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Diffraction is a cornerstone of optical physics and has implications for the design of all

optical systems. The paper discusses the so-called ‘non-diffracting’ light field, commonly

known as the Bessel beam. Approximations to such beams can be experimentally realized

using a range of different means. The theoretical foundation of these beams is described

and then various experiments that make use of Bessel beams are discussed: these cover a

wide range of fields including non-linear optics, where the intense central core of the

Bessel beam has attracted interest; short pulse non-diffracting fields; atom optics, where

the narrow non-diffracting features of the Bessel beam are able to act as atomic guides

and atomic confinement devices and optical manipulation, where the reconstruction

properties of the beam enable new effects to be observed that cannot be seen with

Gaussian beams. The intensity profile of the Bessel beam may offer routes to

investigating statistical physics as well as new techniques for the optical sorting of

particles.

1. Introduction

Diffraction is a phenomenon intricately linked to the wave

nature of light and occurs when a wave encounters an

obstacle. In this process the wave may be altered in

amplitude and/or phase and diffraction takes place. The

parts of the wavefront that propagate beyond the obstacle

interfere in some manner and yield a diffraction pattern.

Diffraction is core to the propagation of Gaussian light

beams. The output of a laser is deemed ‘pencil-like’ in

nature and has a very low divergence yet it is subject to

diffraction that causes the light to spread. Gaussian beam

theory shows us how to manipulate the light field to yield

tight focusing or a collimated beam depending upon the

application of interest. The Rayleigh range ZR is the

typical parameter used for characterizing the spread of a

Gaussian light field and denotes the distance over which a

Gaussian beam increases its cross-sectional area by a

factor of two:

ZR ¼ pw2
o

l
; ð1Þ

where l is the wavelength and w0 is the beam waist size. The

notion of overcoming diffraction is very evocative and

indeed appealing from the viewpoint of numerous applica-

tions including atom optics and medical imaging.

This paper deals with the topic of Bessel light beams.

Such beams appear to offer some immunity to diffraction

and thus are potentially an attractive alternative to using

Gaussian beams in a number of scenarios. The Bessel beam

as a mathematical construct was first noted by Durnin [1].

Durnin looked at Whitaker’s solutions of the Helmholtz

equation (2) and saw that particular solutions of the Bessel

type were independent of the propagation direction. More

importantly perhaps were the properties of this solution; in

particular such a beam could have near diffraction limited

features (the centre of the beam has been shown to have a
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minimum diameter of 3
4l with l being the beam wavelength

[1]) which did not spread. Of course the reality is a little

more down to earth. A Bessel beam gets its name from the

description of such a beam using a Bessel function, and this

leads to a predicted cross-sectional profile of a set of

concentric rings. Mathematically the Bessel beam can

contain an infinite number of rings, and so over an infinite

area would carry infinite power. So the conclusion must be

that we cannot make a Bessel beam. What Durnin and co-

workers went on to show [3] was that one could make an

approximation to a Bessel beam (a quasi-Bessel beam)

experimentally which possesses the properties of the

mathematical entity over a finite distance.

The concept of a ‘non-diffracting’ beam proved rather

controversial at first, and perhaps still remains so, with a

comment [4] published in Physical Review Letters relating to

Durnin, Miceli Jr and Eberly’s original Bessel beam paper

[3] suggesting that the Bessel beam was really just a line

image and was nothing particularly new: it was just

something akin to Poisson’s spot [5]. Durnin et al. explained

[6] that there were many ways of generating line images and

that they need not exhibit the properties of the Bessel beam.

Still the idea remains anathema to some; four years after the

original paper was published a second comment was

published [7] suggesting that, depending on interpretation,

the Bessel beam was not non-diffracting at all. This is a

point that must be borne in mind: ‘what do we mean by a

non-diffracting beam in the case of a Bessel beam?’; as

Durnin et al. emphasized in their reply to the second

comment [8], ‘We have confirmed that beams exist whose

central maxima are remarkably resistant to the diffractive

spreading commonly associated with all wave propagation’.

That is, when we compare a Bessel beam to a Gaussian

beam the comparison we are making is between the central

core of the Bessel beam and a Gaussian beam of similar spot

size and it is this central core that is propagation invariant.

In this paper we explore the idea of Bessel light beams

and look at some of the applications that they have found

in the last decade. After elucidating the basics of Bessel

beam generation, applications in non-linear optics, atom

optics, micromanipulation and studies in the pulsed regime

will be reviewed.

2. Properties and generation of Bessel beams

An ideal Bessel beam can be described by

Eðr;f; zÞ ¼ A0 expðikzzÞJnðkrrÞexpð�infÞ ð2Þ

where Jn is an nth-order Bessel function, kz and kr are the

longitudinal and radial wavevectors, with k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ k2r

p
=

2p/l (l being the wavelength of the electromagnetic

radiation making up the Bessel beam) and r, f and z are

the radial, azimuthal and longitudinal components respec-

tively. The intensity structure for a zeroth-order Bessel

beam is shown in figure 1(a). Beams described by higher

order Bessel functions (n4 0), the high-order Bessel Beams

(HOBBs), have a phase singularity on the beam axis and

hence have a non-diffracting dark, rather than bright, core

[9]. The intensity profile for a first-order Bessel beam is

shown in figure 1(b).

The result that garners the most attention is that this

solution to theHelmholtz equation satisfies the equality, that

for propagation in the z direction, the intensity, I, obeys:

Iðx; y; z � 0Þ ¼ Iðx; yÞ ð3Þ

This means that there is no change in the cross-section as

the beam propagates and thus the beam can be considered

diffraction free, or propagation invariant. One way of

thinking about the Bessel beam is to consider a set of plane

waves propagating on a cone. Each propagating wave

undergoes the same phase shift, kzDz over a distance Dz.
This decomposition of the Bessel beam into plane waves

manifests itself in the angular spectrum (figure 2) of the

beam, which is a ring in k-space. Thus the optical Fourier

transform of a ring will result in a Bessel beam, and this is

how Durnin et al. [3] first experimentally observed an

approximation to a Bessel beam, as is detailed below.

The decomposition of the beam into plane waves also

gives a means to characterize the Bessel beam, that of the

opening angle of the cone defined by the waves traversing

its surface. The angle:

y ¼ tan�1 kr
kz

ð4Þ

can be used to define the central core spot size of the beam,

which is given by (from the properties of the zeros of a

Bessel function):

r0 ¼ 2:405

kr
ð5Þ

Figure 1. Bessel beam intensity profiles: (a) for a zeroth-

order beam and (b) a first-order beam (J1 beam). Both

beams have the same kr values.
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Since the Bessel beam can be considered as a set of waves

propagating on a cone it also possess another interesting

property, that of reconstruction [10, 11]. If we place an

object in the centre of the beam, the waves that create the

beam are able to move past the obstruction, casting a

shadow into the beam, but ultimately reforming the

intensity of the profile beyond the obstruction. The distance

after which the beam is able to reform is given, from a

simple geometric argument, by:

zmin � ak

2kz
ð6Þ

Where a is the width of the obstruction measured from

the beam centre. The reconstruction effect can be seen in

figure 3.

It is useful to note that the Bessel beam has its energy (or

power) evenly distributed between its rings [12, 13], so the

more rings the beam has the lower the energy in the central

core: important in many experimental situations (although

a larger number of rings comes with an increased

propagation distance). Durnin et al. [12] showed that this

fact did not necessarily mean that a Bessel beam could not

carry power as efficiently as a Gaussian beam, which one

might naively expect. Indeed optimized Gaussian and

Bessel beams are comparably efficient at transporting

power. They also showed that the depth of field of a Bessel

beam could be made far larger than that of a Gaussian but

at the expense of power in the central core.

The fact that a Bessel beam can be considered as being

made up from plane waves propagating on a cone also

leads to the realisation that the nodes of the beam

correspond to a p phase shift between adjacent rings, a

fact demonstrated by Lin et al. [13].

The generation of a Bessel beam can be carried out in a

number of ways. The Bessel beam can be thought of as the

Fourier transform of a ring – and this was how Durnin et

al. [3] (see also the tutorial account in [14]) initially

observed a Bessel beam. A ring (an annular slit) was

placed in the back focal plane of a lens to form the beam,

using a setup similar to that shown in figure 4. The opening

angle of this cone is given by:

tan y ¼ d

2f
ð7Þ

where d is the diameter of the ring and f the focal length of

the imaging lens.

Geometrically we can estimate the propagation distance

as:

zmax ¼ R

tan y
ð8Þ

Figure 3. Bessel beam reconstruction. The figure shows a

cross-section of the Bessel beam as it propagates from left

to right. The axicon that creates the beam is present (within

the mathematical model that generates the figure) at the

hard left of the figure. The intensity profile of the Bessel

beam is seen to reform even after encountering an

obstruction. The obstruction is approximately one-fifth of

the way along the figure from the left and covers the central

core of the beam. This reconstruction is due to the conical

wavefronts of the beam.

Figure 2. Angular spectrum of a Bessel beam: (a) intensity profile of Bessel beam. With its accompanying angular spectrum

– the Fourier transform of the Bessel function is a ring in k-space; (b) shows how the k-vectors of the Bessel beam propagate

on a cone.
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(where R is the radius of the imaging lens) which, from

(3), can be estimated as (k/kr)R, when we consider the

beam close to the optic axis. Durnin et al. [3] also found

that the on-axis intensity of the beam oscillated rather

widely before falling off rapidly at the end of the

propagation distance. Further, while the initial experi-

mental results demonstrated very clearly the properties of

the Bessel beam, the method of generation is rather

inefficient, as most of the incident power (from a Gaussian

laser beam) is obstructed by the annular slit. For this

method it was shown that the Bessel beam had both the

smallest spot size and longest depth of focus, i.e.

propagation distance, when compared to a Gaussian

beam and an Airy disc created using the same generating

lens [13] and that the peak intensity of the Bessel beam

was the smallest of the three cases.

A Bessel beam may also be created using an axicon [15,

16], or conical lens element. This idea is shown in figure 5,

and quite neatly illustrates the concept of a Bessel beam as

being made up of a set of waves propagating on a cone. The

opening angle of the cone is given by:

y ¼ ðn� 1Þg ð9Þ

where n is the refractive index of the axicon material and g
is the opening angle of the axicon. Therefore we can also

say, that for the axicon generated beam:

zmax ¼ k

kr
w0 � w0

y
ð10Þ

The use of an axicon is a far more efficient method of Beam

generation than the annular slit as it utilises the whole, or at

least most of, the incident Gaussian beam. Using an axicon

removes the rapid on-axis intensity oscillation associated

with the annular slit method, giving a far smoother

intensity variation, as is shown in figure 6. The alignment

of the illuminating beam with the axicon is critical in

producing a Bessel beam. Any oblique illumination results

in an element of astigmatism being introduced and this

leads, not to an on-axis spot with a set of concentric circles,

but rather to a chequerboard type pattern. This has been

studied by several authors [17 – 19].

Other efficient methods of creating Bessel beams exist,

including those using holographic techniques, which

imprint the appropriate phase of a Bessel beam onto an

incoming Gaussian beam. These can be static, etched

holograms [20]; or variable holograms made using compu-

ter controlled devices such as spatial light modulators [21,

22]. It is also possible to use a Fabry – Perot cavity in

combination with an annular aperture [16, 23] which

produces a more smoothly varying intensity profile than

the annular slit with lens combination. Uehara and Kikuchi

showed that it was possible to create a Bessel beam inside

an Ar+ laser cavity [24]. However in this approach the

effective beam propagation distance is only slightly longer

Figure 4. Creation of a Bessel beam by placing an annular aperture S with a diameter d, in the back focal plane of a

converging lens of radius R. The Bessel beam is created from a plane wave P. The Bessel beam, denoted B in the figure has a

propagation distance of zmax.

Figure 5. Creation of a Bessel beam making use of an

axicon lens A. In this case the Bessel beam is formed using a

Gaussian beam G. As in figure 4 the Bessel beam has a

finite propagation distance given by zmax.
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than a comparable Gaussian beam and so this technique is

perhaps not that useful. More recently there have been

other proposals to create Bessel beams inside cavities

containing axicon elements [25 – 29], as well as the

experimental demonstration of such a cavity, generating a

zero-order beam, in a dye laser [30].

In discussing Bessel beams it would be remiss not to

point out that there are other families of non-diffracting

beams. The Bessel beam is a circularly symmetric light

pattern, but just as we have elliptical Gaussian laser modes

so we have an elliptical family of non-diffracting beams

which are described by Mathieu functions and these are

called Mathieu beams [31 – 33]. In Cartesian co-ordinates

we have the plane wave solutions, while another member of

the non-diffracting family, a parabolic solution, has

recently been found by Bandres et al. [34].

2.1 High-order beams

We return briefly to the class of Bessel beams described by

higher-order Bessel functions, i.e n4 0 in equation (1).

These were first observed shortly after the demonstration of

zero-order beams by Vasara et al. [20] using computer

generated holograms; later this method was looked at in

more detail by Paterson and Smith [35]. Such beams were

subsequently generated using alternative methods such as

using a spatial light modulator [22], an axicon illuminated

with a Laguerre-Gaussian beam [36, 37] as well as

propagating a zeroth-order beam through a biaxial crystal

[38]. Jarutis et al. examined the case of focusing a Laguerre-

Gaussian beam with an axicon in detail and calculated the

complex amplitude of such a beam to be:

c1ðr;f; zÞ ¼a0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkro0

p z

zmax

� �lþ1
2

exp

� z2

z2max

� �
exp i lf� lp

2
� p

4

� �� �
JlðkrrÞ

ð9Þ

where l is the azimuthal mode index of the Laguerre-

Gaussian beam illuminating the axicon, while r, f and z

denote cylindrical beam co-ordinates. The use of such

beams has allowed the production of interesting non-

diffracting patterns by making use of interfering Bessel

beams [21, 39, 40]. They are also of interest because they

carry orbital angular momentum [41] which is associated

with the inclined wavefronts of such beams, and is

discussed more in the section on micromanipulation below.

There is significant interest in beams which carry optical

vortices [42 – 45]: these are intensity nulls associated with

phase singularities in the beam. Both Orlov et al. [40] and

Schwarz et al. [46] have investigated the propagation of

Bessel beams carrying optical vortices. In particular Orlov

et al. examined the case of superimposed Bessel beams

carrying vortices and found that in the near field (here the

near field indicates the Bessel beam itself) the vortex

structure is richer than in the far field (a ring in the case of

the Bessel beam, see figure 2). This was confirmed both

experimentally and theoretically. Schwarz et al. [46]

examined the propagation of Bessel beam with an

embedded vortex placed away from the beam axis. This

was achieved by passing a zero-order beam through a phase

grating containing a phase dislocation. They show that the

vortex, in contrast to what one sees with a Gaussian beam,

actually moves toward and ends up in the beam centre as

the beam propagates. Bouchal [47] has examined the case of

an on-axis obstruction, in both intensity and phase, and has

shown that the Bessel beam is able to reconstruct itself

around such obstructions. This is work that has been

experimentally examined by Garcés-Chávez et al. [48].

Recent work [49] has shown the demonstration of so-

called ‘fractional’ Bessel beams, where the order n of the

Bessel function is non-integer. Such beams can be easily

generated with computer generated holograms and have a

non-rotating ‘sprinkler’ type intensity profile, in which the

normally solid inner ring of the integer Bessel beams has a

hole in it (see figure 7).

2.2 Beam propagation

The ‘non-diffracting’ nature of the Bessel beam has fuelled

much interest over the years and the properties of such

beams have been widely investigated. For instance Chávez-

Cerda [50] has interpreted the Bessel beam as being made of

Figure 6. Intensity variation along the beam propagation

direction for an experimental approximation of a Bessel

beam beam created using (a) an axicon with a hard

aperture illuminated with a plane wave; and (b) as in (a) but

with Gaussian beam illumination; (c) makes use of a

Gaussian beam illuminating an axicon with no hard

aperture.
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a superposition of travelling waves described by Hankel

functions, which are Bessel functions of the third kind. In

this basis the Bessel beams cannot have an infinite extent,

while still describing the observed propagation properties

of the beams. The notion of propagation invariance has

been extended to more complicated beam intensity

structures. Paterson and Smith [51] examined the case of

a non-diffracting beam whose intensity pattern rotated with

propagation while still maintaining the non-diffracting

properties of the Bessel beam. These ‘helicon’ waves are

superpositions of higher order Bessel functions.

Bouchal has examined the possibility of creating arbitary

intensity patterns that are diffraction free [52]. This idea

could be realized by illuminating a Fourier filter, such as an

annular disc placed in the back focal plane of a lens. A

source then illuminates an amplitude mask placed in front

of the filter. Making use of diffuse, incoherent light sources,

in such a system leads to better replication of the original

amplitude profile, as destructive interference effects are

minimized. By appropriate choice of filter it may be

possible to use this technique to carefully control the

three-dimensional propagation of non-diffracting fields.

The generation of somewhat simpler non-diffracting arrays

using diffractive elements has also been studied by

Lautanen et al. [53].

The superposition of Bessel beams has also been of

interest. Jaroszewicz et al. [54] examined the possibility of

making even narrower core Bessel type beams by interfer-

ing two zero-order beams with different radial and

longitudinal wavevectors together. The central core can

be made almost arbitrarily small, although this is accom-

panied by a dramatic loss in intensity. This work was later

extended to treat the interference of Bessel beams of

differing order (e.g. J0 and J2 beams). Experimental work

on interfering Bessel beams has also been undertaken [55]

where beams with different radial wavevectors are inter-

fered. The resulting beams show self-imaging effects,

confirming earlier theoretical work [56].

3. Experiments

In the previous sections we have discussed the generation

and some of the interesting properties of the Bessel beam.

In the following sections we turn our attention to the

applications that have been found for such beams, and

indicate where these have been successful or not, while

looking to future applications of the Bessel beam.

3.1 Optical manipulation

The optical manipulation of particles using Bessel beams

was demonstrated by Arlt et al. [57] in 2001. Micro-

manipulation using optical tweezers [58] is a well estab-

lished technique which makes use of the optical gradient

force to trap and confine microscopic particles at the focus

of a laser beam. The Bessel beam has some advantages and

disadvantages over this technique. The main disadvantage

is that such beams do not have a specific focus and thus

Figure 7. Simulations of fractional Bessel beams: (a) shows a fractional Bessel beam with n=4.5 and (d) shows the phase of

this beam; (b) shows an integer Bessel beam with n=4 and (e) shows the phase of this beam; (c) shows the fractional Bessel

beam in (a) after it has propagated 300 mm while (e) shows the integer Bessel beam in (b) after propagating a similar distance.

(Printed with permission from [48].)
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cannot form a genuine three-dimensional optical trap.

Particles can however be confined in two dimensions and

pushed up (or down) against a sample coverslip. An

example of a typical experimental setup is shown in figure

8. The long, thin central core of the Bessel beam makes it

possible to trap long thin objects, such as rods and E-coli

with relative ease. The ability to trap simultaneously both

high and low refractive index particles in a Bessel beam is

made possible by its ring structure [59 – 61]. Low index

particles can be caught in the dark regions between the

bright rings, while high index particles are caught in the

rings themselves. High-order Bessel beams (HOBB) can

also be used for micro-manipulation and can be used to

study the orbital angular momentum of light beams [48,

59], including the first demonstration of the transfer of

orbital angular momentum to a low-index particle, as

shown by Garcés-Chávez et al. [59]. The first observation of

the simultaneous transfer of spin and angular momentum

to a particle which is not positioned on the beam axis was

also observed using a Bessel beam [62] and the ring

structure of the beam allowed the quantification of the spin

rates of the particles as a function of radius. In this

experiment the HOBB was circularly polarized, and this

polarization state was altered by passing the light through a

birefringent particle which rotates as the spin angular

momentum of the light is transferred to the particle. The

orbital angular momentum was transferred via scattering

and is a result of the inclined wavefronts of the HOBB.

The reconstruction properties of the Bessel beam have

also found use in optical micromanipulation. Standard

optical tweezers are made from highly focused Gaussian

beams and such is the divergence of the beam that the

optical forces even a few microns away from the focal point

may be insufficient to trap particles. Also the forces

generated at the focus will draw any particle in, meaning

that a standard optical trap can only trap particles a very

small distance from the focus of the beam, and if multiple

particles are trapped they will form stacks (stacks are

formed due to the trapping forces a small distance away

from the beam focus still being large enough to trap

particles, so if a particle is trapped and another particle

moves near the focus it is unlikely to push the trapped

particle out of the trap but rather get drawn into the trap

above the first particle). It is not possible to trap multiple

particles simultaneously that are spatially separated by

large (millimetre, say) distances. Reconstruction makes

such manipulation possible. If a particle is trapped by a

Bessel beam, the reconstruction of the beam around the

object means that the beam reforms at a point beyond the

object, and this beam can then be used to trap another

particle. Thus a one-dimensional array of particles can be

trapped and manipulated simultaneously [60]. As shown in

figure 9 the particles can be separated by distances

Figure 8. Experimental setup to create Bessel beam

optical tweezers. The beam from an infrared laser is

expanded using the beam expander f1 – f2 before passing

through the axicon to form a Bessel beam. This beam is

then telescoped down to the appropriate size for optical

tweezing using the second telescope f3 – f4. The beam is then

sent through a microscope sample where the tweezing takes

place. The microscope objective, white light illumination

and CCD camera are used to image the sample.

Figure 9. Reconstructing Bessel beam optical tweezers.

Making use of the experimental setup in figure 8 the Bessel

beam in this experiment passes through not one, but two

sample chambers, separated by 3 mm. Due to the long

propagation distance of the beam coupled with the

reconstruction properties of Bessel beams, particles in both

chambers can be manipulated simultaneously. (a – c) show

a particle being tweezed in chamber I, with each figure

showing different z-positions. Thus in (c) the beam has

reformed despite tweezing a particle at the bottom of the

cell in (a). (d – f) show the same beam tweezing a particle in

chamber II, with (f) indicating that the beam has reformed

again by the time it exits the second chamber.
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approaching a centimetre and this is limited by the

propagation distance of the beam (so long as the beam

can keep reconstructing it can trap particles). The particles

can be in different sample chambers but can still be

manipulated simultaneously. The distance after which the

beam reconstructs after encountering a particle is to some

extent dependant on the refractive index properties (not

just the size) of the particle and this may be an aid to the

characterisation of particles and used for example in

differentiating cancerous from non-cancerous cells.

While the Bessel beam does not provide a true three-

dimensional trap, the confinement of the central core,

coupled with an ever present source of radiation pressure,

leads to the idea of controlled long distance optical guiding.

This has been demonstrated for extended distances. In, for

example, [63], particles are guided for a distance over 3 mm

in a beam with a central core diameter of 5.6 mm. This has

to be compared to the 23 mm Rayleigh range of a Gaussian

beam with comparable beam waist and demonstrates the

ability of the Bessel beam to provide long range point to

point optical guiding of particles.

Bessel beams are also finding application in the areas of

statistical physics which examine how particles with

inherent Brownian motion act in the presence of an

external potential. The interest stems from the fact that

activated escape from a metastable state underpins many

phenomena right across the physical sciences and many of

the theoretical predictions have yet to be experimentally

studied. A particle in an optical trap is an excellent system

with which to elucidate the underlying physics of this

situation [64]. Such a particle undergoes Brownian motion

within the trap [65] and can be thermally activated to

escape from the trap region. The motion of a particle in a

harmonic potential as well as ratchet-like potentials can be

studied [66]. Activation (jumping) over a barrier is given by

an exponential law of the form TK= tR exp (DU/kT) where

T is the temperature, DU the difference in optical potential

experience by the object and tR is a characteristic time for

the process. Studies of the escape and synchronisation of a

particle between two adjacent optical tweezers traps has

been observed [67].

In recent work, it has been recognized that the Bessel

beam offers an important avenue for studying such

activation in a 2D circularly symmetric optical potential

[63]. The geometry of the Bessel beam is advantageous in

some respects for this work. The fall in amplitude of the

light beam has a reciprocal relationship to the radius with

the central ‘non – diffracting’ core providing the most

intense region of the beam. The large number of rings of

the beam can thus be employed to assist in the amalgama-

tion process and we can make use of this thermal activation

to load particles from a large area (2.5 6 1079 m2) into the

beam centre. The first study of this type of loading used an

optical guiding geometry where particles were seen to

accumulate within beam centre when a tilt was applied to

the beam [68]. This tilt created a washboard-like potential

(see figure 10). A washboard potential is again a rather

ubiquitous and seminal form of landscape across the

physical sciences. In this instance it was possible to create

directed transport of particles towards the beam centre.

This in turn meant that the ‘non-diffracting’ central

maximum of the beam was loaded with particles collected

from a 50 – 100 micron radius. In contrast to previous

guiding using light beams this offers obvious advantages:

the outer rings act to direct particles towards the beam

centre: once loaded there they were constrained by the

gradient force to a narrow region at beam centre and

pushed along the beam propagation direction by radiation

pressure.

Researchers have also recently started to look at the idea

of this hopping in a vertical geometry where the actual

transit of microscopic objects between rings of an untilted

Bessel beam may be observed in real time [69]. It is

important to stress that this is in the absence of any flow.

Figure 11 shows this for 2.3 micron spheres with time

denoted for each frame. Interestingly when we place

Figure 10. A tilted ‘washboard’ potential. The upper left

figure shows the Bessel beam cross-section intensity profile

with a line profile of the potential created by such a beam

shown in the upper right. Note that all the Bessel function

zeros go to zero. In the tilted case at the bottom of the

figure a bias has been added that lifts the zeros. This

enables particles trapped in the beam to move towards the

centre of the beam more rapidly that in the untilted case.
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particles of different sizes on the pattern they respond in a

different manner. For example 5 micron spheres and 2.3

micron spheres behave differently. The smaller spheres may

get ‘locked’ into the pattern and only slowly migrate

towards beam centre whereas for this particular Bessel

beam size the larger 5 micron spheres are too large to get

locked into any ring but rather respond to the overlying 1/r

intensity gradient and migrate more rapidly towards beam

centre. This is of interest for separation and sorting of

microscopic objects in the absence of any flow.

3.2 Atom optics

The mechanical effects of light interactions with matter

have led to a number of truly landmark results in the last

decade. Laser cooling and trapping have come to the

forefront of atomic physics and emerged as a powerful

technique whose applicability is ever increasing. The

increase in phase space density offered by laser cooling

is the first step towards compression and cooling of

atomic gases to achieve Bose –Einstein condensation [70].

Nowadays upwards of one hundred laboratories world-

wide have laser cooling apparatus in place and there are

upwards of forty BEC experiments in progress at the time

of writing. Ultra-cold atomic gases have truly opened new

vistas of both fundamental and applied science ranging

from new studies of matter wave properties to ultra-stable

atomic clocks. In tandem with this progress the field of

atom optics has developed with the key goal to

manipulate and control atoms in the manner that

conventional optics does for laser light. Thus intense

activity has centred upon the creation of ‘atom optics

components’: mirrors, beamsplitters and guides for

example. This can be achieved with optical or magnetic

forces but optical forces have become rather attractive in

recent years due in part to the recognition that they are

state independent and thus more widely applicable [71].

Light can exert an optical dipole or gradient force on

atoms that depends upon the detuning of the light

frequency with respect to the appropriate resonant

transition. Essentially this gradient force is analogous to

the gradient force used in optical tweezers for microscopic

particles. If the light is detuned above resonance the

atoms are repelled from the light intensity and thus

hollow regions fully enclosed in two or three dimensions

can be used for atom confinement. In the red-detuned

(below resonance case) we have the atoms drawn towards

the light intensity (just as in standard optical tweezers).

Both forms of detuned light can result in both traps

(dipole traps) or guides for atoms. This latter property can

be used to transport atoms over large distances and the

gradient force counteracts any tendency for the atomic

ensemble to spread or disperse in space. Broadly speaking

red detuned guides require higher power as they are

usually operated far from resonance to obviate heating

from the guide beam. Blue detuned guides require less

power as they can be used very close to resonance as the

atoms primarily reside well away from the beam and

penetrate and interact with the light field relatively

infrequently.

An area where Bessel beams have created significant

interest in atom optics is a non-diffracting guide (see figure

12). The idea here is to confine the atoms within the central

minimum of a high order Bessel light beam. The atoms may

be channelled into the Bessel beam guide from a hollow

Laguerre-Gaussian light mode. The important point is that

the non-diffracting nature of the central region allows the

atoms to be transported an extended distance without

transverse spreading as would be the case for a normal

hollow light beam. Figure 12 shows a potential geometry

for coupling into a hollow Bessel beam. It is important to

note that researchers have been able to transport atoms

into hollow fibres that have dimensions of a few to tens of

microns. This is useful for atom deposition and atom fibre

interferometry. The Bessel beam offers an all-optical

realization of a fibre guide. Also the central region of the

Bessel beam can be of the order of the wavelength. Thus if

we are able to couple a Bose –Einstein condensate into such

a guide one may be able to allow the condensate to

propagate in only a restricted number of modes that can

eventually result in the observation of atomic speckle

patterns.

Bessel beams can also be used for atomic dipole traps.

Optical dipole traps have seen an immense resurgence of

interest and application in the last few years. A translated

optical dipole trap has been used to transport a BEC 30 cm

Figure 11. The amalgamation of 2.3 micron spheres in the centre of a Bessel beam due to the Brownian motion of the

particles interacting with the optical potential of the beam. The frames are taken every 60 s.
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[72, 73], a crossed beam dipole trap with variable potential

depths can be used to instigate evaporative cooling directly

[74] to BEC and such traps have been used recently to help

achieve BEC in caesium [75]. The Bessel beam offers an

interesting prospect for an atomic dipole trap. For a

Gaussian beam we are restricted in that the Rayleigh range

of the beam is proportional to the square of the beam waist,

which thus links these two parameters. For an axicon-

generated Bessel beam, however, we have independent

control of the distance and size of the central maximum. In

this example the opening angle of the axicon dictates the

size directly of the central maximum of the beam whereas

the incident beam diameter is related to the propagation

distance of the Bessel beam. This allows us to create an

optical dipole trap with a very large aspect ratio [76]. Low

temperature Bose systems in 1D are currently the subject of

intense interest as they may exhibit phenomena not seen in

2D or 3D. Notably if we consider the interparticle repulsive

interaction in this region and then look at the typical

parameters for the correlation length of the system versus

mean interparticle separation we can violate the normal

case of a weakly interacting system. The quantum gas then

exhibits Fermi like properties [77] as wavefunction

decreases at short interparticle distances. This is termed a

Tonks gas of impenetrable bosons [78] and is a key current

experimental goal in the field, which has only recently been

realized [79].

Work by Okamoto has also considered using high-order

Bessel beams for the focussing of cold atoms [80]. Here the

use of a blue detuned first-order Bessel beam is proposed to

write a guided beam of atoms, initially generated using a

zeroth-order Bessel beam, down to spots of the order of

100 nm over distances of several millimetres.

3.3 Non-linear optics

The idea of using a Bessel beam to enhance non-linear

optical processes is an attractive one. In conventional

Gaussian optics, perhaps the simplest non-linear process is

that of single pass second harmonic generation (SHG). The

first experimental work on this topic was carried out by

Wulle and Herminghaus [81]. The phase-matching effi-

ciency (a measure of the efficiency of the non-linear

conversion process) was found to be dependent on the

longitudinal wavevector of the Bessel beam (as one would

expect). However this could be tuned by appropriately

focusing the beam and thus, it was argued, that such beams

can be considered as being light beams with a tuneable

wavelength in such experiments. Wulle and Herminghaus

suggested that Bessel beams could be used in conditions

where traditionally it was difficult to phase match, for

instance with new non-linear materials where normal

temperature and angle phase matching conditions were

not suitable.

An ideal plane wave can be frequency doubled, in the

absence of depletion, with an efficiency that is proportional

to the square of the beam intensity and to the length of the

non-linear crystal. Thus by focusing down a Gaussian

beam we can increase the efficiency; however, if we focus

too tightly the beam divergence becomes very rapid and

this leads to a decrease in the conversion efficiency. The

solution would seem to lie in a beam which does not

diverge, and it was this topic that Shinozaki et al. [82]

turned their attention to in 1997. They compared the

conversion efficiency of Gaussian and Bessel beams in bulk

crystals with similar interaction lengths inside the crystal.

They calculated that the Bessel beam was up to 48% more

efficient than the Gaussian beam due to the increased

intensity of the beam along the optical axis when compared

to the Gaussian. Unfortunately Shinozaki et al. had used a

somewhat simplified model for their approximation to a

Bessel beam, which did not take into account the intensity

variation along the beam axis of an experimentally realized

beam or the full cross-section of the beam. Arlt et al. [83]

addressed these points in their paper, carrying out an

experimental comparison between Bessel and Gaussian

beam second harmonic generation. Boyd and Kleinman

[84] had examined the optimal Gaussian beam parameters

for second harmonic generation and Arlt et al. found that

the conversion efficiency was in fact less for the Bessel beam

than for a Boyd –Kleinman focused Gaussian beam.

Indeed they found that a Bessel beam can never exceed

the conversion efficiency of a Boyd –Kleinman focused

Gaussian of similar power, due to the fact that the power of

the Bessel beam is distributed equally among its rings.

Experimentally they made use of a holographically

generated Bessel beam passing through an LBO crystal,

and the experimental results were in good agreement with

Figure 12. Bessel beams as atomic guides – a Laguerre-

Gaussian beam is reflected off a mirror with a hole in it

which allows an atom beam to enter the beam. The optical

and atomic beams pass through an axion with an on-axis

hole and the atoms are subsequently guided in the narrow

Bessel beam guide.
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their model. This work was confirmed by the later

theoretical study of Magni [85] in which he showed that

the optimal beam for second harmonic generation was in

fact a beam made of a combination of Laguerre-Gaussian

beams with a cross-section only marginally different than

that of a Gaussian and this would only produce a 2%

increase in conversion efficiency over an optimised Gaus-

sian beam.

Further second harmonic experiments were carried out

by Piskarskas et al. [86] in which non-colinear phase

matching was demonstrated in PPKTP (periodically poled

KTiOPO4) and by Jarutis et al. [87] in which the SHG of

high-order Bessel beams was investigated.

The Bessel beam was also found wanting when used in

pumping an optical parametric oscillator (OPO), a device

which converts the pump field into lower energy signal and

idler fields. An experiment was carried out by Gadonas et

al. [88] that considered optical parametric generation which

created two conical beams with differing polarisations. The

use of OPOs pumped by Bessel beams was first considered,

theoretically, by Belyi et al. [89]. The authors used an ideal

Bessel beam in their models and showed that in this case the

efficiency of the parametric generation was increased by

using a Bessel beam instead of using a Gaussian beam. The

first parametric oscillator device pumped using a Bessel

beam was produced by Piskarskas et al. [90]. This was a

device based on KTP and produced a characteristic output

beam due to the non-colinear phase matching consisting of

a ring beam surrounding a central spot. Binks and King

[91] demonstrated the first periodically poled material

based OPO pumped using a Bessel beam using PPLN

(periodically poled lithium niobate) which produced a

Gaussian signal beam. Binks and King went on to consider

such a device in more detail [92], and showed that there was

no practical advantage to pumping an OPO with a Bessel

beam rather than a Gaussian beam. The Gaussian beam

pumped device showed lower threshold characteristics and

a better slope efficiency than the Bessel beam pumped

device, while both had a similar threshold fluence.

Other wave-mixing effects have been investigated using

Bessel beams, for instance the enhancement of photo-

refractive two-wave mixing [93], the creation of Bessel

beams within the coherent anti-Stokes Raman scattering

process [29], stimulated Raman scattering [94, 95], higher

order stimulated Brillouin scattering (SBS) and third

harmonic generation [96 – 101].

3.4 Pulsed Bessel beams

Following the seminal work of Durnin, Micelli and Eberly,

[3] the work on Bessel light beams concentrated on

monochromatic continuous wave realisations of such light

fields. This is what we have concentrated upon in the

discussion in this article. However laser light can also

propagate in a pulsed mode where in addition to spatial

characteristics we have to consider the temporal behaviour

of the light. Indeed mathematically there have been several

solutions that are spatio-temporal invariant and offer

interesting applications. Analogously to the monochro-

matic case, these are immune to spreading and retain their

localisation in both space and time as they propagate.

Applications of such a beam include optical communica-

tion and advanced imaging. In this section we briefly

explore these light fields. It is to be noted that when we go

to such broadband light considerations several publications

have dealt with pseudo non-spreading functions. This

includes focus wave modes, Bessel –Gauss pulses, electro-

magnetic bullets, slingshot pulses, and X waves, among

others. The key point is all these solutions maintain their

spatio-temporal characteristics as the pulse propagates in

free space.

Obviously a key issue is the experimental realization of

such beams and the monitoring of their evolution. Once

such variant of the solution, the X pulse has attracted

particular attention [102]. Its name derives essentially from

the form of the spatio-temporal pulse when a snapshot is

taken in space and time a pulse is obtained that resembles

the letter X rotated about its horizontal axis (see figure 13).

X pulses are known from acoustic [103, 104] and terahertz

radiation regions. Such X waves are termed thus due to the

X shaped intensity distribution over time and radius that

they represent and are the result of interference of few-cycle

wavepackets from ultrashort pulse light sources. The

Figure 13. Bessel X-wave – left panel simulated result;

right panel experimental result (printed with permission

from from [102]).
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transmission of such beams in dispersive media has also

been considered [105].

In the acoustic region this beam has been of interest as a

candidate for medical ultrasonic imaging. In the optical

domain a restriction on generating such beams is primarily

the extremely broad spectral content. The reduction in the

temporal spread (in addition to the spatial spread) is very

interesting in the short pulse region as it offers a scheme to

overcome group velocity dispersion. Work has character-

ized optical X waves in free space [102]. To record the pulse

a gate could be used but is not feasible at these ultrashort

timescales. Instead a cross-correlation technique was

employed using a reference wave. A key point about such

ultrashort Bessel beams (BB) was utilized in this scheme:

the conical wavevectors mean the beam exhibits super-

luminal propagation meaning it propagates at a different

speed than a reference wave. The superluminal BB

characteristics were recorded by Alexeev and co-workers

in laser plasma [106]. Optical guiding of intense laser pulses

in plasmas has generated attention due to key applications

in X-ray generation and laser driven electron generation.

Indeed the superluminal measurements were performed

with ultrashort 70 fs pulses and three diagnostics used to

verify the rapid plasma generation by the pulse. Notably

the superluminal propagation of the group velocity has

generated some debate but is not a violation of special

relativity: by considering the energy flow of the beam

(Poynting vector) and energy flow speed which is actually

less than c. By consideration of the manner of formation of

the Bessel beam (the interference of conical wavefronts) one

finds that the constant phase intersection points will move

faster than c but once again we re-iterate that the energy

flow of the beam is sub-luminal.

The space time coupling in a Bessel beam has also been

studied [107]. Here a variation in the spatial frequency

spectrum and contrast in the intensity pattern as a function

of pulse duration was recorded. At very short pulse

durations (*10 fs or less) a reduction in fringe contrast is

expected due to the enhanced spectral content of the

illuminating pulse. Grunwald and co-workers looked at

micro-axicon arrays to generate femtosecond Bessel light

beams and used pulses of duration 10 – 30 fs for their

studies. The micro-axicon arrays were fabricated by vapour

deposition of dielectric layers penetrating through shadow

masks and using a scheme of planetary rotation of the

substrate. Illuminating this array from an amplified Ti-

sapphire laser system yielded multiple Bessel beams.

Moving from the CW regime to pulses as short as 12.5 fs,

the contrast and absolute intensity of the beam profile was

altered. The reduction of pulse width was directly

correlated to the increase in spectral bandwidth of the

beam. Superposing several spectral components with a

range in excess of 100 nm gave a spectral off-axis

modulation which in turn resulted in a reduction in

intensity and contrast of the outer fringes of the Bessel

beam profile. Short pulse durations lead to time dependent

geometry of the interference region. A reduced contribution

of the interfering partial waves form adjacent (neighbour-

ing) axicons was observed and a reduction in the axial

extent of the Bessel zone.

Ultrashort Bessel beam have been studied in the context

of laser plasmas. The coupling of intense laser pulses to

plasmas is key to inertial confinement fusion, high

harmonic generation, X-ray sources from laser plasmas

and more elaborate laser based acceleration methods.

These applications require laser pulses to propagate at

high intensity above the ionisation threshold of the atoms.

Within this self focusing processes are of relevance as here

the light field can self-trap and propagate at high intensity

over distances far in excess of the Rayleigh range. Bessel

beams have been observed to exhibit resonant self-trapping

correlated with an enhanced absorption [108]. The self-

trapping of the Bessel beam in a self-generated plasma was

recorded by integrating CCD camera images at the exit

plane of the plasma channel.

A tubular plasma fibre has been generated by optical

breakdown of a target using a Bessel beam of the fifth order

generated by using a phase plate and axicon in tandem

[109]. The insertion of the hollow Bessel beam in this

instance caused the breakdown of the gas and the

generation of the tubular plasma with a maximum electron

density located radially away from the optical axis. The

index of refraction of such a plasma decreases with radius

implying we can utilize this as a waveguide for high

intensity laser pulses. In the experiment, electron density

was rapidly recorded in the high intensity regions of the

beam well before any ion mass motion could have taken

place. This results in plasma waveguides that have smaller

effective core diameters than those produced through shock

expansion. This is a key point in this study as obviating the

need for hydrodynamic evolution to establish deep electron

density profiles means that intense laser pulses of very small

waist sizes can propagate.

4. Conclusions and outlook

The idea of non-diffracting fields is an intriguing one and

has attracted a large amount of work in the seventeen years

or so since Durnin et al.’s original papers [1, 3]. Of course,

as we have seen the Bessel beam has not been a universal

success; in many areas the perceived advantages of

propagation invariant beams turn out to be not quite as

good as imagined when the experimentally realizable

versions of such beams are applied to the problem at hand.

The problem with the power being shared between the rings

of the Bessel beam has also caused experimental difficulties

and although this can usually be circumvented simply by

increasing the overall power of the whole beam, this may

26 D. McGloin and K. Dholakia



not always be possible and may lead to other unwanted

problems. The Bessel beam has had its successes, however.

As we have seen the Bessel beam has extended the optical

‘toolbox’ in micromanipulation providing many techniques

that are not possible using conventional Gaussian beams.

In atom optics the theory seems sound, although the

experiments have not yet been carried out, but unlike in

other areas the practicalities of using quasi-Bessel beams

seem good. There has been much detailed work on the

properties of Bessel beams themselves and this work has

provided a sound footing for the current crop of experi-

mental work as well as that which is to come. As a result of

the study of Bessel beams an improved knowledge of beam

propagation and classes and properties of light beams has

emerged. Perhaps the most intriguing areas of study are

those looking at the motion of microscopic particles in

optical potentials as well in the number of topics that

involve the use of pulsed Bessel beams. There is plenty of

work still to be done and the future looks healthy for the

still controversial idea of a beam that does not diffract.
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