  An out-of-loop measurement is a measurement of the real phase noise.  The in-loop 

measurement is involved in the stabilization process.  Any error occurring in the in-loop 

measurement would be written onto the CE phase of the pulses leaving the cavity of the laser 

oscillator.  Thus, by measuring the out-loop measurement, the variations could be seen.  

However, a secondary f-to-2f interferometer and PCF were not available for the measurement. 

Another improvement would be to measure the unlocked phase noise.  By comparing the 

locked and unlocked phase noises, the frequencies actually suppressed by the phase-locking loop 

would be known and a better estimate of the phase-locking bandwidth could be determined.  

However, this was not possible with the Menlosystems electronics since the phase detector 

wrapped the phase. 

3.5 Noise of the Oscillator CE Phase Locking Interferometer 
In order to maintain a CE phase stable laser system, all sources of CE phase noise must 

be controlled.  In Reference 17, the effect of the phase noise of the f-to-2f interferometer used for 

stabilizing the CE phase of the laser oscillator was studied.  In the experiments, a Helium-Neon 
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(He-Ne) laser, operating at ~632 nm, was copropagated with the light in the f-to-2f 

interferometer. [17]   

 The experimental setup is shown in Figure 3.20.  A half-waveplate was added after the 

HeNe laser to adjust the intensity of the beam as it passed through the interferometer since the 

optics were not designed for the 632 nm wavelength.  Also, a lens was used to loosely focus the 

beam in order to counteract the lenses in the top arm of the interferometer.  The position of the 

lens could be adjusted to give the beams emerging from the interferometer roughly the same 

diameter. As the laser propagated through the interferometer, any variation of the path length 

caused interference between the beams from the two arms. [17] 

After the HeNe beams traversed the interferometer, they were bounced off of the grating 

and sent to two locations.  First, a CCD camera captured the interference pattern formed by the 

two beams.  Second, a photodiode measured the intensity of a single fringe of the interference 

pattern.  The single fringe was obtained by using two cylindrical mirrors and a slit.  A later 

version of the interference setup took away the cylindrical mirrors and used the center of the 

circular (collinear) interference pattern.  Both setups provided the same information. 

The signal from the photodiode was sent to a PID controller (SIM960, Stanford Research 

Systems).  The PID controller provided an output voltage, which was applied the PZT attached 

to the mirror in the top arm of the interferometer. [17] 
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Figure 3.20 f-to-2f with a HeNe laser. CL: cylindrical-lens, PD: photodiode, CCD: camera. 

 

An example of the fringes obtained from the CCD camera for the locked and unlocked 

cases is shown in Figure 3.21. 

 
Figure 3.21 HeNe fringes. Left) unlocked, Right) locked. 
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The figure shows that when the interferometer was locked, the fringes did not jitter unlike 

as in the unlocked case.  To measure the phase stability of the interferometer quantitatively, the 

signal from the photodiode was sent to a dynamic signal analyzer.  Using the analyzer, the phase 

noise, similar to that measured for the oscillator CE phase, was measured.  The results are shown 

in Figure 3.22. 

In the figure, the majority of the noise is present from DC to ~1 kHz.  This noise 

presumably originated from air flow variations and vibrations of the optical table.  When the 

locking servo was engaged, the noise was significantly reduced within that range.  The 

dominating noise peak at 100 Hz was reduced by almost two orders of magnitude.  It should be 

noted that the optical table was not floated when the top figure was measured. [17] 

  The effect of floating and unfloating the table is shown in the bottom figure.  In the 

measurement, the locking servo was not engaged.  This measurement shows the passive stability 

of the interferometer.  When the table was floated, the high frequency (>1 kHz) noise of the 

interferometer was reduced by almost two orders of magnitude.  The low frequency noise in the 

range of ~500 mHz to 100 Hz was reduced by 1 order of magnitude to 2 orders of magnitude for 

some frequencies.  A possible reason that the low-frequency noise was not so affected for certain 

frequencies by floating the table was that certain noise sources were attached to experimental 

setups along the table.  Vibration sources such as vacuum pumps, power sources, and computers 

could still couple to the table to some degree.  The results could be improved by isolating all of 

those noise sources further and locking the interferometer. [17] 
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Figure 3.22 Top) The power spectrum of the interferometer phase noise and the integrated 

phase error.  Bottom) Comparison of phase noise measurements when the optical table was 

floated and unfloated. 

In the interferometer, any vibration of the mirror mounts or temperature or pressure 

variations will lead to time dependent path length, )(tLΔ .  Thus, the relative phase of the beams 
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in the two arms of the interferometer becomes time-dependent.  The time dependent phase is 

given by
λ

πϕ )(2)( tLt Δ
= .  In this case, the wavelength is 532 nm. [17] 

The bottom arm of the interferometer is chosen as the reference beam.  The electric field 

of the beam is given by: 

])(2cos[)()( 01,01 tfmftEtE rep += π                                                                               (3.4) 

where 1,0E is the amplitude and m is the mode-index determined by the wavelength.  The electric 

field of the second harmonic of the infrared light in the top arm of the interferometer is given by: 

)]()2(2cos[)()( 02,02 ttfmftEtE rep ϕπ ++=                                                                   (3.5) 

The frequency of the detected offset frequency will be deviated from its true value and will also 

become time-dependent. 

dt
dftf ϕ

π2
1)( 0 +=                                                                                                       (3.6) 

The CE phase locking electronics stabilize f , which is detected by the APD in the 

interferometer.  If the detected offset frequency fluctuates, then the CE phase of the pulses 

leaving the oscillator will fluctuate.  Thus, it is important to reduce the noise from the f-to-2f 

interferometer. [17] 
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CHAPTER 4 - CE Phase  Stabilization of Amplified Laser Pulses 

4.1 Background 
Once CE phase stabilization had become a viable technology for Ti:Sapphire laser 

oscillators, the next step was to consider the CE phase stability through the amplification 

process.  Ti:Sapphire laser oscillators generally produce pulses with nJ level energy.  However, 

µJ to mJ energy pulses are needed for exploring the majority of physical processes sensitive to 

the CE phase. For example, HHG and ATI require laser intensities ~ 1410  W/cm2 . [3,1 ] In this 

section, the background of amplifying CE phase stable pulses will be briefly reviewed. 

The first paper published on amplifier CE phase was in 2000 [46]; shortly after the first 

few papers on CE phase stabilization of laser oscillators was published.  The paper suggested a 

method for obtaining the CE phase using amplified laser pulses by overlapping the second and 

third harmonics of the laser.  However, the method was never implemented due to experimental 

complexities. [46] In 2001, though, a major paper was published which outlined the method of 

measuring the pulse-to-pulse change in CE phase by spectral interferometry and displayed its 

implementation. [47] The method involved f-to-2f interferometry with the low repetition rate 

pulse train from the amplifier.  Basically, the CE phase changes could be measured by 

overlapping the delayed superposition of the fundamental and second harmonic pulses, where the 

second harmonic overlapped in frequency with the fundamental.  This method is very similar to 

that used for stabilizing the CE phase of the laser oscillator. [47] Also, it should be noted that the 

method is used by almost all groups even to this day for measuring the pulse-to-pulse CE phase 

drift.  The method will be outlined in more detail in section 2 of this chapter. 

The aforementioned method was used to measure the CE phase drift of the amplified 

pulses in Reference 48. [48] It was found that the CE phase drift gave a random distribution.  

The authors concluded the random distribution was due to the fact that they were using a non-CE 

phase stabilized oscillator to seed their amplifier.  This group was also the first to address 

sources of CE phase fluctuations through the amplifier, especially the gratings in the stretcher 

and compressor. [48] 

In 2003, the first demonstration of a CE phase stabilized amplifier was reported by 

Baltuška et al. [16] This group used a CE phase stabilized Ti:Sapphire laser oscillator to seed an 

amplifier equipped with a glass block stretcher and a prism-based compressor.  They then used 
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the method in Reference 47 to measure the CE phase drift of the amplified pulses and used that 

signal to pre-compensate the drift in the oscillator phase-locking loop.  The CE phase stabilize 

pulses were then used to investigate CE phase effects in HHG and ATI. [49]  

In 2004 thru 2006, groups were involved in scaling the CE phase stabilized amplifiers to 

higher energies, which could be accomplished only by using grating-based stretchers and 

compressors.  Material-based stretchers and compressors would not be able to withstand the 

multi-mJ energy level pulses desired from such systems.  A major paper published in 2004 

involved the regenerative amplification of a CE phase stable pulse train. [45]  In this work, the 

amplifier employed grating-based stretchers and compressors.  The group concluded that the 

gratings did not destroy the CE phase coherence through the amplifier.  This was confirmed by 

measuring the CE phase stability using the method in Reference 47.  

Much of the research up until the present time has followed the same path.  Today, CE 

phase stable grating-based chirped-pulse laser systems are the state of the art and capable of 

producing several mJ energy per pulse.  The research detailed in the remaining chapters of this 

thesis will address the amplification of CE phase stable pulses. 

4.2 Experimental Methods 

4.2a Chirped-Pulse Amplification  

As was said in the introduction, the nJ energy pulses from laser oscillators require 

amplification in order to explore the majority of physical processes sensitive to the CE phase.  

The pulses from laser oscillators are usually ~10 fs in duration.  Since the gain of the 

amplification system must be ~ 610 to reach mJ energies, the peak intensity in the laser crystal 

would be enough, after several passes, to damage the crystal.  Thus, another method needed to be 

employed to amplify the laser pulses. 

The method, which was developed in 1985 by Strickland and Mourou, is called chirped-

pulse amplification (CPA). [50] In this method, the pulses are stretched in time, amplified, and 

then temporally compressed.  To amplify pulses from Ti:Sapphire laser oscillators, the pulses are 

usually stretched from ~10 fs to ~100 to 200 ps.  A schematic of a CPA laser system is shown in 

Figure 4.1. 
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Figure 4.1 CPA laser system. 

 

In a CPA system producing femtosecond pulses, the MHz repetition rate pulse train from 

a laser oscillator is counted down to the kHz or Hz level by a pulse picker.  The pulses then enter 

the stretcher.  The stretcher is either material-based or grating-based.  For the material-based 

stretcher, the pulses are stretched by traversing a glass block or by a prism-stretcher arrangement.  

In the grating-based stretcher, the pulses are stretched by a pair of gratings combined with a 

telescope arrangement.  Single-grating designs also exist.  In both the material and grating cases, 

though, the pulses are stretched to ~100 ps or more, depending on the design parameters of the 

amplifier. [50] 

Once the pulses leave the stretcher, they enter the amplification stage of the CPA system.  

Two arrangements of amplifiers exist for femtosecond Ti:Sapphire lasers.   The first 

configuration is a multi-pass setup.  In this design, the separate passes through the crystal are 

separated geometrically.  The number of passes through the crystal is determined by the desired 

output energy and of the complexity of the setup.  In order for the gain to be high for each pass 

through the crystal, the crystal is pumped close its damage threshold. [51] 

The second configuration used is called a regenerative amplifier.  In this design, the 

pulses are amplified in a cavity.  The pulses are trapped in the cavity by polarization techniques, 

amplified until the energy in the laser crystal has been fully extracted, and then sent out of the 

cavity by changing the polarization of the laser pulse.   

Both amplifier designs, though, are capable of producing the mJ energy pulses for 

exploring high field physics.  Often, the two amplifier configurations are used in tandem to 

produced very high energy pulses.  Also, cascaded multi-pass amplifiers are often used to 

produce high power pulses. [51] 
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However, once the pulses have been amplified using either of the aforementioned 

methods, the pulses are sent to a compressor.  Similar to the stretcher, the compressor is either 

material-based or grating-based.  The compressor must compensate for the dispersion from the 

stretcher and from the amplifier.  A material-based compressor would consist of either two pairs 

of prisms or a double-pass prism pair (pair of prisms followed by a retroreflector).  Then, the 

grating-based compressor would consist of two gratings separated by an adjustable distance.  

Again, the grating-based systems can handle more energy than the material-based systems.  

The amplification process, though, is not completely linear.  The original pulse duration 

cannot be recovered by the compressor after the pulse has been amplified.  This is due to gain 

narrowing during the amplification process.  Even though the input pulse spectrum can be 

supported by the laser crystal, the effective gain spectrum is narrower due to higher amplitude 

frequencies in the input laser spectrum experiencing higher gain.  The lower amplitude 

frequencies are suppressed through each pass, leading to a narrowing of the laser spectrum. [51] 

Thus, the pulses from the CPA are longer than the input pulses from the oscillator.  Typically, for 

input pulses ~12 fs, the transform-limited pulses obtained from the CPA are around 30 fs or 

longer. [51] 

In order to study physical processes sensitive to the CE phase, the pulses must be short, 

approaching the few-cycle regime.  For an experiment involving stereo ATI, for example, the 

pulses must be < 8 fs. [1] Thus, the pulses from the amplifier must be shortened.  Also, the CE 

phase stability must be maintained.   

4.2b CE Phase and Few-Cycle Pulses 

A typical setup for generating few-cycle, high intensity, CE phase stable pulses is shown 

in Figure 4.2. 
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Figure 4.2 Laser system for generating high-intensity, few-cycle, CE phase stable pulses. 

 

In order to produce the 5 fs, 1 mJ, 1 kHz repetition rate laser pulses, several steps need to 

be followed.  First, the offset frequency of the nJ energy and MHz repetition rate laser oscillator 

is locked to a known value, stabilizing the evolution of the CE phase from pulse-to-pulse.  This 

was covered in chapters 2 and 3.  Then, a pulse picker such as a Pockel’s Cell is used to pick out 

a kHz pulse train from the MHz oscillator pulse train.  Very importantly, the timing of the pulse 

picker is adjusted such that the picked pulse train consists of pulse with the same CE phase.  This 

is usually done by synchronizing the pulse picker and the CE phase locking electronics.  The CE 

phase stable pulse train is then directed to the CPA and amplified to several mJ in energy.  As 

was discussed in the first section, the pulse duration of the pulse after the compressor is usually 

around 30 fs or greater.   

The stretching, amplification, and compressing processes all add drift to the CE phase of 

the kHz pulse train.  Thus, the drift of the CE phase of the amplified pulses is measured and 

corrected by either feeding back to the oscillator locking electronics or by adjusting the grating 

separation in either the stretcher or compressor.  This aspect of producing CE phase stable pulses 

will discussed in the next two sections. 

To shorten the laser pulses to the few-cycle duration, some method of spectral broadening 

is used followed by temporal compression.  The common method is to propagate the laser pulses 

through a hollow-core fiber filled with a noble gas such as Argon or Neon. [10] Another method 



 

 54

is to focus the laser pulses into a chamber, not a fiber, filled with a noble gas and create a 

filament. [13] Both methods take advantage of self-phase modulation.  Self-phase modulation is 

similar to the Kerr Effect as it is nonlinear and occurs for high intensities.  Basically, since the 

index of refraction can be written as )()( 20 tInntn +=  , the laser will experience an extra phase 

shift of 
λ

π
ϕ

LtIn
t

)(2
)( 2=Δ after traversing a medium of length L .  Since frequency is the time 

derivative of phase, the extra phase shift will yield new frequencies. [52]   This is done 

experimentally by exploiting the nonlinearity of the medium. 

Once the pulses had been spectrally broadened, the dispersion added to the pulses is 

compensated.  Usually, chirped mirrors are used as they are readily available and relatively 

simple to implement experimentally.  They do have drawbacks though as the chirped mirrors can 

only compensate a fixed amount of dispersion.  Also, the chirped mirrors can only compensate 

second-order dispersion. Another method exists in which the dispersion is compensated using an 

adaptive pulse shaper.  This method can compensate all orders of dispersion and reach the 

transform limit.  The drawback with this method is that the setup is lossy. [15] 

However, once the pulses have been compressed to a few-cycles, the CE phase stability 

must be measured as the fiber or filamentation setups can add CE phase drift to the pulses.  This 

can be accomplished by measuring the CE phase shift using the same method as was used after 

the CPA by performing a physics experiment such as ATI. [1] 

In the next section, the method for measuring the CE phase drift of amplified laser pulses 

is discussed. 

4.2c f-to-2f Spectral Interferometry 

As was stated before, the CE phase stability of the pulses exiting the amplifier must be 

measured and corrected in order to perform experiments.  As the pulses traverse the amplifier, 

fluctuations in intensity, mechanical drifts, and thermal drifts will cause the CE phase to drift.  In 

order to measure the CE phase stability of the pulses, an f-to-2f method, similar to that used for 

the oscillator pulse train, can be employed.  This method was first proposed and experimentally 

realized by M. Kakehata et al. [47] 

In this method, the laser pulses from the amplifier with a narrow spectral width are 

focused into a nonlinear medium.  Usually, a sapphire plate or hollow-core fiber filled with a 
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noble gas is used.  Once focused into the medium, the pulses undergo self-phase modulation and 

are broadened over an octave in spectrum.  This is necessary, as it was for the oscillator pulses, 

because the f and 2f components will be overlapped.  The situation is shown in Figure 4.3. 

 
Figure 4.3 f-to-2f interferometry for the amplified laser pulses. 

 

In the figure, the low frequency (long-wavelength) ω components of the broadened 

spectrum are frequency-doubled and overlapped with the high frequency (short-wavelength) 

ω2 components.  Unlike in the oscillator f-to-2f self-referencing technique, the delay between the 

ω and ω2 components is not set to zero.  Also, a broader spectrum is used.   

The interference of the components in the frequency domain can be expressed as: 

))()(cos()()(2)()()( 0 CEWLSHGSHGWLSHGWL IIIII φωφωφωτωωωωω +−+++∝       (4.1) 

where )(ωWLI and )(ωSHGI are the intensities of the broadened spectrum (white-light) and the 

second harmonic respectively.  0τ is the delay between the second harmonic and white-light 

pulses.  )(ωφSHG and )(ωφWL are the spectral phases of the second harmonic and white-light 

respectively.  The resulting interference pattern, given by Equation 4.1 gives information on the 

delay between the pulses and the CE phase. [16] The interference pattern will look similar to 

Figure 4.4. 
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Figure 4.4 Spectral interferometry signal. 

 

The above figure is similar to that which would be detected by a spectrometer.  In 

practice, the fringe pattern usually covers ~30 nm in wavelength.   

 
Figure 4.5 Example of an experimental interferogram. 

 

The fringe pattern is easy to see in this figure.  This is an example of what is obtained in 

the laboratory.  The bright and dark bands show the modulation.  The fringe pattern can be used 
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to obtain the pulse-to-pulse shift of the CE phase using a well-known algorithm called Fourier 

Transform Spectral Interferometry. [53]  

The first step in the method is to take the inverse Fourier transform of the spectral 

interferometry signal to obtain the delay between the second harmonic and white-light pulses.  

The negative delay term and the DC terms are then filtered out.  This is represented in Figure 

4.6. 

 
Figure 4.6 FFT Peak from the spectral interferometry signal. 

 

The width of the peak determines the regularity of the fringe spacing.  This can be 

understood by considering the ideal case where the interference is of the form )cos(1( ωτ+A , 

where A  represents a DC term.  The fourier transform of such a function yields three delta 

functions: one for the positive delay, one for the negative delay, and one for the DC terms.  In 

practice, though, the delay peaks exhibit some width, which indicates some irregularities in the 

fringe spacing.  Practical values of the delay are usually hundreds of femtoseconds to ~1 

picosecond.  This depends on the optical setup used to obtain the interference signal.  For 

example, the setup to be described in the next chapter uses a 2.3 mm thick sapphire plate and a  

mm thick BBO crystal to obtain the white-light and second harmonic respectively.  A typical 

value of delay from that setup is ~300 fs.   
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The rest of the FTSI algorithm proceeds from the point the delay peak is chosen.  A 

schematic of the algorithm is shown in Figure 4.7. 

 
Figure 4.7 FTSI Schematic 

 

Starting from the point where the positive delay peak is filtered out, the Fourier transform 

is taken back to the frequency domain.  Here, the phase, which is the argument of the cosine in 

Equation 4.1, is recovered and unwrapped to remove discontinuities.  [54] 

This method, in principle, could measure the CE phase.  However, in order to accomplish 

that, all phase shifts due to the propagation of the pulses through the second harmonic generating 

crystal would need to be known.  Thus, it is not possible to measure the CE phase.  The 

usefulness of the method, though, is in measuring the CE phase shift. 

In the measurement of the phase, as long as intensity fluctuations of the input laser pulses 

is small, the delay and spectral phases of the white-light and second harmonic can be assumed to 

be constant during the measurement.  This is not always true and will be addressed in a later 

chapter.  However, assuming this condition, the total phase obtained from the spectral 

interferometry signal can be written as: 

)()( 0 ωδφφωτω ++=Φ CE                                                                                           (4.2) 

where )(ωδφ represents the phases of the white-light, second harmonic, and any other static 

phase shifts.  Then, the relative phase drift between the 0th pulse to the ith pulse can be 

represented as: 

CEi φΔ=Φ−Φ=ΔΦ 0                                                                                                      (4.3) 

Thus, equation 4.3 shows that the relative phase drift is equal to the CE phase shift from pulse-

to-pulse.  As was mentioned, this assumes the following conditions: 1) 0ττ =i , and 
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2) )()( 0 ωδφωδφ =i . [54] Experimentally, the CE phase shift is measured over a frequency range 

in which the delay has a constant value.   

Finally, it should be noted that it is not possible to employ this method for the oscillator 

pulse train.  In principle, it would give you information on the CE phase; however, the repetition 

rate of laser oscillators is too fast.  It is an experimental impossibility to measure the pulse-to-

pulse variation of the fringe pattern.  This method can only be used for lower repetition rate 

amplifiers.  
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CHAPTER 5 - Stabilization and Control of the CE Phase using the 

KLS Amplifier 

5.1 The KLS Amplifier 
As was discussed in chapter 3, the KLS laser oscillator emits 5.6 nJ, ~12 fs pulses at a 

repetition rate of ~76 MHz.  In order to explore physical processes sensitive to the CE phase in 

the KLS laboratory, those pulses are amplified to the mJ level using the KLS amplifier. [55] The 

amplifier is outlined in Figure 5.1. 

 
Figure 5.1 KLS Amplifier: BS: beamsplitter, AOM: acousto-optic modulator, PC: Pockel's 

cell, FM: focusing mirror, PZT: piezo-electronic transducer, G: grating 

 

In the diagram, the pulses from the oscillator were split by a 50:50 beampslitter.  Half of 

the output went to the f-to-2f and PCF setup, while half went through the Pockel’s cell, which 

selected a kHz pulse train from the MHz pulse train.  The pulses then entered the double-pass 

stretcher, where a pair of gratings and two mirrors, which acted as a telescope, stretched the 
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pulses to ~80 ps.  The pulses then entered a 14-pass amplifier pumped by two Q-switched 

ND:YLF lasers.  The Ti:Sapphire crystal was cooled by liquid nitrogen to prevent thermal 

lensing.  After the 14 passes, the pulses had energy of 5 mJ.  A double-pass compressor 

consisting of two gratings compressed the pulses to ~35 fs.  The efficiency of the compressor 

was ~50%, so the output pulses had energy of 2.5 mJ.  Note that the original pulse duration, 

which was ~12 fs, of the oscillator pulses could not be recovered due to gain narrowing in the 

amplifier.  The spectrum of the amplified pulses is shown in Figure 5.2. 

 
Figure 5.2 Spectrum of the amplified pulses. 

 

This spectrum is much narrower than the oscillator pulse spectrum, which was shown in 

Figure 3.2.  Again, gain narrowing in the Ti:Sapphire crystal reduced the spectrum.  However, 

the spectrum is still broad enough to support ~35 fs pulses. 

In order to select a pulse train in which every pulse had the same CE phase, the timing of 

the laser was adjusted so that every fourth pulse from the MHz pulse train was selected.  This 

was done, since the offset frequency of the oscillator was locked to one-quarter of the repetition 
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rate giving every fourth pulse the same CE phase.  The timing of the system is shown in Figure 

5.3. 

 
Figure 5.3 KLS laser timing. 

 

A photodiode was used to detect the repetition rate of the oscillator pulse train.  This 

signal was fed to the Menlosystems locking electronics.  The f/4 signal was used to lock the 

offset frequency while the f/8 signal was used as the master clock for the amplifier timing.  This 

signal was sent to a Delay Generator and was used to trigger the Pockel’s cells and to trigger the 

Q-switching of the pump lasers.  This way, the Q-switched pulses from the pump lasers arrived 

at the same time as the seed pulses in the Ti:Sapphire crystal in the amplifier.  The Pockels cell 1 

trigger was used to select the 1 kHz pulse train from the oscillator, while the Pockels cell 2 was 

used for pulse cleanup in the amplifier.   

Even though only pulses with the same CE phase were amplified, the pulses still exhibit 

drift after passing through the system.  Similar to the case of the laser oscillator, any changes of 

dispersion in the amplifier system would affect the CE phase of the laser pulses.  Shifting of the 



 

 63

optical mounts, fluctuations in energy, and temperature changes would all contribute to CE phase 

drift.  By measuring the CE phase drift, it could be corrected.  The next section describes the 

experimental method for measuring that drift. 

5.2 Measurement of the CE Phase Drift 
In order to obtain the spectral interferometry signal necessary for employing the FTSI 

algorithm described in chapter 4, the f-to-2f method is used. [61] The experimental layout for 

obtaining the fringes for the KLS laser pulses is shown in Figure 5.4. 

 
Figure 5.4 f-to-2f for measuring CE phase drift: NDF: neutral density filter, SP: sapphire 

plate, BBO: SHG-crystal, P: polarizer, τ : delay 

 

In the experimental setup, a small portion of the amplified laser pulse train (<1 µJ) was 

sent into the interferometer.  The beam size was focused into the 2.3 mm thick sapphire plate by 

an f=75 mm lens.  The NDF was used to adjust the beam power in order obtain a stable single-

filament inside the sapphire.  The strong self-focusing in the sapphire plate broadened the 

spectrum of the input pulses by over an octave.  Since the sapphire was birefringent, the plate 
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was mounted in a rotational mount in order to adjust the spectrum, similar to that done for the 

PCF in the case of the oscillator. 

The f and 2f components exhibited a delay, given by τ in the figure, due to creation at 

different times during the self-focusing process and propagation through the sapphire plate.  The 

two components were then focused by an f=100 mm concave mirror into a 1 mm thick BBO 

crystal cut for Type-I phase matching at 1064 nm.  Note that in this setup, unlike in the oscillator 

setup, a slightly broad second harmonic phase-matched spectrum was desirable in order to 

measure the CE phase drift.  This is because a broader spectrum gave a better sampling of the CE 

phase drift across the spectrum. 

Once the pulses had exited the BBO crystal, they were focused by an f=70 mm lens into 

an imaging spectrometer after passing through a polarizer used to select a common polarization.  

A second NDF attenuated the beam in order not to saturate the CCD camera of the spectrometer.  

The image in the figure shows a typical SI signal obtained from the experimental setup. 

A measurement of the white-light obtained from the sapphire-plate for different energies 

is shown in Figure 5.5. 

 
Figure 5.5 Spectrum from the sapphire-plate at different energies. 

 

The spectra were obtained by scanning across the CCD of the spectrometer down to 

around 500 nm.  As is shown, the spectra cover more than an octave.  In fact, the spectrum can 

actually go below 500 nm to around 460 nm, depending on the axial orientation of the sapphire 
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plate.  Typically, the f-to-2f measurement is carried out around a 30 nm width centered on 500 

nm.  Also, the pulse energy required for the generation of an octave depended on the input pulse 

duration.  This depended on the optimization of the compressor in the KLS amplifier.  If the 

pulse duration was long, then more energy was required, usually around 700 nJ.  For an 

optimized compressor, the energy needed was lower, usually 300 to 500 nJ.  Theoretically, the 

required intensity on the sapphire plate for generating the white-light was ~ 12102× W/cm2.  The 

orientation of the sapphire plate’s optical axis, or equivalently the input laser polarization, would 

also be a factor in how much energy was required. 

The experimental procedure, though, would involve an optimization of all of the 

aforementioned parameters.  The feedback for the optimization would be the quality of the 

fringes obtained.  The phase-matching angle would be rotated, the input power adjusted, the 

rotation of the sapphire plate, the rotation of the polarizer, and the position of the lens used to the 

focus the light into the imaging spectrometer would all be adjusted until a fringe pattern with 

high contrast was obtained.   A typical problem, though, with the optimization was that focusing 

too much energy onto the sapphire plate caused the formation of multiple-filaments.  The muli-

filamentation produced fringe patterns unusable for measurement of the CE phase drift. 

Once a stable fringe pattern was obtained, though, a comparison of the CE phase drift for 

different integration times of the spectrometer was obtained.  Since each laser pulse came very 1 

ms (1 kHz repetition rate), fringe patterns for 1, 50, and 100 ms integration times were obtained 

when the oscillator CE phase stabilization was on and when it was disengaged.  The 1 ms 

integration time is shown in Figure 5.6. 
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Figure 5.6 1 ms integration time interference fringes. 

The lineouts of the fringe patterns are shown on the right.  Since, for 1 laser shot, the CE 

phase drift is not measureable.  This is why the locked and unlocked versions are not different.  

The 50 ms and 100 ms cases are shown in Figures 5.7 and 5.8 respectively. 

 
Figure 5.7 50 ms integration time interference fringes. 
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Figure 5.8 100 ms integration time interference fringes. 

 

In figure 5.7, 50 laser shots were integrated.  As is shown, when the laser oscillator CE 

phase lock was engaged, the fringe contrast remained high during the integration.  However, the 

unlocked CE phase situation showed that the fringes began to blur, which was representative of 

CE phase drift.  For the 100 ms integration time, the difference between the locked and unlocked 

cases was even more dramatic.  Since the fringe contrast remained high when the oscillator was 

locked, the CE phase drift of the amplified laser pulses could be measured. The shift of the 

fringes could be used to correct the CE phase drift of the amplified laser pulses. 

5.3 Previous Work 
In previous research, pulses from the CE phase stabilized oscillator were stretched by 

passing through a glass block, amplified, and then compressed using prism pairs. [16] The 

typical energy from such a system was ~1 mJ.  In order to correct the CE phase drift of the 

amplified pulses, a portion of the amplifier output was sent to an f-to-2f interferometer.  The 

measured CE phase drift was used as a feedback control signal to the oscillator locking 

electronics.  An example of such a system is shown in Figure 5.9. 
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Figure 5.9 Material-based CPA with CE phase drift feedback to the oscillator locking 

electronics. 

 

Using material-based stretchers and compressors, though, made scaling the output of the 

amplifier to several mJ impossible since the damage threshold of material is low.  In order to 

reach higher energies, grating-based stretchers and compressors must be used.  Another problem 

with the setup described in Figure 5.9 is that the CE phase correction signal is sent to the 

oscillator locking electronics.   In that method, the oscillator locking electronics must stabilize 

the CE phase of the oscillator plus precompensate the CE phase drift of the amplified laser 

pulses.  This decreases the time over which CE phase locking of the oscillator is possible. 

A new method for stabilizing the CE phase drift of the amplified laser pulses is discussed 

in the next section.  

5.4 Grating Control Feedback Method 
  It was found that the grating separation in the stretcher or compressor affected the CE 

phase of the amplified laser pulses. [56]   Also, the grating separation could be varied to correct 
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the CE phase drift.  In addition to correcting the CE phase drift, changing the grating separation 

could vary the CE phase within a π2 range.  

In Figure 5.10, two grating-based stretcher arrangements are shown.  The top figure 

shows a stretcher utilizing mirrors in the telescope arrangement.  The bottom figure shows a 

stretcher with lenses as the telescope. 

 
Figure 5.10 Grating-based stretchers for CE phase stabilization of the amplified laser 

pulses: sγ : angle of incidence, sθ : angle between the incident and diffracted rays, effl : 

effective grating separation, f : focal length, FM1 and FM2 are the focusing mirrors, M is 

a retroreflecting mirror, PZT: piezoelectronic transducer, sG : perpendicular distance 

between the gratings, G1 and G2 are the gratings, G1´: image of G1, l : is the distance 

between the gratings. 

 

The analysis of the CE phase shift through the stretcher is fairly simple.  First, the input 

electric field of a laser pulse in the frequency domain is given 

by ))]((exp[)()( 0 ωϕφωω += CEiEE , where )(ωϕ is the spectral phase of the input pulse and 
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)(0 ωE is the spectral amplitude.  For this analysis, the pulse is assumed to be transform limited 

which gives a spectral phase of zero. [57] 

The spectral phase of the pulse after it traverses the stretcher arrangement is given by: 

)](tan[4)()( ωθγπωωτωϕ ss
s

s

d
G

−−=′                                                                              (5.1) 

where )(ωτ is the group delay.  Equation 5.1 evaluated at the carrier-frequency, cω gives the 

phase of the carrier-wave at the output of the stretcher.  The group delay is given by )( cωτ .  

Thus, the CE phase change at the output of the stretcher is given by: 

)](tan[4)()( css
s

s
cccCE d

G
ωθγπωϕωτωφ −=′−=Δ                                                                  (5.2) 

By making the substitution )cos( sseffs lG θγ −−= , Equation 5.2 can be written as: 

)sin(4 ss
s

eff
CE d

l
θγπφ −

Δ
−=Δ                                                                                          (5.3) 

Now, the effects of beam pointing instability of the incident beam have been studied before and 

were found to be insignificant. [58] This can be understood by considering that a jitter of the 

incident beam pointing will be negated as it makes a double-pass through the stretcher. 

Equation 5.3 can be further explained if two approximations are made.  First, most 

stretcher and compressor setups have the incident angle close to the Littrow angle, which 

makes 0=sθ .  Second, the grating constant is on the order of a wavelength.  Most stretcher and 

compressor designs used in ultrafast laser systems have gratings with ~1000 lines/mm or more.  

So, this approximation is valid.  In this case, Equation 5.3simplifies to: 

λ
πλπ

φ 22 2 ≈=
Δ
Δ

seff

CE

dl
                                                                                                      (5.4) 

Thus, Equation 5.4 shows that a variation in the effective grating separation on the order of a 

wavelength will impart a significant CE phase shift to a laser pulse.  Equation 5.4 also shows 

how changing the effective grating separation allows the CE phase to be shifted in value.  By 

attaching a PZT to the focusing mirror (FM1), the grating separation can be changed.  

It should be noted that the difference in the previous analysis is equivalent for stretchers 

and compressors.  Equation 5.4 gives the result for both situations.  However, in the compressor, 

a grating must be moved in order to change the CE phase whereas, in a stretcher, a grating or 
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telescope mirror (or lens) can be translated.  Also, the analysis can be extended to prism-based 

compressors.  However, it was found that the CE phase is not nearly as sensitive to the prism 

separation as it is to the grating separation.   

5.5 Stabilization of the CE Phase Drift 
The experimental setup for measuring and stabilizing the CE phase drift of the amplified 

laser pulses is shown in Figure 5.11. 

 
Figure 5.11 KLS with CE Phase drif stabilization and measurement. 

 

The setup is exactly the same as in Figure 5.1, except here, the measurement and 

stabilization setups are shown.  The CE phase of the pulses from the laser oscillator was locked 

by using the f-to-2f and locking electronics, which sent the correction signal to the AOM in the 

pump laser path.  Similarly, the output of the amplified laser pulse train was split by BS2, which 

was a 10% beamsplitter, and sent to the f-to-2f, which here is called the in-loop f-to-2f.  The 

fringe pattern was collected by the spectrometer and sent to a computer running a CE phase drift 

measurement algorithm, which will be described in the appendix.  The error signal was sent to a 

PZT driver, which provided the driving voltage for the PZT in the stretcher.  Note here that the 
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spectrometer’s CCD camera was triggered off of the laser timing at 50 ms integration time.  The 

CCD then discharged the array at 20 ms. 

The effect of changing the grating separation on the CE phase drift through the system 

was measured in Reference 57. [57] In the measurement, the oscillator CE phase was locked.  A 

60 Vp-p sinusoidal modulation was applied to the PZT.  The result is shown in Figure 5.12. 

 
Figure 5.12 Effect of changing the grating separation on the CE phase drift: a) 60 Vp-p 

voltage applied, b) DC voltage applied. 

 

By applying the sinusoidal voltage, the PZT moved by 3.6 µm.  From the results, it was 

found that 2.17.3 ±≈
Δ
Δ

eff

CE

l
φ

 rad/µm.  Since the PZT uncertainty was 5.11.6 ± µm/100 V, some 

error would be in measurement.  However, it was found that changing the grating separation on 

the order of a wavelength, would result in a significant change in the CE phase.  Changing the 

grating separation of the stretcher is used to correct the CE drift phase drift of the amplified 

pulses. [57] 
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Figure 5.13 shows an example when the feedback control was disengaged and the 

oscillator was locked. 

 
Figure 5.13 Measured CE phase drift when the feedback control was disengaged. 

 

The figure shows the shift of the fringe pattern with time.  The CE phase drift had a slow 

drift, usually on the order of Hz.  The case when the feedback control was turned on is shown in 

Figure 5.14. 
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Figure 5.14 Feedback control engaged. 

 

Figure 5.14 clearly shows how the feedback control corrected the slow CE phase drift of 

the laser pulses.  The fringes appeared rigidly locked during the measurement, showing the high 

CE phase stability of the system.  The large spike occurring near 1500 s was due to a slight 

disturbance of the optical table.   

A typical example, when the system is well stabilized is shown in Figure 5.15. 
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Figure 5.15 Stabilized CE phase drift. 

 

In the figure, the rms error of the CE phase drift was 179 mrad.  This is a typical value 

when the oscillator CE phase is well-locked and the feedback control of the amplified laser 

pulses is running smoothly.   

Typically, though, errors of the CE phase drift will be incurred on the system.  For 

example, the optical table may be disturbed, which causes mounts and gratings to shift rapidly.  

Also, the fast drift of the CE phase is not correctable using the PZT/grating separation method 

since the response of the optic is too slow.  Figure 5.16 shows the type of CE phase errors 

experienced by the amplified laser pulse train. [18] 
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Figure 5.16 a) temporal evolution of the relative CE phase.  A, B, and C represent the three 

kinds of error spikes. b) the relative CE phase and the displacement of the PZT in the first 

32 minutes in a). 

 

The evolution of the relative CE phase is shown in the above figure.  For the experiment, 

the oscillator CE phase was locked and the CE phase drift of the amplified laser pulses was 

corrected.  The CE phase was stabilized over 110 minutes, except for a 4 minute relocking time.  

During the relatively stable time, isolated spikes in the relative CE phase occurred due to 

disturbances of the optical table.  Such a spike is represented by A.  At B, the PZT could not 

move quick enough to correct the CE phase error.  Typically, though, the relocking time of the 

PZT, for a short disturbance, was roughly 2 to 3 seconds.  However, the hesitant motion of the 

PZT increased the relocking time to nearly 1 minute. [18] 
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The biggest error occurred at C, when the oscillator CE phase locking was lost.  The 

relocking of the oscillator took ~2 minutes.  Once the oscillator was relocked, though, the 

amplifier feedback control quickly started to work to correct the CE phase drift. 

In figure 5.16b, the displacement of the PZT is shown along with the CE phase error.  

The error signal is the pulse-to-pulse change in the CE phase.  In the first 10 minutes, the PZT 

moved slowly towards its limit of 5 µm.  Once there, the computer reset the PZT to its center 

position.  The change caused little CE phase error.  This was not expected as such a big change 

should have produced a large change in the CE phase.  However, it was possible that a large 

error in the CE phase occurred at the same time as the large shift of the PZT displacement.  The 

PZT followed the large spike in the CE phase error at 900 s to correct.  The rms error was 180 

mrad during the locking time. [18] 

It was soon discovered that changing the grating separation could not only be used as a 

feedback control mechanism to stabilize the CE phase drift but that it could be used to change 

the CE phase.  This is discussed in the next section. 

5.6 Control of the Relative CEP 
As the grating separation is changed, the set-point for stabilizing the CE phase is 

changed.  This effect was investigated in Reference 18.  In the experiment, the set-point for the 

CE phase locking was varied from -1.1π to 0.9π in steps of 0.2π. [18] The results are shown in 

Figure 5.17.  The top graph shows the temporal evolution of the fringes obtained using the f-to-2f 

interferometer.  The bottom plot shows the relative phase, denoted as CEφΔ , as the set-point was 

varied.  When the measurement began, the set-point moved continuously from 0 to -1.1π during 

the first 30 seconds.  The CE phase was locked at each set-point for 1 minute and shifted to the 

next value in an increment of 0.2π over 1 second.  The fringes shifted by almost exactly 1 fringe 

as the set-point was changed by 2π.  The CE phase stability and the displacement of the PZT 

during the changing of the set-point are shown in Figure 5.16.  The RMS error during the 

experiment was found to be 160 mrad.  The bottom part of the figure shows how the PZT moved 

during the experiment.  In the first 30 seconds, the PZT moved by 1.5 μm to reach -1.1π.  During 

the changing of the set-point, the PZT moved around an equilibrium position of -1.05 μm with a 

standard deviation of 0.28 µm.  Thus, as the PZT moved to change the set-point of the CE phase 
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locking, it also moved in such a fashion as to correct any CE phase errors. Table 1 lists the set-

point values, the averaged CE phase (µ) and the standard deviation (σ) at each locking position.   

 
Figure 5.17  Precisely controlling the CE phase of the amplified laser pulses.  Top, the 

temporal evolution of the interference fringes.  Bottom, the effect of changing the locking 

set-point on the measured relative CE phase. 
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Figure 5.18 a) The error signal for the slow feedback stabilization, b) the displacement of 

the PZT when the set-point was shifted. 

 

 

Table 5-1 Comparison of the set-point, average relative CE phase, and corresponding 

standard deviation of the CE phase error. 

Set-Point 

(rad) 

-3.454 -2.826 -2.198 -1.57 -0.942 -0.314 0.314 0.942 1.57 2.198 2.826

µ (rad) -3.456 -2.828 -2.2 -1.571 -0.944 -0.314 0.314 0.941 1.57 2.199 2.826

σ (mrad) 159 162 157 153 154 166 170 164 156 163 171 
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The aforementioned experiment varied the CE phase in a stepwise fashion.  In some 

experimental situations, it might be desirable to sit at a fixed CE phase for a period of time and 

then move to another point. However, in other situations, rapidly varying the CE phase might be 

desirable.  Using the KLS laser, a “sweeping” modulation was applied to the stretcher grating 

separation.  The results are shown in Figure 5.19. 

 
Figure 5.19  Top, temporal evolution of the interference fringes.  Bottom, swept relative CE 

phase vs. time. 

 

The figure shows a triangular modulation to the relative CE phase.  The modulation was 

over ~2.45π.  Small errors occurred near the peaks and troughs of the triangular wave due to the 
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PZT moving hesitantly.  Those errors could be corrected by having a slower modulation.  The 

CE phase error and displacement of the PZT during the experiment are shown in Figure 5.20. 

 
Figure 5.20 Top, CE phase error during the modulation.  Bottom, displacement of the PZT. 

 

The rms error during the experiment was 171 mrad, which was close to that obtained in 

the experiment changing the CE phase in steps.  The error spikes coincided with the turnaround 

points of the triangular modulation.  Again, by using a slower modulation, the method could be 

improved. 
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An example of the long-term sweeping ability of the grating-based system is shown in 

Figure 5.21. 

 
Figure 5.21 Long-term sweeping stability. 

 

The figure shows ~2.2 hours of the CE phase modulation time.  At three points, the CE 

phase of the amplifier became unlocked, but was quickly relocked by the system.  The data, 

though, shows that the modulation of the CE phase can be maintained over a long time-period.  

The major limitation is the stability of the oscillator CE phase locking.  If the oscillator CE phase 

locking fails, then the entire system fails. 

The ability to use the grating separation to change the CE phase during an experiment is a 

definite advantage over material-based laser amplifiers.  Most physics experiments sensitive to 

the CE phase require the variation of the CE phase during the experiment.  Those groups used a 

pair of thin fused silica wedges to change the CE phase.  However, the fused silica would also 
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temporally broaden the pulse.   Since the experiments required short laser pulse duration, only a 

small amount of material could be used.  The grating-based method obviates the need for wedges 

and thus solves the pulse broadening problem.  

5.7 Path Length Drift Stabilization and CE Phase Stability 
 The CE phase stability of the amplified laser pulses was improved by stabilizing the path 

length drift of the f-to-2f interferometer used to stabilize the oscillator CE phase. 

 The CE phase of the ith pulse coming from the oscillator compared to a reference, 0th 

pulse, from the oscillator is given by: 
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Thus, Equation 5.5 shows how a jitter of the path length in the interferometer leads to the 

imprinting of that noise on the CE phase stability of the pulses from the laser oscillator and from 

the amplifier. [17] 

The effect of locking and unlocking the interferometer on the CE phase stability of the 

pulses from the amplifier were studied.  In the experiment, the CE phase of oscillator was 

stabilized and the slow drift of the CE phase of the amplified laser pulses was corrected.  The 

results are shown in Figure 5.22.   

 
Figure 5.22 a) The relative CE phase measured by the collinear f-to-2f interferometer.  b) 

The fast jitter of the CE phase obtained by applying a high-pass filter to the spectra in a). 
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The figure on the left shows the CE phase stability of the system when the interferometer 

was locked and unlocked.  No difference was apparent from that measurement.  However, in the 

figure on the right, the fast CE phase noise was investigated by applying a high-pass (>3 Hz) 

filter to the measurements in the leftmost figure.  The results show that the high-frequency CE 

phase noise of the amplified laser pulses was suppressed by 40%.  The result was important 

because the framing transfer speed of the CCD camera in the f-to-2f used for measuring the CE 

phase drift of the amplified lasers pulses was 20 Hz.  The Nyquist frequency was then 10 Hz.  

All higher frequency noises were aliased to that range.  Also, the system could only correct lower 

frequency drift, due to the bandwidth control of the CE phase software, which was ~3 to 5 Hz.  

Thus, by locking the interferometer, the high frequency CE phase noise, which could not be 

corrected by the system alone, was suppressed. [17] 

 

 

5.8 CE Phase Stabilization using the Compressor Gratings in the KLSII 

Amplifier 
Another advancement using the KLS laser system was the addition of a second amplifier.  

The second amplifier was called the KLSII.  The KLSII consisted of a 7-pass, liquid nitrogen 

cooled amplifier followed by a grating-based compressor.  Its design was based on the KLSI 

layout, except the crystal was pumped by a single, high power pump laser (Quantronix Darwin).  

The pump beam was split by a beamsplitter and focused from opposite directions into the 

Ti:Sapphire crystal. [19] 

The seed pulses for the KLSII came from a small reflection (~3%) from a beampslitter 

placed before the KLSI compressor.  The KLSI and KLSII shared the same oscillator and 

stretcher.  The KLSII output 1 mJ, 38 fs pulses at a 1 kHz repetition rate. 

The KLSII used a grating-based compressor.  In the KLSI system, the stretcher was used 

to correct the CE phase drift of the laser pulses.  The stretcher, though, could not compensate the 

drift through the KLSII amplifier.   

 In order to correct the CE phase drift through the KLSII amplifier, one of the gratings in 

the compressor was mounted on a PZT stage.  The pulses from the amplifier were directed to an 
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f-to-2f interferometer similar to that used by the KLSI in order to measure the CE phase drift.  

The experimental layout is shown in Figure 5.23.  In the f-to-2f interferometer, a high-speed 

spectrometer (Ocean Optics HR2000) was used for measuring the CE phase shift. [19] 

 
Figure 5.23  Experimental setup for controlling the CE phase of the amplified laser pulses.  

PC: Pockels cell, BS: beamsplitter 

 

The configuration of the double-pass grating compressor is shown in Figure 5.25.  The 

CE phase shift is analyzed using exactly the same method as in Chapter 4.  Here, each groove 

introduces a 2π phase shift.  The CE phase change for each pass is equal to the number of 

grooves covered by S multiplied by 2π. [18] 
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Figure 5.24 Configuration of a double-pass grating compressor.  G: grating separation, d: 

grating constant, β : diffraction angle, M: retro-reflection mirror. 

 

The CE phase shift is given by: 

)](tan[44
cCE d

G
d

S ωβππφ Δ
=

Δ
=Δ                                                                               (5.6) 

Prior to investigating the use of the compressor grating separation for CE phase stabilization, the 

frequency response of the PZT mounted grating was measured.  In order to stabilize the CE 

phase drift, the frequency response of the grating needed to be within the bandwidth of the CE 

phase drift.  The measurement was done with a Michelson interferometer and used a CW laser. 

The variation of the intensity of the interference pattern was measured on a dynamic signal 

analyzer. The experiment measured )()()( fVfHfG =Δ , where )( fH was the frequency 

response function and )( fV was the applied voltage.  The result is shown in Figure 5.25.  For the 

low frequencies, the frequency response was modulated due to the hysteresis of the PZT.  The 

resonant frequency was found to be near 90 Hz. [18] 
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Figure 5.25  The frequency response of the PZT mounted grating. 

 

The response of the CE phase at different driving voltages of the PZT was also measured.  

The response of the CE phase can expressed as:  

)()()( fVfKfCE =Δφ                                                                                           (5.7) 

where )( fV is the Fourier transform of the driving voltage sent to the PZT and )( fCEφΔ is the 

Fourier transform of the retrieved CE phase shift.  )( fK is the frequency of the CE phase shift, 

which is also determined by the measurement system and the frequency response of the PZT.   

The experimental method used to determine )( fK involved measuring the CE phase shift 

at different driving voltages of the PZT.  The CE phase shift was measured as a function of time 

by the spectrometer and analysis software.  Thus, the Fourier transform of the CE phase shift was 

taken in order to obtain the frequency response. [18] 

The result of the measurement is shown in Figure 5.26.  The integration time of the 

spectrometer was 5 ms in the range of 3-35 Hz and 2 ms in the range of 40-120 Hz.  The main 

result was that the resonant frequency of the system was found to be near 60 Hz.  The result 

implies that CE phase drift lower than 60 Hz could be corrected by moving the grating. 
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Figure 5.26 The frequency response of the retrieved CE phase shift when the PZT was 

driven at different frequencies. 

 

Once the response characteristics of the CE phase system were known, the system was 

used to correct the CE phase drift of the pulses from the KLSII.  In the experiment, the laser 

oscillator CE phase was stabilized, but the stretcher grating control in the KLSI was not engaged.  

The integration time of the spectrometer for the measurements was set to 50 ms.  The results are 

shown in Figure 5.27. [18] 

The top plot shows the CE phase drift as a function of time.  The dotted line (blue) shows 

the free running CE phase drift.  The solid line (red) shows the stabilized CE phase drift.  The 

solid line was shifted to avoid the dip at 0 Hz in its Fourier transform spectrum, which is shown 

in the bottom figure.  The CE phase was stabilized over 270 s with a 230 mrad rms error, which 

is comparable to that achieved using the KLSI stretcher grating separation.  The bottom plot 

shows the Fourier transform spectra of the locked and unlocked cases.  The graph shows that the 

low frequency CE phase drift (<4 Hz) was well-corrected by the system. 

Ultimately, as was the case for the KLSI stretcher grating system, the CE phase 

stabilization of the laser oscillator determines the time over which the CE phase drift of the 

amplified pulses could be stabilized.  In further measurements with the KLSII system, the CE 

phase drift was corrected over 30 minutes before the oscillator CE phase locking was lost.  
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Figure 5.27  a) The evolution of the free drifted (dotted line) and stabilized (solid line) CE 

phase drift.  b) The fast Fourier transform of the CE phase drift under the free running 

(dotted line) and stabilized conditions (solid line). 

 

The important result from the work with the KLSII amplifier was the use of the 

compressor grating separation to correct the CE phase drift, which was not previously studied.  

In some amplifier designs, the optics in the stretcher could be too big to mount on a PZT stage or 

inaccessible.  Often, the stretcher employs large mirrors.  It would then be desirable to mount the 

compressor grating on a PZT stage.   
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CHAPTER 6 - Amplifier Power Stability and f-to-2f Measurement 

Error 

6.1 Out-loop f-to-2f 
In order to determine the quality of the CE phase locking system, a second f-to-2f 

interferometer, called the out-loop interferometer, was constructed.  This interferometer’s 

function was to measure the CE phase drift of the amplified laser pulses while the in-loop f-to-2f, 

which was described in the previous chapter, was used to stabilize the CE phase drift of the KLS 

pulses.  The out-loop interferometer did not participate in the stabilization of the CE phase drift 

and could therefore measure the quality of the phase locking system.  The interferometer is 

shown in Figure 6.1. 

 
Figure 6.1.  Out-loop f-to-2f. 

The out-loop interferometer was identical to the in-loop interferometer except that the 

BBO was 0.5 mm thick and the spectrometer consisted of a 1D CCD array for fast data 

acquisition.  This spectrometer was used to measure the KLSII CE phase shift as described in the 

previous chapter. 

6.2 Power Locking and In-loop and Out-loop Measurements 
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An important result was obtained when the CE phase drift, measured and stabilized using 

the in-loop interferometer, was also measured with the out-loop interferometer.  The out-loop 

phase measurement showed that the real CE phase drift was not as well stabilized as the in-loop 

results indicated.  The reason was due to power fluctuations of the amplified laser pulses. 

In Reference 20, a power locking system was described.  In the setup, the 0th order 

diffraction from the compressor in the KLS was input to a power meter.  The signal was sent to a 

PID controller, which varied the voltage sent to the Pockels cell before the stretcher.  The power 

noise below 40 Hz was suppressed by the control loop.  This reduced the power fluctuation from 

1.33% rms to 0.28% rms. [20] 

Then, the out-loop was used to measure the CE phase drift when the power locking was 

turned on and when it was turned off while the in-loop interferometer stabilize the CE phase 

drift.  The result for when the power locking was engaged is shown in Figure 6.2. 

 
Figure 6.2 Power locked. a) Out-loop measured CE phase, b) In-loop measured CE phase. 

 

When the power locking was turned on, the in-loop CE phase error was measured to be 

191 mrad rms.  Comparably, the out-loop CE phase error was measured to be 200 mrad rms.  For 

the measurement, the power fluctuation was 0.28% rms.  Figure 6.3 shows the case when the 

power locking was disengaged.  
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Figure 6.3  Power unlocked. a) Out-loop measured CE phase, b) In-loop measured CE 

phase. 

 

When the power locking was turned off, the in-loop CE phase error was measured to be 

194 mrad rms.  The out-loop CE phase error, though, was measured to be 503 mrad rms, which 

was much larger than indicated by the in-loop. [20]  

The results indicated the need for a good power stability of the amplified laser pulses in 

order to obtain an accurate measurement of the CE phase drift using the sapphire plate-based f-

to-2f interferometers.   

6.3 Phase-Energy Coupling 
In Reference 59, the CE phase-energy coupling was investigated.  The coupling between 

the CE phase and the laser energy can be expressed as
)( ε

ε
φ

Δ
Δ= CE

PEC , where ε
εΔ is the 

relative laser energy change. [59] Previously, the effect of power fluctuation on the oscillator CE 

phase locking measurement was reported. [60] A similar measurement for the amplifier CE 

phase measurement was performed. [16] However, the measurement was not performed at the 

wavelengths for the f-to-2f measurement. The setup for measuring the coupling coefficient PEC is 

shown in Figure 6.4.  
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Figure 6.4  Setup for measuring the CE phase-energy coupling coefficient. 

 

The setup was similar to the one used to measure the effects of power locking on the 

measured CE phase drift as discussed in the previous section.  In the experiment, 10% of the 

output from the KLS laser was split off and half of that energy was sent to the in-loop f-to-2f, 

while the other half was sent to the out-loop f-to-2f.  The in-loop was used to stabilize the CE 

phase drift of the laser pulses while the out-loop was used to measure the CE phase drift.  Also, 

the power was locked during the experiment.  The power stability was 0.1% rms within a 0-5 Hz 

bandwidth.  The variable neutral density filter before the sapphire plate in the in-loop was 

mounted on a rotational mount.  The VND then was rotated to change the laser energy in a 

sinusoidal fashion. [59] 

Since the laser energy was changed, the in-loop would measure the CE phase drift and 

stabilize the phase to whatever it measured.  Of course, as was reported before, a change in laser 

energy before the in-loop resulted in measurement error.  In this experiment, the measurement 

error was finely controlled by changing the laser energy.  Thus, as the in-loop stabilized the CE 

phase to its perceived value, the pulses incident at the out-loop interferometer carried the 
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measurement error.  Since the power was locked, only a negligible measurement error was 

introduced on the out-loop measurement.  An additional power meter measured the power 

stability of the laser system independent of the power locking loop.  This power meter was called 

the out-loop power meter.  The result of the measurement is shown in Figure 6.5. [59] 

 
Figure 6.5  Temporal evolution of the measured phase and laser energy. a) Modulated in-

loop pulse energy, b) measured out-loop phase, c) the in-loop phase and out-loop pulse 

energy. 

 

The result clearly shows how the measured out-loop phase modulated as the energy in the 

in-loop was modulated.  Figure 6.6 shows the analyzed raw data. 
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Figure 6.6  Retrieved experimental results versus the laser energy.  a) Relative CE phase, b) 

delay time, c) the residual intercept after the subtraction of the CE phase. 

 

From the top figure, the CE phase-energy coupling coefficient can be obtained from the 

slope of the fit line.  The slope corresponded to a coupling coefficient value of 160=PEC mrad 

per 1% change in laser energy.  160 mrad is the same as the best CE phase stability of the 

amplified laser pulses indicated by the in-loop measurements prior to this work.  For example, in 

Figure 6.5, the in-loop CE phase stability was indicated to be 160 mrad.  Thus, the energy 

stability of the amplified laser pulses is an important parameter for CE phase measurements. [59] 

The error introduced by the energy fluctuation can be explained by considering the 

measured total phase.  Similar to the discussion in chapter 4 , the measured spectral 

interferogram can be expressed as: 

])()(cos[)()(2)()()( 0 CECEWLSHGSHGWLSHGWL IIIIS δφφωτωφωφωωωωω ++−−×++=     (6.1) 



 

 96

where 0τ is the delay between the green pulse relative to the IR pulse, which is caused by 

dispersion in the sapphire plate and CEδφ is an acquired CE phase shift through the sapphire plate.  

For the CE phase stabilization procedure, the total phase, the argument of the cosine, is 

stabilized, as was discussed before in chapter 4.  However, the terms in the phase, except for the 

absolute phase CEφ , are intensity dependent.  The real CE phase shift, then, is given by: 

])()([)( 0 CEWLSHGCE δφωτωφωφωφ +−−Δ−ΔΦ=Δ                                                                  (6.2)   

where )(ωΔΦ is the change of the total phase and is set to zero when the CE phase stabilization 

procedure is implemented.  Thus, the second term represents the CE phase error.  

The delay time in the results given in Figure 6.6 was determined by fitting the measured 

total phase versus angular frequency.  Then, the intercept was given by 

CECEWLSHG δφφωφωφ ++− )()( .  The fit of the line in the middle plot of Figure 6.6 gave a value 

of 1.23 fs delay change per 1% energy change, which corresponded to a phase shift of 4.45 rad.  

Alternately, as the laser energy changed, the intercept downshifted almost the same amount as 

the delay upshifted.  The increase of the phase due to the delay was counteracted by the decrease 

of the phase due to the intercept.  The sum of the two effects gave the 160 mrad per 1% energy 

fluctuation. [59] 

The mechanism of the phase-energy coupling will be explained in the next section. 

6.4 Coupling Mechanism 
A simple two-step model has been proposed to explain the coupling between the energy 

fluctuation and the CE phase shift.  The model focuses on the nonlinear effects in the sapphire 

plate which occur during the formation of the f and 2f pulses.  The generation of the white-light 

and the subsequent formation of a filament involve complicated nonlinear processes.  The two-

step model is analytical over the energy range considered for the phase-energy coupling 

measurements.   

When the laser peak power is higher than the critical power, 
)(8

)61.0(
20

2
02

nn
Pc

λ
π= , a 

filament is formed inside the sapphire plate.  For the model, the laser wavelength is chosen as 

79.00 =λ µm.  76.10 =n and 16
2 109.2 −×=n cm2 /W are the linear and nonlinear indices of 

refraction of the sapphire plate respectively.  The critical power is then 79.1=cP MW.  The focal 
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spot radius at the input of the sapphire plate is given by 
D
fw 00 λ= , where D is the input laser 

diameter.  [61,62] 

As the laser beam is focused into the sapphire plate, the beam size decreases due to Kerr 

self-focusing until defocusing caused by laser-produced plasma balances the self-focusing. [62] 

The self-focusing distance as a function of laser energy is given by: 
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where pτ is the laser pulse duration at the input of the sapphire plate and ε is the laser pulse 

energy. [64] For the f-to-2f interferometer used for the KLS CE phase stabilization, the pulse 

duration is 35 fs, the input beam diameter is 5 mm, and the focal length is 75 mm.   

A calculation shows that the self-focusing distance decreases with increasing pulse 

energy, which was expected.  Once the self-focusing distance is known, the filament length can 

be obtained.  The expression for the filament length is )()( εε sffila zLz −= , where L is the 

thickness of the sapphire plate.  The sapphire plate is 2.3 mm thick in the f-to-2f.  

As the beam contracts to a filament, self-phase modulation and self-steepening occur 

along with other nonlinear processes.  Those processes broaden the spectrum of the input laser 

pulse.  The input spectral width of the laser is 35≈Δλ nm.  The spectral broadening due to self-

phase modulation can be estimated as 0λφλ Δ≈Δ spm . [63] If the origin of z is taken as the input of 

the sapphire plate, the maximum nonlinear phase shift is given by: 
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Using the same parameters as before, the nonlinear phase shift is 10≈spmφ . 

Accounting for linear and nonlinear dispersion, the spectral phases of the green and IR 

pulses at the start of the filament are given by:             

)()( ,, 20 GsfGspmnnCEsfG ωφφφφφωφ ≈+Δ+Δ+=           (6.5) 

)()( ,, 20 IRsfIRspmnnCEsfIR ωφφφφφωφ ≈+Δ+Δ+=           (6.6) 
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where IRω and IRG ωω 2= are the angular frequencies of the green and IR pulses and CEφ is the 

CE phase at the input of the sapphire plate.   
0nφΔ is the CE phase shift caused by linear 

dispersion and is equal to 00 τω Δ , where 0τΔ is the difference between the group and phase delay 

at the input carrier frequency 0ω .  The nonlinear contribution to the dispersion is given 

by 220 /)/(
02

nddnspmn ωωωφϕ −=Δ .  For sapphire, the parameters are 

17
20 108)/(

0

−×=ωωω ddn cm2 /W and 16
2 109.2 −×=n cm2 /W at 800 nm. [37] 

It is assumed the spectral phase difference between the green pulse and the IR pulse is 

only affected by the linear dispersion during the propagation in the filament.  The justification is 

that the laser peak power decreases as the pulse duration increases during the propagation, 

making the nonlinear contributions negligible.  Then, including the linear dispersion in the 

filament, the spectral phases become, 

filaGGGsfGG z)]('[)( , ωωββφωφ −+−=            (6.7) 

filaIRIRIRsfIRIR z)]('[)( , ωωββφωφ −+−=            (6.8) 

where the phase delay of the IR pulse and the green pulse are given by cnzz IRIRfilafilaIR /)( ωωβ =  

and cnzz GGfilafilaG /)( ωωβ = respectively.  The group delay of the IR and the green pulses are 

given by filafilaIR zddz
IRω

ωββ ]/[' =  and filafilaG zddz
Gω

ωββ ]/[' =  respectively.  

If the phase-matching of the second harmonic generation of the IR pulses is assumed to 

be perfect.  The spectral phase of the second harmonic then becomes 

filaGIRIRIRsfIRSHG z)]('2[)(2)( , ωωββωφωφ −+−= .          (6.9)  

The total phase then becomes 

gGphGspmnCE τωωτωτωφφφω Δ−−Δ+Δ++Δ+=Φ )()( 002
,       (6.10) 

where the phase delay between the second harmonic and green pulses is 

)//( IRIRGGfilaph z ωβωβτ −=Δ  and the group delay is given by ]''[ IRGfilag z ββτ −=Δ . 

In the previous section, the change of the time delay with energy was identified as the 

major influence on the CE phase measurement error. [59]  gτΔ  in equation 6.10 represents that 

time delay.   
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Two fitting parameters were used for the model.  First, the power was chosen to be 32% 

of the peak power of the input pulse.  Second, the spot size was fitted as 4.068.9 ± µm.  For the 

CE phase measurement, the total phase, )(ωΦ , was measured at Gωω ≈ , which leads to 

0)( ≈Δ− gG τωω .  Therefore, the time delay fluctuation does not directly affect the CE phase 

measurement.   

The model suggests that the measurement error is caused by the pulse-to-pulse variation 

of the quantity )( 002 phGspmnerr τωτωφφφ Δ+Δ++ΔΔ=Δ due to power fluctuation.  As the laser 

energy increases, phG τω Δ increases as the filament length, filaz , increases; whereas, τω Δ0  

decreases as the shortening of sfz  which cancels the effects of phG τω Δ  to a large degree as our 

calculation shows.  The nonlinear term, spmφ , also counters the effects of phG τω Δ . However, the 

overall result is that errϕΔ increases with laser energy. This explains the measured decrease of 

errCE ϕϕ Δ−=Δ with laser energy when )( GωΦ was locked to zero.   

Thus, a simple model which describes the CE phase measurement error on laser energy 

fluctuations was derived.  The model can be used to describe the results obtained in the previous 

sections. 

 

 

 

 

 

 

 

 

 

 

 



 

 100

CHAPTER 7 - Few-Cycle Pulses and CE Phase 

7.1 CE Phase Measurement using Few-Cycle Pulses 
Previously, 5.6 fs, 1.2 mJ pulses were generated by spectrally broadening pulses in a 

neon-filled hollow-core fiber. [11] Also, the CE phase stability of the pulses before and after the 

fiber was measured.  The experimental setup used in that research is shown in Figure 7.1. 

 
Figure 7.1 Setup for Measuring CE phase stabilty of few-cycle pulses. 

 

In the experiment, the CE phase stable pulses from the laser oscillator were amplified to 

2.5 mJ using the KLS amplifier.  The 0-order diffraction from the compressor grating was used 

for the power locking system.  10% of the amplifier output was used for measuring the CE phase 

drift of the pulses using the in-loop f-to-2f interferometer.  The signal was used to correct the CE 

phase drift by feedback controlling the stretcher grating separation. 

The remaining 2.2 mJ of the amplifier output was focused into a ~1 m long hollow-core 

fiber filled with neon gas at a pressure of 3 bars.  The output of the fiber was collimated by a 

focusing mirror and sent to a set of chirped mirrors for temporal compression. A FROG 

(Frequency-Resolved Optical Gating) was used to measure the pulse duration of the pulses after 

the fiber. [64] The input and output spectra are shown in Figure 7.2 along with the measured 

pulse duration. 



 

 101

 
Figure 7.2 Top: Input and output spectra. Bottom: Measured pulse duration. 

 

The pulses from the fiber had energy of 1.2 mJ, which was measured by a power meter 

placed after the fiber.  The power meter was also used to measure the power stability of the few-

cycle pulses. 

An f-to-2f interferometer was placed after the fiber to measure the CE phase stability of 

the pulses.  In the first measurement, the CE phase of the pulses before the fiber was measured 

and stabilized.  Also, the power locking system was engaged, giving a power stability of 0.6% 

before the fiber and 1.4% after the fiber.  The larger fluctuation after the fiber was due to beam 

pointing jitter at the input of the fiber.  The CE phase was locked to 189 mrad rms error before 

the fiber.  After the fiber, the measured CE phase error was 370 mrad rms.  The results are shown 

in Figure 7.3 
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Figure 7.3 a) CE phase fringes and phase drift of the pulses before the fiber.  b) CE phase 

fringes and phase drift of the pulses after the fiber.  The power was locked to 0.6% before 

the fiber. 

 

Alternately, the CE phase stability was measured when the power locking was 

disengaged.  The results are shown in Figure 7.4.   
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Figure 7.4 a) CE phase fringes and phase drift of the pulses before the fiber.  b) CE phase 

fringes and phase drift of the pulses after the fiber.  The power stability was 1.5% before 

the fiber. 

 

In this result, the power stability was 1.5% before the fiber and 2.5% after the fiber.  The 

CE phase was locked to 195 mrad rms error before the fiber.  After the fiber, though, the CE 

phase error was 567 mrad rms.   The higher error after the fiber was due to the 2.5% fluctuation 

of the power.  Since the f-to-2f interferometer was using a sapphire plate to spectrally broaden 

the pulses from the fiber over an octave, the power fluctuation significantly affected the CE 

phase measurement.  

In order to estimate the CE phase fluctuation from the nonlinear interaction in the fiber, 

the fiber was pumped down to vacuum.  Also, the power was locked, giving a 0.6% fluctuation 

before the fiber and a 1.2% fluctuation after the fiber.  The results are shown Figure 7.5. 
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Figure 7.5 a) CE phase fringes and phase drift of the pulses before the fiber.  b) CE phase 

fringes and phase drift of the pulses after the fiber.  The power stability was 0.6% before 

the fiber. 

 

The CE phase stability of the pulses before the fiber was 195 mrad rms.  After the fiber, 

the CE phase stability was 372 mrad rms.  The results with the fiber operating at vacuum were 

comparable to the results when the fiber was filled with neon gas and the power was locked.  

This indicated that the nonlinear interaction in the fiber did not contribute much to the CE phase 

instability. 

Thus, it was shown that the power fluctuation of the few-cycle pulses from the hollow-

core fiber was the major source of noise on the CE phase measurement.  The power fluctuation 

could be improved by improving the beam pointing stability on the input side of the fiber.  The 

limitation of this work, though, was that the contribution from the nonlinear interaction in the 

fiber could not be thoroughly investigated due to power fluctuations during the CE phase 

measurement.   
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7.2 Measurement of CE Phase Error from the Fiber 
 

In order to measure the CE phase error that is due to the nonlinear interaction in the fiber, 

an octave-spanning spectrum was generated directly from the fiber.  An f-to-2f measurement was 

then performed using the octave-spanning spectrum. [65] Since the spectrum after the fiber was 

already very broad, the sapphire plate was removed from the interferometer.  CE phase error due 

to power fluctuations was avoided in the measurement. [66]  

In the experiment, 2.2 mJ energy, 1 kHz, ~35 fs pulses from the KLS amplifier were 

focused into a hollow-core fiber filled with neon gas at a pressure of 2 bars.  A fused silica plate 

was placed before the fiber to pick off a portion of the beam for monitoring the input power to 

the fiber.  Also, 10% of the beam before the fiber was split off and sent to an f-to-2f 

interferometer using a sapphire plate to broaden the spectrum of the pulses.  The interferometer 

was used to measure the CE phase stability of the pulses before the fiber.  The power was locked 

to within 0.5% rms before the fiber. 

The pulses from the fiber were focused into a 100µm thick BBO crystal, where the 

wavelengths around 900 nm were frequency doubled.  Since the pulses from the fiber were not 

temporally compressed, the large group delay between the wavelength centered at 450 nm and 

the frequency doubled components centered at 900 nm produced fringes in the wavelength 

domain.  A spectrometer recorded the fringes for measurement of the CE phase.  A BG3 filter 

was used to block the components of the spectrum above 500 nm in order to prevent saturation 

of the spectrometer. 

The CE phase before the fiber was locked to 98 mrad.  After the fiber, the drift had 

increased to 137 mrad.  Previously, the CE phase stability of the pulses after the fiber had been 

measured to a value of 370 mrad using a sapphire plate based f-to-2f.  By removing the sapphire 

plate, the measurement error had been reduced by almost a factor of 2.  Errors from power 

fluctuations did not affect the measurement. 

In the second experiment, the measured CE phase error of the pulses from the fiber was 

used to feedback control to the stretcher.  The sapphire plate based f-to-2f was used to measure 

any added CE phase instability from the fiber.   

The results show that the CE phase was locked to an in-loop accuracy of 94 mrad rms.  

The out-loop measurement showed that the CE phase was locked to 134 mrad rms.  This 
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indicated that the fiber did not introduce a significant amount of CE phase error when the power 

of the input pulses was locked to 0.5% rms.   

For the sapphire plate, it was shown that a 1% power fluctuation caused a 160 mrad error, 

which is larger than that for the hollow-core fiber.  This can be explained by the fact that the 

nonlinear interaction in the fiber occurs over a long distance (~1 m); whereas, the self-focusing 

and filamentation in the sapphire plate occur over 2.3 mm.  CE phase measurement error is more 

susceptible to the strong self-focusing than to the long interaction length in the fiber. 
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CHAPTER 8 - Applications 

8.1 Stereo-Above-Threshold Ionization Detection of the CE Phase 
CE phase stabilized few-cycle pulses were used to study CE phase effects in stereo-above 

threshold ionization (ATI) and in high-harmonic generation (HHG).  The results with the stereo-

ATI setup were obtained using laser pulses from a grating-based amplifier. [18] This was the 

first demonstration of CE phase effects in a strong field atomic physics experiment using such an 

amplifier. 

  The experimental setup for the ATI study is shown in Figure 8.1 

 
Figure 8.1 Experimental setup for determining the CE phase of few-cycle pulses. 

 

In the experiment, the pulses from the hollow-core fiber were temporally compressed to 6 

fs in duration by a set of chirped mirrors.  A small portion (5%) was rotated to horizontal 

polarization by a half-waveplate and focused into a chamber filled with Xe gas.  A pair of 

microchannel plates (MCP) was placed on opposite sides of the chamber.  The MCP’s detected 

the counts of photoionized electrons. [1] 



 

 108

The direction the electron was emitted depended on the value of the CE phase of the 

ionizing laser pulse.  A pair of thin fused-silica wedges was placed before the chamber to change 

the CE phase of the incident laser pulses.  The ratio of electron yields detected by the right and 

left MCP’s was used to measure the CE phase.  This particular setup was called a stereo-ATI 

phase meter.   

During the experiment, the CE phase before the fiber was stabilized to 174 mrad rms over 

a 10 minute period.  The results for the phase meter are shown in Figure 8.2. 

 
Figure 8.2 Left) CE phase drift before the hollow-core fiber. Right) Phase meter results 

 

The phase meter result is shown in the time-of-flight spectrum.  In the plot, the ratio of 

right (R) and left (L) electron yields (L-R)/(L+R) is plotted.  Every 60 seconds, the laser pulse 

CE phase was changed by π by moving the wedge pair.  Since the yield of high energy electrons 

was more sensitive than that of the low energy electrons to the CE phase, the time-of-flight 

spectrum shows a higher contrast for the short time-of-flight (30-34 ns) than in the long range.   

The data shows the dependence of the ATI process on the CE phase as the yield changed 

as the CE phase was changed by π.  The data also displays the good CE phase stability of the 

laser system.   
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8.2 XUV Attosecond Pulses 
Attosecond XUV pulses can be generated by focusing a linearly polarized, high intensity 

(~ 16104× W/cm2 ) laser pulses into a noble gas.   When this occurs, odd harmonics, up to 

hundreds, of the driving laser field emerge in the output beam. [67,68]  The process is called 

high-harmonic generation.  For driving laser pulses approaching a single-cycle, the harmonic 

peaks in the cutoff region merge into a continuum.  For multi-cycle lasers, the HHG process 

produces a train of attosecond pulses. [69] 

A technique was developed for generating isolated attosecond pulses using multi-cycle 

lasers.  The technique was called double-optical gating (DOG). [70] Using the DOG process, the 

effects of CE phase on the high harmonic spectrum were studied.  CE phase stabilized ~9 fs 

pulses were used to generate high-harmonic spectra and the grating separation in the KLS 

stretcher was varied to change the CE phase.   

 

 
Figure 8.3 Effects of CE phase on HHG spectra obtained using DOG. 
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The top plot was obtained by using a collinear DOG setup and the bottom plot was 

obtained using an interferometer DOG.  As the CE phase was changed, the individual harmonics 

merged into a continuum.  Since the attosecond XUV bursts were generated during a single-

cycle or less of the driving field, the CE phase dependence exhibits strong features.  Due to the 

asymmetry of the driving laser field, which consisted of an IR pulse and a second-harmonic 

pulse, the XUV emission exhibited a 2π CE phase dependence. [22]  

The important result is that CE phase dependence in the HHG process was studied by 

varying the grating separation of the laser amplifier.  The result also displays the high CE phase 

stability of the laser system. 
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CHAPTER 9 - Conclusions 

 

In summary, a powerful tool for studying ultrafast processes was developed in this 

research.  The CE phase evolution of the pulse train from a Ti:Sapphire laser oscillator was 

stabilized.  Previously, the CE phase noise introduced by the path length drift in the f-to-2f 

interferometer used to obtain the offset frequency was not addressed.  In this research, the noise 

was quantitatively characterized.  A HeNe laser was copropagated in the interferometer and the 

interference signal was used to measure the path length fluctuation and to stabilize the path 

length drift.  The noise was found to be suppressed by several orders of magnitude.   

 The CE phase stable pulses from that oscillator were amplified to 2.5 mJ in a grating-

based chirped-pulse amplifier.  By measuring the CE phase drift of the amplified laser pulses, the 

drift was able to be corrected by changing the grating separation in the stretcher.  Previous 

research used material-based CPA systems and precompensated the CE phase drift of the 

amplified laser pulses using the oscillator locking electronics.  It was also found that by changing 

the grating separation to a set value, the CE phase could be shifted to any point within a 2π 

range.  If the stretcher optics are inadequate for mounting on a PZT stage, the compressor can be 

used.  Using the KLSII amplifier, the CE phase was shown to be stabilized by changing the 

grating separation in the compressor.  Furthermore, stabilization of the path length drift of the 

interferometer for the oscillator CE phase stabilization reduced the fast (>3 Hz) CE phase drift of 

the amplified laser pulses by 40%.   The grating stretcher or compressor control would not be 

able to reduce the fast drift.  Stabilization of the path length drift increased the CE phase stability 

of the system.  Future research might focus on other sources of fast CE phase drift either at the 

oscillator CE phase stabilization stage or in the amplifier.   

CE phase measurement error in the sapphire-plate based f-to-2f interferometer was found 

to be significant.  With the addition of a power-locking scheme and an out-loop interferometer, 

the energy fluctuation of the amplified laser pulses was found to be a significant source of error.  

By modulating the power to the in-loop interferometer with the power locked and measuring the 

CE phase drift with the out-loop, the phase-energy coupling coefficient was measured to be 160 
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mrad per 1% change in laser energy.  Previously, other groups assumed the f-to-2f measurement 

was sufficient enough for stabilizing the phase.  However, the research in this thesis showed that 

the error from laser energy fluctuation was very significant.  A two-step model explaining the 

coupling between the energy and the CE phase was proposed.  The model accounts for the self-

focusing in the sapphire plate and the subsequent propagation of the filament.  Originally, the 

variation of the group delay with laser energy was thought to be the main source of error in the 

CE phase measurement.  However, the model showed that the CE phase error was not sensitive 

to the delay change.  The nonlinear dispersion, the nonlinear phase shift, phase delay between the 

IR and SHG pulses, and the delay of the input pulse were found to contribute to the CE phase 

error. 

Similarly, the CE phase stability of few-cycle pulses from a hollow-core fiber chirped 

mirror compressor was studied.  In the first case, the 5.6 fs pulses from the fiber were sent to a 

sapphire plate based interferometer.  The pulses from the fiber had a large spectrum, but not an 

octave-spanning spectrum.  The sapphire plate was used to obtain the octave-spanning spectrum.   

The power fluctuation of the pulses from the fiber was 1.5% when the amplifier power was 

locked.  This led to a large CE phase error.  In the second case, an octave-spanning spectrum was 

obtained directly from the fiber.  The sapphire plate was then removed since no further spectral 

broadening was needed.  The CE phase stability was found to be significantly improved.  This 

was due to the removal of the sapphire plate.  Future research might involve splitting a portion of 

the beam from the fiber for CE phase stabilization.  Also, a model for the coupling mechanism in 

the fiber, similar to that for the sapphire plate, could be developed.   

Finally, CE phase stabilized few-cycle pulses were used to perform stereo-ATI, which 

gave a measure of the CE phase stability of the laser system.  The results indicated, qualitatively, 

that the CE phase of the laser system was very stable.  This was also the first measurement of a 

CE phase sensitive strong field process using pulses from a CE phase stabilized grating-based 

amplifier.  By changing the CE phase using the grating separation in the stretcher, the effects of 

CE phase on HHG were studied.  As the CE phase was changed, the individual harmonics 

merged into a continuum.  The results further showed the CE phase stability of the laser system. 
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Appendix A - Code for Stabilizing the Amplifier CE Phase  

The code used to calculate the measured CE phase drift was written in Labview 6.2.  For 

confidentiality reasons, the entirety of the code cannot be published here.  However, the basic 

function of the code will be outlined. 

First, the front panel of the Labview program is shown. 

 
Figure A.1 Front Panel. 1) The fringe pattern, 2) the FFT peak obtained from the fringe 

pattern, 3) the range of integration of the fringe pattern and the integration time. 

 

On the front panel, the fringe pattern obtained from the f-to-2f is shown in the preview 

window, denoted by 1.  A small, high contrast portion of the fringe pattern is selected by 
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adjusting the parameters at 3.  The peak obtained from performing an FFT across the image 

lineout from 1 is shown at 2.  The range of the peak is chosen. 

The code performing that function is shown in the next figure. 

 
Figure A.2 Code for obtaining the FFT peak. 

 

In the code, an image of the fringe pattern is obtained and an average over the intensity at 

each pixel is taken, which gives a one dimensional average of the pixel intensity.  The FFT of 

that one-dimensional average is taken and the amplitude is output to the front panel.  The FFT is 

also sent to the CEP N-LF sub VI (virtual instrument).  The sub VI selects the positive peak of 

the FFT and then performs the inverse FFT to retrieve the unwrapped CE phase.  A portion of 

the code is shown in the next figure. 
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Figure A.3 Sub VI for calculating the unwrapped CE phase. 

 

Once the unwrapped CE phase is obtained, the program begins to calculate the CE phase 

shift.  The CE phase calculation is shown schematically in the following figure. 

 
Figure A.4 CE Phase code schematic. 

 

The user inputs the range over which the relative delay of the fringe pattern is zero.  The 

code then computes the average value of the unwrapped phase over that frequency range.  The 
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phase is then wrapped with 2π.  The PID parameters are chosen as to facilitate the best locking 

conditions.  The error signal is derived from comparing the current phase to the previous phase 

calculated by the iteration. If the error is too large, then the PID code outputs a zero voltage. The 

control loop tries to make the CE phase shift zero.  In the code, the D parameter is set to zero 

since the CE phase shifts quickly.  Finally, a voltage is output by the program and sent to the 

PZT.   

The CE phase program using the Ocean Optics spectrometer in the out-loop f-to-2f 

follows the same basic format.  The difference is in the collection of the spectra from the 

spectrometer. 


