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ABSTRACT 

The Nelder-Mead simplex method has been used 
extensively for the optimization of simulation models for 
over twenty five years. There have been over 2,000 
citations to the original paper, with 200 citations in 
1989 alone. When used to optimize a response function 
of a discrete event simulation model, the objective 
function is usually stochastic, due to the random behavior 
that is being modeled. The Nelder-Mead rescaling and 
shrinking steps make it sensitive to random variations in 
the response function values, and introduce risks of false 
convergence on stochastic functions. We give analytical 
and empirical evidence that characterizes false 
convergence on stochastic functions, and discuss several 
modifications to reduce the likelihood of false 
convergence. We describe a computational comparison of 
several modifications when used to optimize simple 
stochastic functions of two and ten variables. 

1 INTRODUCTION 

The Nelder-Mead simplex method (1965) has been used 
extensively for the optimization of simulation models for 
over twenty five years. There have been over 2,000 
citations to the original paper during this period, with 
200 citations in 1989 alone. Most of these citations 
document the successful application of the technique to a 
practical problem. The range of application is very 
broad: researchers in analytical chemistry (Ash et. al., 
1989)' neurology (Nieminen, Suarez-Isla, and Rapoport, 
1988), fishery management (Schnute and Sibert, 1983), 
and fusion technology (Meier and Morse, 1985) have all 
made use of the algorithm. When used to optimize some 
response of a discrete event simulation model, the 
objective function is usually stochastic, due to the random 
behavior that is being modeled. This optimization may 
be based on response functions that are calculated at the 
end of each simulation run, or the optimization might be 
bascd on batch means within a single run, as in h u n g  and 
Suri (1990). 

This algorithm is based on an earlier "simplex" 
sequential search strategy developed by Spendley, Hext, 
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and Himsworth (1962). While the precursor was intended 
for stochastic functions, Nelder-Mead was intended for 
deterministic functions. The Nelder-Mead rescaling and 
shrinking modifications make it more sensitive to random 
variations in the response function values, and introduce 
new risks of false convergence on stochastic functions. 

In Section 2, we give a brief description of the 
original Nelder-Mead method. In Section 3 we give 
analytical and empirical evidence that characterizes false 
convergence on stochastic functions, and discuss several 
modifications to reduce the likelihood of false 
convergence. In Section 4 we describe a computational 
comparison of several modifications used to optimize 
simple stochastic functions of two and ten variables. 

2 THE NELDER-MEAD STRATEGY 

2.1 Origin 

Nelder and Mead's algorithm was based on the earlier 
work of Spendley, Hext, and Himsworth (1962), who 
originated the concept of simplex optimization. For a 
function of n parameters, the algorithm maintains a set of 
n+l function values evaluated at n+l points in parameter 
space. This set of points defines a simplex in n 
dimensions. In two dimensions, the simplex would be a 
triangle; in three, a tetrahedron. The Spendley et. al. 
algorithm incorporates a regular simplex (i.e., all sides 
have the same length) which does not vary in size. The 
function is evaluated at each point of the simplex. The 
simplex then moves toward the optimum by reflecting the 
point with the worst function value through the centroid 
(average) of the remaining n points. In two dimensions, 
this can be visualized as flipping over a triangle to move 
it down a hill. 

To insure progress, two additional rules apply. If any 
point of the simplex is retained for n+l reflections, a new 
observation is taken at that point to replace the current 
observation. This rule ensures that the simplex does not 
remain at a point whose function value is unusually low 
due to experimental error. To simplify subsequent 
discussion, this rule will be termed the 'n+l rule'. The 
other rule specifies that if a reflected point is still the 
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worst of the simplex, this point is not to be accepted. 
Instead, the next-to-worst point is reflected through the 
other points. For discussion purposes, this will be called 
the next-to-worst rule. This rule causes the Spendley et .  
al. simplex to continually cycle around the region 
containing the optimum. 

This continual cycling, in place of any stopping 
criterion, was motivated by the concept of evolutionary 
operation (EVOP), for which Spendley et. al. developed 
the simplex method. Their objective was to optimize an 
ongoing manufacturing process, such as the operation of 
production equipment. In such an environment, the 
optimal operating conditions are likely to change over 
time, due to tool wear, material variation, and so forth. A 
constantly moving simplex can pick up these slight 
variations as they occur and follow the optimum 
conditions as they shift. 

The fixed-size simplex method has several limitations, 
as pointed out by Deming and Morgan (1973): 

1. Equilateral triangles are the only regular 
simplices which have the ability to close pack. 
For problems of higher dimension, this means 
that arrival at the optimum region is not clearly 
signalled. 

2. There is no provision for acceleration toward the 
optimum. 

3. It is possible for the fixed-size simplex to 
converge to a non-optimal ridge. 

By allowing the simplex to change its shape, Nelder 
and Mead's algorithm (1965) avoids these shortcomings. 
The shape changes take place through additional 
geometric operations which provide clear "convergence" 
toward the optimum, and acceleration toward this 
optimum. As a whole, the extra operations allow the 
simplex to adapt to the form of the region it explores, 
making the method less susceptible to false convergence 
on deterministic functions. 

2.2 Nelder-Mead Rescaling Modifications 

Nelder and Mead's simplex method for minimization 
(1965) incorporates operations to rescale the simplex 
based on the local behavior of the function. Simplex 
reflections are expanded in the same direction if the 
reflected value is particularly good. A poor value results 
in a contraction. If the function value at the contracted 
point suggests that the function is not convex, the size of 
the simplex is reduced. The original Nelder-Mead rules for 
implementing these added operations are outlined below. 
1 Ini t ia l izat ion For a function of dimension n, 
choose n+l points. Evaluate the function at each point 
(vertex) of the simplex. 
2 Stopping Criterion Iterations continue until the 
standard error of the function values at the n+l simplex 
points falls below a particular value. Nelder and Mead 

used lo-* as a stopping criterion. (They did not have 
stochastic functions in mind.) 
3 Reflection At the start of each iteration, identify the 
vertices where highest, second highest, and and lowest 

function values occur. Let PH, P ~ H .  PL denote these 
points; and let FH, F ~ H ,  FL represent the corresponding 
function values. Find C, the centroid of all points other 
than PH. Generate a new point PR by reflecting PH 
through C. Reflection is carried out according to the 
following equation: 

where a is a positive constant called the reflection 
coefficient. The next operation is determined by FR, the 
value of the function at PR. 
4a Reflection If FL < FR < F ~ H ,  then PR replaces PH 
in the simplex, and a new iteration begins (step 2 above). 
4b Expansion If FR < FL, the simplex expands, in the 
hope that more improvement will result from moving 
further in the same direction: 

where y is the expansion coefficient. Gamma must be 
greater than 1. If FE is less than FL. PE replaces PH in the 
simplex; otherwise, PR replaces PH. The next iteration 
begins with the new simplex. 
4c Contract ion If the reflected point is still worse 
than every point in the simplex, (i.e. FR > FH or FR > 
F ~ H )  the simplex contracts, under the assumption that the 
current move was too far. Contraction generates a point 
closer to C, on the side which holds the most promise: if 
FR < FH, the contracted point lies between C and PR; if FH 
< FR, the contracted point lies between C and PH. 
Contraction is defined by the equation: 

where P- is either PH or PR (whichever has the lowest 
function value), and B is the contraction coefficient, a 
number between 0 and 1. If F c  < F-, Pc  replaces PH and a 
new iteration begins. 
S h r i n k  If FC > F-, the contraction has failed, and the 
entire simplex shrinks by the parameter 6 ,  retaining only 
PL. This is done by replacing each point Pi by 

Pi = &Pi + (1 - S)PL 

The algorithm then continues with the next iteration. 
These steps are illustrated in Figure 1 for a function of 

two parameters. Nelder and Mead recommended the use of 
a = 1, B = .5, y = 2 based on their tests. They did not 
identify 6 as a parameter; instead, they employed a fixed 
value of 0.5. 

3 FALSE CONVERGENCE ON STOCHASTIC 
FUNCTIONS 

The Nelder-Mead algorithm is widely used for 
simulation optimization, where the functions it optimizes 



Nelder-Mead Method for Optimization 947 

Reflection 

Contraction when PR 
is better than PH 

Expansion 

Contraction when PH 
is better than Pa. 

P2H PR 

Shrink after failed contraction 
for case where P R is better than PH. 

Figure 1: Nelder-Mead Rescaling Operations 

are often subject to random noise. The algorithm is 
robust to small inaccuracies or stochastic perturbations in 
function values. This is because the method uses only the 
ranks of the function values to determine the next move, 
not the function values themselves. Perturbations that do 
not change the ranks of the values will have no effect on 
the algorithm's search trajectory. 

If this noise is substantial, i t  will lead to 
inappropriate rescaling operations, resulting in false 
convergence. Empirically, this problem often manifests 
itself as inappropriate shrink steps. Once begun, this 
reduction in the simplex size can reduce the variance of 
the simplex function values below the system's inherent 
variability before the optimum region has been reached. 

3.1 Mechanisms for False Convergence 

In order to understand how stochastic noise affects the 
simplex, a closer examination of its movement rules is 
necessary. Of particular interest is what happens when 
the simplex is in a region that is fairly constant relative 
to its size. This will occur after a sequence of shrink 
and/or contract operations, or when the neighborhood of 
the minimum has been reached. In either case, much of 
the perceived difference between function values is dictated 
by the noise. Consequently, the noise will also dominate 
the movement of the simplex and the choice of rescaling 
option. 

To see how this might happen, consider the example 

in Figure 2. The graph of this function would ordinarily 
be a simple contour map; however, noise blurs the 
distinction between contours. For example, stochastic 
variation could cause points sampled from the 375 contour 
to have function values well above or below 375, 
depending on the variance of the response. Based on 
these contours, the simplex should progress downward in 
the figure. Suppose the current simplex is ABD. Point A 
has the worst response value, so a reflection is made to 
point G, where noise causes an unnaturally high value of 
380, say. Thus point G will be rejected in favor of a 
point farther from the optimum: contraction to point H 
takes place, where a value of 400 is obtained, say. Since 
this response is worse than all current points, the simplex 
must now shrink, giving the new simplex BIJ. At this 
point there is little hope for progress: the simplex is 
most likely to converge to a point with expected value 
near 375. 

In this example, a reflection that should have been 
accepted was rejected. In addition, a contraction that 
should have been accepted wasn't, resulting in an 
inappropriate shrink. We would like to know how 
frequently such events might occur in practice. That is, 
when confronted with a region where function differences 
are small relative to the stochastic component, how does 
the simplex behave? These questions can be addressed by 
studying the behavior of the algorithm on a constant- 
valued function, where the differences between vertices are 
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E(F)=425 

E(F)=400 

E(F)=375 

E(F)=350 

Figure 2 An Example Where Function Variations are 
Dominated by Noise 

entirely due to noise. The path the simplex takes can be 
described in terms of the state transition diagram shown 
in Figure 3. We characterize this behavior by finding the 
probabilities with which it takes each branch, both 
initially and over the long run. 

expansion 

Figure 3: Step Transitions for the Nelder-Mead Algorithm 

3.2 Step Transition Probabilities when Noise 
Dominates  

Consider the case where the simulation response 
function can be modeled as: 

F(x) = f(x) + W(X) 

where W is the stochastic component. For the discussion 
below we will assume that the distribution of W values are 
independent and do not depend on x, and that f is constant 
over x. In this case the initial simplex is a set of 
independent samples from an identical distribution (i.i.d.). 
The reflected point is also an independent sample. This 
allows a very simple analytical derivation of the first 
iteration step transition probabilities. To simplify the 
discussion, we define the following events: 

R = the reflected point is accepted immediately 
E = an expansion is attempted 

EnA = an expansion step is attempted and accepted 
C = a contraction is attempted 

CnS = a contraction fails and a shrink is performed 
Consider a two dimensional problem. We have four 

function values that are i.i.d., one of which belongs to 
the reflected point. The next action taken is determined 
by its ranking relative to the other points. The 
probability that the reflected point has the best value is 
1/4. By the same reasoning, the probabilities that it has 
the worst value, or the second worst value, or the second 
best value are all equal to 1/4. A contraction will be 
performed if the reflected point is the worst or the second 
worst of the four. Thus, P(C) = 1/4 + 1/4 = 1/2. 
Expansion is attempted when the reflected point is the 
best, i.e. P(E) = 1/4. By defmition, P(R) + P(E) + P(C) = 
1, SO P(R) = 1/4. 

This type of argument can be extended to find the 
probability that, on the first iteration with a constant 
function, a shrink will be performed. For a two 
dimensional problem, we must consider an i.i.d. sampling 
of 5 points and enumerate all possible rankings of FR and 

FC. Summing the probabilities of rankings that lead to a 
shrink step gives P(SnC) = (115) * (0 + 0 + lf2 + 114 + 
1/4) = 0.2. Hence, the conditional probability of 
shrinking given that a contraction is performed is P(SIC) 
= P(SnC) / P(C) = .2 / .5 = .4 A similar analysis shows 
that P(EnA) = .1 and P(AIE) = .4. It is interesting to note 
that these results require only that the noise be i.i.d.. 

In order to verify this analysis, a computational 
experiment was performed. The algorirhm was run 5000 
times on a constant function with a uniform noise 
distribution ranging from 0 to 1. The algorithm was 
stopped after only one iteration. and the number of times 
each operation took place was tallied. The results were in 
close agreement with the theoretical calculations, as 
shown in the table below. 

Table 1: First Iteration Transition Probabilities 

EVENT 

R 
E 

E A  
C 

Gs 

p ( E m  

.25 .2544 

.25 .2574 

.10 .lo58 
5 0  .4882 
.20 .2006 

THEORETICAL EMPIRICAL 

I I I 

When a two-dimensional simplex first reaches a region 
of constant expected function values, it is twice as likely 
to reduce in size as it is to expand. These results will 
hold approximately when the product of the expected 
function value gradient and the size of the simplex is 
small compared to the standard deviation of the stochastic 
component. This difficulty is associated primarily with 
functions of only a few variables. In higher dimensions. 
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Lhe simplex is much more likely to accept a reflection: for 
a function of 50 parameters. the probability of performing 
a reflection is 49/52. The chance of performing an 
expansion drops to 1/52. and the chance of performing a 
contraction to 2/52. 

This first step information gives some insight into the 
nature of the difficulty, but it is only a small part of 
picture. The transition probabilities change very rapidly 
after the first iteration on the constant function, due to 
the change in distribution of function values in the current 
simplex. Bad values are repeatedly discarded in favor of 
good ones, and the simplex no longer contains n+l  
identically distributed observations. Rather, it contains 
the best points found to date. As better and better values 
are retained, it is much less likely that any newly sampled 
point will be better than those in the current simplex. 
This means that the number of expansions should decrease 
as iterations continue. regardless of the dimension of the 
function. On the other hand, contraction and shrinkage 
should increase as the simplex values become harder to 
improve upon. 

Empirical studies were performed on functions of 2 and 
50 dimensions with Gaussian and uniform stochastic 
components. For the two parameter constant expected 
value function, the algorithm was run for 200 function 
evaluations beyond the setup of the initial simplex. The 
number of operations was then tallied in 14 groups of five 
iterations (reflection to next reflection). Tests in 50 
dimensions were run for 2000 function evaluations. and 
tallied in 9 groups of 50 iterations. Six replications each 
were performed using two different noise distributions: 
uniform (0 to I), and standard Gaussian truncated to f3. 
The 3 sample moving averages for each transition 
probability are plotted in Figures 4 and 5 for the uniform 
(0 to 1) case. The bold characters at the left of each 
figure mark the first iteration transition probabilities. 

Iteration Group 

Figure 4 Moving Average Step Transition Probabilities, 
Two Parameter Function 

Robbility 
I n  

I 

O.' i 
I 

O" i 
0 ' 6  I 

I 
0 . 2  I 

Figure 5: Moving Average Step Transition Probabilities, 
Fifty Parameter Function 

Only the uniform results are shown. Since step 
transitions are based on the function value ranks, the long 
term transition probabilities will again be independent of 
the form of the noise distribution. This was supported by 
the empirical fmdings. 

There are rapid increases in the probability of 
contraction and the conditional probability of shrinking 
given a contraction. After the initial transient, the 
probabilities remain fairly stable. The difference between 
the 2 dimensional and 50 dimensional plots highlights 
the increased resistance to contract and shrink steps in 
higher dimensions. Even for the fifty parameter function, 
though, the contract and shrink probabilities are 
substantially larger than the first iteration values. 

3.3 Modifications to reduce the likelihood of 
false convergence 

These results indicate that when noise begins to 
dominate differences in function values, the size of the 
simplex is much more likely to decrease than increase, 
especially in lower dimensions. The likelihood of size 
reduction also increases dramatically after the first 
iteration. Some bias toward reduction is clearly necessary 
for convergence. but an excessive bias increases the 
chance of false convergence. An effective modification 
for noise should be able to reduce the probability of 
contracting and/or shrinking without seriously hampering 
progress toward the optimum. 

Previous approaches have addressed this problem by 
periodically replicating good points and/or providing 
alternatives to shrinkage. In using Neldermead to 
optimize the resolution of a magnetic resonance 
spectrometer, Emst (1968) made two useful observations 
on the difficulties described above: 

1. It may happen that the simplex reduces in size 
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too fast, such that it loses the ability to 
move. Shrink steps cannot occur on a truly 
concave surface. Their occurrence is usually 
caused by erroneous measurements, in which 
case the size of the simplex should not be 
reduced. 

2. From the logical scheme it is apparent that 
the lowest value is never replaced. If it was 
produced by an inaccurate measurement, it may 
mislead a long series of subsequent steps. 

In applying Neldermead to a discrete event simulation 
model, these two problems pose a major concern. Many 
experimenters have proposed modifications to the 
algorithm that attempt to overcome each of them. 

The problem of shrinkage appears to be particularly 
serious, given its potential to rapidly terminate the 
optimization. For this reason, some authors completely 
eliminate the use of a shrink step. Emst (1968) 
recommended that a failed contraction be followed by a 
translation of the entire simplex such that it is centered 
around the location of the current best point. In addition 
to translation, Deming and Parker (1978) suggest another 
alternative to shrinking, originally proposed by King 
(1974): if the contracted point is the worst point of the 
new simplex, keep it anyway and reflect the second worst 
point of the new simplex. Note that this is simply the 
next-to-worst rule from Spendley, Hext. and Himsworth 
(1962) applied in a different context. 

Attempts to solve the second problem, retention of a 
spuriously low response, all focus on periodic replication 
of the best point. Emst (1968), and Deming and Parker 
(1978) recommend the use of Spendley et. al.'s 'n+l rule' 
to avoid false convergence. An extension of this rule is 
implemented in SIMPLEX-Vm, a software package for 
design of experiments (Nachtsheim, 1987). This 
extension, the 'n+j rule', allows the user to specify j, 
where 0 S j I 9; thus controlling the retention time of a 
good response. 

Replication of all points appears to have no value. 
Deming and Morgan (1973) point out that if the function 
values differ greatly compared to the experimental error, 
the simplex will move in the right direction, making 
replication a waste of time. They also argue that the 
simplex will correct its path even if it is temporarily 
thrown off course due to error. In an empirical 
investigation Spendley. Hext, and Himsworth (1962) 
concluded that replication of points seriously hinders the 
progress of the simplex. 

Knowledge of how the simplex behaves on a constant 
function points to simple modifications that can address 
the heavy bias toward contraction and shrinkage more 
directly. The next section presents an empirical study of 
three modifications that are specifically designed to reduce 
P(C) and P(S). The first modification is to resample the 
lowest point during a shrink step. This brings the 
simplex back to an initial state condition, restoring the 
transition probabilities to their first iteration values. 
This should have the greatest effect on low dimensional 
functions, since the probability of reaching the shrink 

step is much higher. Unfortunately, the beneficial effect 
will be short-lived. based on the empirical findings in 
Figures 4 and 5. 

The second modification is to reduce the probability 
that a contraction is performed, which would in turn reduce 
the probability of shrinkage. One way to accomplish this 
is to resample both PR and P2H before attempting a 
contraction. The points are compared again, without 
checking to see if the old P2H has changed in rank. The 
contraction is performed only if the new FR is still worse 
than the new FZH. This modification will also have less 
impact in higher dimensions, since a contraction is 
attempted much less frequently. 

The third modification we consider is used in 
conjunction with the first, and is an attempt to delay the 
onset of 'constant function behavior'. Rather than 
attempt to affect the probability of taking a shrink step, 
the simplex will be reduced to a lesser extent. The 
approach tested here is to increase the shrink coefficient 6 
from .5 to .75 and .9. An alternative would be to use a 6 
that depended on iteration count, k, for example 6k = 
k/(k+l). 

4 COMPUTATIONAL EXPERIMENTS 

These three modifications were tested on simple 
quadratic functions with truncated ( f 3 o )  Gaussian 
perturbations. As mentioned earlier, since all decisions in 
the Nelder-Mead algorithm and the proposed modifications 
are based on ranks, the behavior near the minimum will 
be essentially the same for any i.i.d. perturbations. The 
Gaussian perturbations are appropriate models for discrete 
event dynamic simulation models, where the response 
function is often an average of many random variables. 

4.1 Experiment Design 

We apply these perturbations to simple quadratic test 
functions of the form f(x) = xTQx, where Q is composed 
of a diagonal matrix with entries (1.1, ...,q) and an 
orthogonal rotation to move the function contour 
ellipsoid axes away from the coordinate axes. A quadratic 
approximation to the expected response function is 
appropriate for this study, since the main concern is 
premature convergence in the neighborhood of an 
optimum. Two values of q were chosen. Test runs with q 
= 1 evaluate the ability of the algorithm to minimize a 
well behaved function. Test runs with q = 10 offer 
contours with a ridge, where the rescaling operations of 
Nelder-Mead are important for convergence. 

The Nelder-Mead variants that were tested were: 
0 unmodified original algorithm 
A 
B resample the second worst and the 

contraction vertex before contracting 
7 5 shrink coefficient 6 = .75 rather than .5 
9 0 shrink coefficient 6 = .90 rather than .5 

resample the best value at each shrink step 
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0 A A.75 A.90 B 
.59 .5S .58 5 8  .70 .68 

Modification A has no negative effect on performance 
other than requiring one extra function evaluation 
(simulation run). For this reason, the last three 
modifications were tested in conjunction with A .  
Modification B was also tested individually. 

Each modification was tested on quadratic functions of 
two and ten parameters with q = 1 and q = 10. for four 
functions in all. For each function there were six starting 
points, and five replications for each starting point, for a 
total of 120 runs per modification. Total function 
evaluations were limited to 200 for the two-parameter 
functions and to 1000 for the ten-parameter functions. 
Selecting a convergence criterion was not critical for 
analyzing the results; once the simplex was reduced to a 
certain size, convergence was rapid for all methods, and 
the underlying quadratic function value was stable for 
many iterations before the function evaluation limit was 
reached. 

4.2 Results 

Each modification was successful in reducing the 
fraction of contract and shrink steps. These probabilities 
are summarized in Table 2 with separate probabilities for 
the two-parameter and ten-parameter functions. Columns 
with two modification labels had both modifications 
implemented together. 

Table 2 Step Transition Probabilities for Nelder-Mead 
Modifications 

2-PARAMETER FUNCXIONS 

R 
E 
C 
s IC 

f/fo 

0 A A.15 A90 B AB 
.22 .16 .16 .16 .53 .43 
.05 .20 .20 .19 .06 .15 
.72 .64 .65 .65 .41 -41 
53 .45 .44 .44 .37 .35 

1.0 .98 .62 .62 .76 .78 

.07 .I1 .ll .ll .OS .ll 

.33 .30 .31 .31 2 2  -20 

.24 .25 .25 .24 .26 .25 

I I f/fo I 1.0 .87 .76 .72 1.1 .95 

Modification B produced the greatest decrease in 
contraction probability, which was its purpose. Also as 
expected, modification A significantly increased the 
probability of taking an expansion step (not necessarily 
accepting it). In all cases, however, the probability of 
taking a contraction step and the conditional probability 
of a s h r i i  step are still high. 

The last row in the table shows the geometric average 

improvement in function reduction expressed as a ratio. 
Since these functions have an optimal expected value of 
zero, an f/fo value of .7 means that the revised method 
yielded an optimal expected value at convergence that was 
70% of the original method's value, on average. While 
all modifications result in some average improvement, the 
amount is small. This value is misleading, however. 
because the modifications guard against early false 
convergence, which does not happen in every case. Many 
of the comparisons result in ties, reducing the average 
contribution in the table above. 

The boxplots of loglo(f/fo) in Figures 6-9 show the 
dispersion of values about the mean. The box indicates 
the middle 50% of the data. The horizontal line in the 
center of the box gives the median. The '+' gives the 
average. The boxplot at the far right for the original 
Nelder-Mead has no width, since the log ratio is always 
zero. 
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I 
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Figure 6: Boxplots of log Function Reduction for Two- 
Parameter Quadratic, q=l 

All of the modifications occasionally make dramatic 
improvements over the original algorithm. In general we 
see the best performance for the two methods which 
change the shrink coefficient, A.15 and A.90. In many of 
the runs the expected function value was reduced by 50% 
or more, and rarely was the function value worse by a 
similar amount. The contraction resample modifications, 
B and A&B, have high variability and occasionally lead 
to significantly higher values. 

The performance of the contraction resampling 
modification (B) was disappointing. Based on studies 
with deterministic functions, the contraction step is often 
invoked by Nelder-Mead, while the shrink step is rarely 
taken. This suggests that shrink step modifications are 
free, in the sense that they do not affect progress in the 
region where the function variation dominates the 
stochastic component. On the other hand. modifications 
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Figure .7: Boxplots of log Function Reduction for Two- 
Parameter Quadratic, q=10 
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Figure 8: Boxplots of log Function Reduction for Ten- 
Parameter Quadratic, q=l 

which directly affect contract or expand steps may 
adversely affect algorithm performance in the early 
iterations. 

Finally. this study showed that the unmodified Nelder- 
Mead was effective even when presented with significant 
noise. In many cases the function values were reduced 
below .l, while the variance of the stochastic component 
was 1. 
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Figure 9: Boxplots of log Function Reduction for Ten- 
Parameter Quadratic, q=10 

5 CONCLUSIONS 

The Nelder-Mead simplex algorithm is a popular choice 
for optimizing simulation model responses. The steps are 
based solely on the ranks of the function values, which 
makes the method robust to small variations in function 
values. When the simulation model output has significant 
stochastic variation, the Nelder-Mead algorithm's 
rescaling steps make it vulnerable to premature 
convergence on stochastic functions. 

Our analysis showed that the Nelder-Mead algorithm is 
strongly biased toward contraction in the presence of 
significant noise, Empirical studies of the frequency of 
contract and shrink iterations support the probabilistic 
analysis. 

The results of this computational study suggest that 
the unmodified Nelder-Mead is often effective even in the 
presence of significant noise. Resampling the best point 
after a shrink and changing the shrink coefficient from .5 
to -75 or .90 were effective in the cases where the 
original Nelder-Mead method failed. Resampling 
strategies to reduce the frequency of contraction were not 
effective in improving algorithm performance. 

Even with the successful modifications, the algorithm 
frequently terminates prematurely on stochastic functions 
via a mix of contract and shrink steps. Further research is 
needed to identify effective modifications for this false 
convergence that do not adversely affect the performance 
of the algorithm in deterministic regions. 
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