## Generation of intense few-cycle pulses from the visible to the mid-IR



Josh Nelson<sup>1</sup> Danny Todd<sup>2</sup> Adam Summers<sup>3</sup> Derrek Wilson<sup>3</sup> Dr. Carlos Trallero<sup>3</sup>



1 – Kansas Wesleyan University
 2 – Saint Michael's College
 3 – James R Macdonald Laboratory and Physics Department, Kansas State University

# Goals

#### <u>Axicon</u>

- Generate an aligned Bessel Beam with an Axicon
- Propagate a Bessel Beam through a Hollow Core Fiber (HCF) and measure the power
- Quantitatively characterize our experimental Bessel Beams

#### Generation of mid-IR fs pulses

- Create a setup to prove the generation of mid-IR pules (5 -10 μm) with femtosecond pulses
- Measure efficiency as a function of angle of the Difference Frequency Generation (DFG) type II crystal in mid-IR region

#### Motivation for Both Projects To study strong field physics in the mid-IR range

# Axicon Terminology

- Axicon: conical lens that can be used to create a Bessel Beam
- Bessel Beam: a circular beam with ring like structure
- Hollow Core Fiber: a glass rod with a small hollow core that is used to guide light





## **Axicon Terminology**

Few cycle pulse: A pulse of light that has few optical cycles



Diagram from Dissertation by Nora Kling (2013)

### **Axicon Setup**



#### **Determining Axicon and Fiber Distance**

• Needed a beam smaller than 250 μm entering fiber



## **Theoretical Analysis**

1. Created a program in Matlab to make a nice 2-d quantified representation of a Bessel Beam





$$S(r,\theta) = \left| \sum_{m=0}^{M} \sum_{n=0}^{N} c_{nm} J_n(\alpha_n^m r/p) e^{in\theta} \right|^2$$
$$c_{nm} = \int_0^a \int_0^{2\pi} J_n(\alpha_n^m r/p) e^{in\theta} \sqrt{S(r,\theta)} r dr d\theta$$



Bessel zeros of zeroth order Bessel Function

 $S(r,\theta) = experimental distribution$   $J_n = n^{th}$  order Bessel Function  $\alpha_n^{m} = m^{th}$  Bessel zero of  $J_n$  p = scaling constant for Bessel zeros  $c_{nm} = coefficients$  retrieved from program

### **Data Analysis**

2. Created a program in Matlab to programmatically analyze the data and give a nice color scheme







### Data Analysis

3.Created a Matlab program to make a video of the propagation of a Bessel Mode after an axicon.



Pictures taken at 2.5 mm steps along propagation from 155 mm to 200 mm

### **Axicon Results**

Power before fiber = 3.72 mW with axicon and 4.03 mW without axicon

| Inner Diameter (µm) | Transmitted Power<br>(mW) | Efficiency (%) |
|---------------------|---------------------------|----------------|
| 250                 | 2.08                      | 55.9           |
| 300                 | 0.36                      | 9.7            |
| 350                 | 0.78                      | 21.0           |
| 400                 | 0.77                      | 20.7           |
| 450                 | 0.48                      | 12.9           |
| 500                 | 0.40                      | 10.8           |
| 500 mm lens         | 2.32                      | 57.6           |

 $300-500\ \mu m$  fibers are new and a different brand . It is not conclusive whether they are bad fibers or not.

## Mid-IR fs Pulse Generation Terminology

- Optical Parametric Amplifier

   (OPA): Non-linear device that
   takes pulsed laser light and for
   our case produces two beams; a
   signal (1050 1550 nm) and an
   idler (1600 2500 nm); Signal
   and Idler are about 40 50 fs
- Difference Frequency Generation (DFG): takes two beams (signal and idler) and for our case creates one beam (3-12 µm)



## Mid-IR fs Pulse Generation Setup



## Mid-IR fs Pulse Generation Results

• Showed generation of mid-IR fs pulses through crystal with Phase Matching



| $1/\lambda_{\rm DFG} = 1/\lambda_{\rm s} - 1/\lambda_{\rm i}$ |                 |  |
|---------------------------------------------------------------|-----------------|--|
| Beam                                                          | Wavelength (nm) |  |
| Signal                                                        | 1490            |  |
| Idler                                                         | 1750            |  |
| Mid-IR fs pulse                                               | 9200            |  |

 Signal and Idler achieve optimum phase matching at 0 (or 360) and 130 degrees

## Mid-IR fs Pulse Generation Results

• With tuning and crystal rotation of 134 degrees:

 $1/\lambda_{\text{DFG}} = 1/\lambda_{\text{s}} - 1/\lambda_{\text{i}}$ 

| Observed Phenomena                                   | Results                  |
|------------------------------------------------------|--------------------------|
| Maximum Power of generated Mid-IR fs pulse           | 10.5 mW                  |
| Wavelength of signal at max power                    | 1450 nm                  |
| Wavelength of idler at max power                     | 1705 nm                  |
| Energy Split                                         | 66% signal 34% idler     |
| Wavelength of generated Mid-IR fs pulse at max power | 9700 nm sub 100 fs pulse |

## Mid-IR fs Pulse Generation Results



## Conclusion

 $\frac{Axicon}{The Bessel Beam from the axicon coupled} through a 250 \ \mu m fiber almost as well as just the lens.$ 

Mid-IR fs pulse generation

We were able to create 10.5 mW light at close to 9.7  $\mu$ m (mid-IR) sub 100 fs pulses which is an awesome result.

## Future

#### <u>Axicon</u>

- We expect to improve the transmission efficiency by changing the focusing conditions and the fiber diameter.
- As soon as the Bessel Beam travels through the fiber more efficiently, we can use this method to have more efficient spectral broadening for fs pulses.

#### Mid-IR fs pulse generation

- We are going to adjust our Mid-IR fs pulse generation setup to better control the phase matching of the signal and idler in order to create higher power Mid-IR fs pulse beams.
- We are going to attempt the Mid-IR fs pulse setup in HITS

# Acknowledgements

- Danny Todd, Adam Summers, Derrek Wilson, Stefan Zigo, Dr. Xiaoming Ren, Dr. Carlos Trallero and the rest of his research group
- Dr. Larry Weaver, and Dr. Kristan Corwin
- Dr. Jacob Ogle and Dr. Kristin Kraemer from Kansas Wesleyan University
- Kansas State University
- The Department of Energy
- Especially the NSF for their funding and support.





