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KamLAND Experiment

56 nuclear reactors and one detector
Detector is located on the island of Honshu, Japan

Each nuclear reactor contains Uranium 235 and 238 &
Plutonium 239 and 241

Fission occurs:
57.1% from U 235
7.8% from U 238
29.5% from Pu 239
5.6% from Pu 241



KamLAND Experiment
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KamLAND Experiment
—

The reactors:
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KamLAND Experiment

The detector:
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KamLAND Experiment

The Liquid Scintillator inside the detector contains Co
Hi2 (pseudocumene) and Ci2 H2s (dodecane)

Some of the anti-neutrinos coming from the reactors
collide with protons found in these molecules

Inverse beta decay



KamLAND Experiment
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The detector:
Gamma photons: 10 keV

Optical photons: 1-3 eV

Positron moves through the
LS losing KE as it ionizes

- atoms
Vet p=> n+

Inverse beta

decay Process A

unstable atom

UV/Gamma
photon
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atoms
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KamLAND Experiment
—

The detector:

Fluorescence CH3 A visible photon is
emitted from the
The UV photon H C H 3 molecule

hits one of the
molecules and is

bsorbed V
e ~N V Optical

H H photon
CH;

The visible photon is detected
by all the photomultiplier
tubes



KamLAND Experiment
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Meanwhile still in the detector... Go through

Process A

Gamma
photons e e
Y € e
e —
e
+ C—
e + € Gamma photons v
Compton scatter or go
The positron loses energy through the
and comes to a stop where Photoelectric Effect DETECTED
it annihilla’res with an V e e
electron - —
€ e
e _
e Even though there are 3 separate

signals in the PMTs, it is detected
as only one



KamLAND Experiment
=

Simultaneously in the detector...

The neutron bounces off from the
- + atoms in the LS and moves
—
Ve + p @ + e slower & slower until it is

\—7 absorbed

Go through
Process A

Recoil

5 The neutron interacts
N -|— p —_> H -|— V with hydrogen (H)

from the LS
The gamma photon compton

(Devteron) scatters or goes through the
photoelectric effect with the
atoms in the LS. It produces a
13 detected signal called the
Or very n + p — C + Y delayed coincidence.

rarely



KamLAND Experiment

The detector:

Source: kamland.Ibl.gov/Pictures/picgallery.html



Number of Counts
—

Our main equation:

Wait, what?




A simple derivation
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A simple derivation
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The number of counts at each energy prompt

The flux of anti-neutrinos expected at the detector

Probability that an electron anti-neutrino will stay an
electron anti-neutrino by the time it reaches the detector

The cross section of one proton that could interact with the anti-
neutrinos coming into the detector

The number of reactions

Probability of detecting a reaction from the
reactions that have occurred (due to experimental
error)
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KamLAND events graph

Events graph with what was observed in the detector

http://www.awa.tohoku.ac.jp /KamLAND /4th_result_data_release /4th_result_data_release.html
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- KamLAND appearance probability graph

Appearance probability from an average reactor length

http://arxiv.org/pdf/1009.477 1v2.pdf



Our theoretical research
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Our theoretical research
—

N(E,) = Q(E,, ) P(I)

For simplicity, we shall call this: N @ «— What we want to find empirically
" (N; — N)?

We need to minimize X%or N(Ep): X2 — Z ( ! 5 )

where, 0 = V/ N

N(Ep) has a Poisson distribution because of the rare amount of
interactions at the detector



Our theoretical research
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transformation of the Q matrix
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Small proof
N
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Why we want to do this
N

1 Prove neutrino oscillations and KamLAND’s conclusions
empirically

1 Gain knowledge about how neutrinos behave, which
could lead to a better understanding of dark matter

1 Gain knowledge about neutrinos to be able to control
nuclear reactors efficiently by monitoring neutrinos
that leave




Forming the Q matrix

For ex:
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Test for as many I's as possible, binning them
If the E, lies between 1.8 MeV-10 MeV, then plug the values into
the Q equation
If the [, lies outside of that range, it does not contribute to the
detector, so we input zero for that matrix element

* Obtain a different Q matrix for each reactor
Superpose all the Q matrices



Forming the Q matrix
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Our ‘no oscillations’ graph

ur ‘no oscillations’ graph (without
taking into account certain small
factors)
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Setting up the test

S
No = Qo F

where, PO — appearance probability if there were no oscillations
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Setting up the test

-1
Since, O — OT
C = RDR"
Where R is a matrix containing the O_l — RT—l D_lR_l

orthonormal eigenvectors for each
eigenvalue, and D is a diagonal -

1 ~
matrix containing all the eigenvalues —1 _ T —1 —1
C'=RUD'R
Has the smallest eigenvalue
— element equal to zero
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The Binning

Why bin the Ep’s?

The greater the counts per bin, the smaller
the relative error

As a result, approaches a Gaussian

Why bin the I's?
More functions than unknowns

A higher sum in each | column will provide
for a smaller error

Why find the eigenvalues of C?

If product of eigenvalues is big, error is
small when inverting C

If difference is big, magnifies error



Why test it this way
—r

1 Accounting for bias by using No prime to
calculate V inverse instead of N1 prime:

- This method gives each element in N1

prime their corresponding importance

according to how many number of counts they
each contribute and, therefore, how much
data they contain

For example:

( 1\ ( 0.97\

b | 1.00
V—lNO _ 1 while V—lNl _ 0.10
1 1.32

\1/ \0.61)



Why omit the smallest eigenvalue?
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The smaller the eigenvalue, the
more noise error it contributes




Error

Biggest error contributors:

Background noise in the data N1 from the experiment

Approximation of | values due to the | binning in Qo

Producing reasonable error bars for our test of specific P(l)s :

Create N’ite with a specific P(l)
Add randomized background noise to N'itre

Create 1000 different P(l)s, each using a different
randomized N’iobserved

Find the average P(l) and its standard deviation to obtain
different error bars for each P(l) entry
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- Omitting the smallest eigenvalue

16 Ep bins, 11 | bins

Smallest error bars so far, but not as small as were expected
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Omitting vs not omitting smallest eigenvalue

16 Ep bins, 11 | bins

Smaller error bars



Testing KamLAND’s N
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Comparing Chi Squares

Chi square of the N between our estimate and
the N observed:

6.68

Chi square of the P between our
estimate and the closest straight line
of 0.44 without taking into account covariance:

9.65

The above chi square with covariance:

67.95

1.'.-. tirmate

(71




The Covariance Matrix
e




Conclusions
S

1 Obtained appearance probabilities for
11 values of L/Ev without assuming an

average L

1 Appearance probability cannot be
constant

1 Predicted N matched KamLAND’s
observed N
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