

Aerosol Microscope

By: Eframir Franco Díaz Kansas State University / University of Puerto Rico at Humacao

Objectives

- O Be able to build a microscope that works at long distances
- O Take pictures of micrometric particles while they are moving.
- Measure the size of these particles and be able to see their shape.

Compound Microscope

Eyepiece Projection

Eyepiece Projection

Eyepiece Projection

Experiment Setup

Zoom in

Data Images 55

Image of Microscopic Water Droplets

Image of low density flow water droplets

· Filtering & Measuring the Water Droplets

Raw Image

Unsaturated and Inverted Image

Measure the Diameter of Water Droplets

Results 5 | 15

Results: Frequency vs. Size

Conclusion

- O A microscope that works at long distances was built
- O Pictures of micrometric water droplets in movement were taken.
- Measurements were made and we saw spherical shape water droplets

Future Work

- O Be able to take pictures of different micrometric particles
- O Study the behavior of these particles

Acknowledgements

- O Dr. Chris Sorensen
- O Raiya Ebini
- O Yuli Wang
- O Russ Reynolds
- O Dr. Kristen Corwin
- O Dr. Larry Weaver
- O NSF

Thank You!

