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Overview

Motivation: Study nuclear vibrational motion of CO™ and
interaction of CO with laser pulses at femtosecond time scales

Outline:

» Experimental methods and prior results

v

Theoretical methods

v

Preliminary theoretical calculations

v

Simulated experiment and results



Pump-probe spectroscopy

Pump-probe spectroscopy provides an experimental method to
study vibrational nuclear motion:
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Pump-probe spectroscopy

Pump-probe spectroscopy provides a way to study vibrational
nuclear motion:

< 1. Ionization from neutral
1 ground state by pump
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= 2. Wavepacket oscillation
AB and dephasing

3. Dissociation by probe
pulse and imaging




Previous CO™ experimental results
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» 800 nm, ~8 fs, 3x10'* W / cm? laser pulses
» Up to 2 ps delay between pulses

De S, et al., 2011



Numerical method

» Numerically integrate the one-dimensional time-dependent
Schrodinger equation:
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» Approximate solution over small time steps:
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» Cayley / Crank-Nicholson approximation on a numerical
internuclear grid:
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CO™ molecular potential curves

CO™ potential curves were digitized from existing literature?
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» 15 fs. laser pulses, up to 2 ps. delay between pulses

» Coupled X22F, A?TI, and B2Et COT states with C2A
state for probe pulse

» Electronic dipole couplings calculated with GAMESS
quantum chemistry software

*Okada, K. et al., 2000




Single cation curve calculations

Trev /2

» Ionization using
Franck-Condon transition

» Field-free propagation in
excited COT state

» Time evolution of |¥|?
shows vibrational
dephasing and revival
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Preliminary single curve calculations

» Ionization using
Franck-Condon transition

» Field-free propagation in
excited CO™ state

» Power spectra shows beat

frequencies of vibrational
energy levels
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Single curve calculation example - ATl
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» Gives information on nuclear dynamics within molecular
orbital

» Provides reference for checking more complicated
simulation results

» Potential curve mapping from power spectra



Dipole-coupled calculations

» Simulated simplified pump-probe spectroscopy experiment
with transitions to / from coupled binding and dissociative
molecular orbitals

» Dipole-coupled propagation:
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» Interested in dissociated portion of wavepacket after probe
pulse

» Manually locate a “cutoff distance” R, that distinguishes
bound and dissociative nuclear motion



Dipole-coupled calculations

» Obtain kinetic energy release (KER) from momentum
representation (Fourier transform) of dissociative
wavepacket:
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» The energy distribution of ion fragments is related to delay
time 7 by:
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» Fourier transforms of Cpigs. give “beat frequencies” of KER



Previous CO™ experimental results
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Features:

» Primary KER “streaks” between 0.4-0.6 eV and 0.6-0.8 eV,
secondary streak between 0.2-0.4 eV

» Largest beat frequencies around 50 THz

De S, et al., 2011



X2+ coupled channel results
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» Consistent with lower primary streak in experimental KER
results

» No clear match in experimental power spectra



A?TI Results
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» Consistent with lower primary streak in experimental KER
results

» No clear match in experimental power spectra



B2+ Results
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» In same overall KER range as experimental results, but no
clear match

» No clear match in experimental power spectra



Interpretation and future work

» Coupled channel simulations fail to explain experimental
KER spectra

» No low-lying CO™ molecular potential curve explains 50
THz experimental power spectra results

» Future: more realistic simulations involving multi-coupled
propagation between all low-lying potential curves

» Future: more realistic electronic transition models than
Franck-Condon approximation

» Future: investigate laser-pulse dependence of KER
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