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• Magnetics & energetics for cylindrical dots.

• Vortices as particles, charges, switching prospects, etc.    

• Finding the potential by using a Lagrange constraint.

• The numerical solution method.

• Results: Stability of a vortex in a nanodot,                    
Using defects to pin and modify vortices.

Overview:  Consider some ideas about the 
‘‘Effective potential for a magnetic vortex in a nanodot’’



• Approx. 50 nm - 5 um, magnetic elements & arrays, 
soft magnetic materials, grown with epitaxial & 
lithographic techniques.

• Can be islands on a non-magnetic substrate.     Form 
arrays of interacting particles.

• Will have new physics effects due to small length 
scales (modified spin wave modes, spin wave - vortex 
interactions, surface effects, special sensitivity as 
detectors).

Magnetic dots



• memory elements & signal processing

• nonvolatile storage (magnetic ram)

• use in giant magnetoresistance (GMR) sensors

• integration into spintronics devices (spin flipping 
etc., via spin-polarized current.)

• stable vortex state with low stray field. 

Magnetic Dots: Applications,  Advantages



were taken in air at ambient temperature. An
MFM image of an array of 3 ! 3 dots of
permalloy 1 "m in diameter and 50 nm thick
is shown in Fig. 2. For a thin film of permal-
loy, the magnetic easy axis typically has an
in-plane orientation. If a permalloy dot has
a single domain structure or shows a do-
main pattern, in MFM a pair of magnetic
poles reflected by a dark and white contrast
should be observed in either case. In fact,
the image shows a clearly contrasted spot at
the center of each dot. It is suggested that
each dot has a curling magnetic structure
and the spots observed at the center of the
dots correspond to the area where the mag-
netization is aligned parallel to the plane
normal. However, the direction of the mag-
netization at the center seems to turn ran-

domly, either up or down, as reflected by
the different contrast of the center spots. This
seems to be reasonable, as up- and down-mag-
netizations are energetically equivalent without
an external applied field and do not depend on
the vortex orientation (clockwise or counter-
clockwise). The image shows simultaneously
that the dot structures are of high quality and
that the anisotropy effective in each dot is neg-
ligibly small, which is a necessary condition to
realize a curling magnetic structure. (The spots
in Fig. 2 around the circumference of each dot
are artifacts caused by the surface profile, main-
ly resulting from unremoved fractions of the
resist layer.)

MFM scans were also taken for an en-
semble of permalloy dots with varying di-
ameters, nominally from 0.1 to 1 "m (Fig.
3). These images were taken after applying
an external field of 1.5 T along an in-plane
direction (Fig. 3A) and parallel to the plane
normal (Fig. 3B). For dots larger than 0.3
"m in diameter, a contrast spot at the center
of each dot can be distinguished, and thus
the existence of vortices with a core of
perpendicular magnetization is confirmed.
Again, the two types of vortex core with
up- and down-magnetization are observed
(Fig. 3A). In contrast, after applying an
external field parallel to the plane normal,
all center spots exhibit the same contrast
(Fig. 3B), indicating that all the vortex core
magnetizations have been oriented into the
field direction.

From the above results, there is no doubt
that the contrast spots observed at the center
of each permalloy dot correspond to the
turned-up magnetization of a vortex core.
Although the vortex core is almost exactly
located at the center of the dot, its real diam-
eter cannot be estimated from the contrast
spot observed by MFM, as this is below the
lateral resolution power of this technique. To
resolve a vortex core by MFM, it is necessary
to pin the position of the core so that it is not
affected by a stray field from the tip. In the
experiments reported above, the vortex cores
apparently have been so stable that a clear
contrast appears in the MFM imaging pro-
cess. Magnetic vortices are novel nanoscale
magnetic systems, and it will be of great
importance in the near future to study the
dynamical behavior of turned-up and turned-
down magnetizations, that is, fluctuations of
the vortex cores.
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Fig. 1. Monte Carlo simulation for a
ferromagnetic Heisenberg spin struc-
ture comprising 32 ! 32 ! 8 spins
[courtesy of Ohshima et al. (2)]. (A) Top
surface layer. (B) Cross-section view
through the center. Beside the center,
the spins are oriented almost perpen-
dicular to the drawing plane, jutting out
of the plane to the right and into the
plane to the left, respectively. These
figures represent snapshots of the fluc-
tuating spin structure and are therefore
not symmetric with respect to the cen-
ter. The structure should become sym-
metric by time averaging.

Fig. 2. MFM image of an array of permalloy
dots 1 "m in diameter and 50 nm thick.

A B

Fig. 3. MFM image of an ensemble of 50-nm-thick permalloy dots with diameters varying from 0.1
to 1 "m after applying an external field of 1.5 T along an in-plane direction (A) and parallel to the
plane normal (B).
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up- and down-magnetization are observed
(Fig. 3A). In contrast, after applying an
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all center spots exhibit the same contrast
(Fig. 3B), indicating that all the vortex core
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field direction.

From the above results, there is no doubt
that the contrast spots observed at the center
of each permalloy dot correspond to the
turned-up magnetization of a vortex core.
Although the vortex core is almost exactly
located at the center of the dot, its real diam-
eter cannot be estimated from the contrast
spot observed by MFM, as this is below the
lateral resolution power of this technique. To
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to pin the position of the core so that it is not
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contrast appears in the MFM imaging pro-
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Magnetic Vortex Core
Observation in Circular Dots of

Permalloy
T. Shinjo,1* T. Okuno,1 R. Hassdorf,1† K. Shigeto,1 T. Ono2

Spin structures of nanoscale magnetic dots are the subject of increasing sci-
entific effort, as the confinement of spins imposed by the geometrical restric-
tions makes these structures comparable to some internal characteristic length
scales of the magnet. For a vortex (a ferromagnetic dot with a curling magnetic
structure), a spot of perpendicular magnetization has been theoretically pre-
dicted to exist at the center of the vortex. Experimental evidence for this
magnetization spot is provided by magnetic force microscopy imaging of cir-
cular dots of permalloy (Ni80Fe20) 0.3 to 1 micrometer in diameter and 50
nanometers thick.

Ferromagnetic materials generally form domain
structures to reduce their magnetostatic energy.
In very small ferromagnetic systems, however,
the formation of domain walls is not energeti-
cally favored. Specifically, in a dot of ferro-
magnetic material of micrometer or submi-
crometer size, a curling spin configuration—
that is, a magnetization vortex (Fig. 1)—has
been proposed to occur in place of domains.
When the dot thickness becomes much smaller
than the dot diameter, usually all spins tend to
align in-plane. In the curling configuration, the
spin directions change gradually in-plane so as
not to lose too much exchange energy, but to
cancel the total dipole energy. In the vicinity of
the dot center, the angle between adjacent spins
then becomes increasingly larger when the spin
directions remain confined in-plane. Therefore,
at the core of the vortex structure, the magne-

tization within a small spot will turn out-of-
plane and parallel to the plane normal. Al-
though the concept of such a magnetic vortex
with a turned-up magnetization core has been
introduced in many textbooks (1), direct exper-
imental evidence for this phenomenon has been
lacking.

Recent model calculations for a Heisenberg
spin system of 32 ! 32 ! 8 spins in size (2)
indicate that a curling spin structure is realized
even for a dot of square shape, where a spot
with turned-up magnetization normal to the
plane exists at the center of the vortex (Fig. 1).
The simulations, which are based on a discrete-
update Monte Carlo method described else-
where (3), take account of exchange and dipole
energies while neglecting anisotropy. Further,
they show that no out-of-plane component
of the magnetization occurs if the dot thick-
ness becomes too small. On the other hand,
when the thickness exceeds a certain limit,
the top and bottom spin layers will tend to
cancel each other, and again no perpendic-
ular magnetization should be observed. A
vortex core with perpendicular magnetiza-
tion is therefore expected to appear if the
shape, size, and thickness of the dot are all

appropriate, and the anisotropy energy may
be neglected.

A number of experiments have been carried
out to study nanoscale magnetic systems. Cow-
burn et al. reported magneto-optical measure-
ments on nanoscale supermalloy (Ni80Fe14-
Mo5) dot arrays (4). From the profiles of the
hysteresis loops, they concluded that a col-
linear-type single-domain phase is stabilized in
dots with diameters smaller than a critical value
(about 100 nm) and that a vortex phase likely
occurs in dots with larger diameters. However,
the authors were not able to obtain direct infor-
mation on the spin structure in each dot. As
suggested by theoretical calculations, the size of
the perpendicular magnetization spot at the vor-
tex core should be fairly small, and hence con-
ventional magnetization measurements should
fail to distinguish a fraction of perpendicular
magnetization from the surrounding vortex
magnetic structure.

In this context, we report magnetic force
microscopy (MFM) measurements on circu-
lar dots of permalloy (Ni80Fe20) that give
clear evidence for the existence of a vortex
spin structure with perpendicular magnetiza-
tion core. Samples of ferromagnetic dots
were prepared by means of electron-beam
lithography and evaporation in an ultrahigh
vacuum using an electron-beam gun. The
desired patterns were defined on thermally
oxidized Si substrates capped by a layer of
resist and subsequently topped by a layer of
permalloy. By a lift-off process, the resist is
removed and permalloy dots with designed
sizes remain on top of the Si surface. The
thickness of the circular dots reported here is
50 nm; the diameter of the dots was varied
from 0.1 to 1 "m. In MFM, the instrument
was operated in ac mode to detect the mag-
netic force acting between the cantilever tip
and the surface of the permalloy dots. A
low-moment ferromagnetic tip of CoCr was
used to minimize the effect of stray fields.
The distance between tip and sample surface
was set to 80 nm on average. Sample scans
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nology, Keio University, Yokohama 223-8522, Japan.
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Spin structures of nanoscale magnetic dots are the subject of increasing sci-
entific effort, as the confinement of spins imposed by the geometrical restric-
tions makes these structures comparable to some internal characteristic length
scales of the magnet. For a vortex (a ferromagnetic dot with a curling magnetic
structure), a spot of perpendicular magnetization has been theoretically pre-
dicted to exist at the center of the vortex. Experimental evidence for this
magnetization spot is provided by magnetic force microscopy imaging of cir-
cular dots of permalloy (Ni80Fe20) 0.3 to 1 micrometer in diameter and 50
nanometers thick.

Ferromagnetic materials generally form domain
structures to reduce their magnetostatic energy.
In very small ferromagnetic systems, however,
the formation of domain walls is not energeti-
cally favored. Specifically, in a dot of ferro-
magnetic material of micrometer or submi-
crometer size, a curling spin configuration—
that is, a magnetization vortex (Fig. 1)—has
been proposed to occur in place of domains.
When the dot thickness becomes much smaller
than the dot diameter, usually all spins tend to
align in-plane. In the curling configuration, the
spin directions change gradually in-plane so as
not to lose too much exchange energy, but to
cancel the total dipole energy. In the vicinity of
the dot center, the angle between adjacent spins
then becomes increasingly larger when the spin
directions remain confined in-plane. Therefore,
at the core of the vortex structure, the magne-

tization within a small spot will turn out-of-
plane and parallel to the plane normal. Al-
though the concept of such a magnetic vortex
with a turned-up magnetization core has been
introduced in many textbooks (1), direct exper-
imental evidence for this phenomenon has been
lacking.

Recent model calculations for a Heisenberg
spin system of 32 ! 32 ! 8 spins in size (2)
indicate that a curling spin structure is realized
even for a dot of square shape, where a spot
with turned-up magnetization normal to the
plane exists at the center of the vortex (Fig. 1).
The simulations, which are based on a discrete-
update Monte Carlo method described else-
where (3), take account of exchange and dipole
energies while neglecting anisotropy. Further,
they show that no out-of-plane component
of the magnetization occurs if the dot thick-
ness becomes too small. On the other hand,
when the thickness exceeds a certain limit,
the top and bottom spin layers will tend to
cancel each other, and again no perpendic-
ular magnetization should be observed. A
vortex core with perpendicular magnetiza-
tion is therefore expected to appear if the
shape, size, and thickness of the dot are all

appropriate, and the anisotropy energy may
be neglected.

A number of experiments have been carried
out to study nanoscale magnetic systems. Cow-
burn et al. reported magneto-optical measure-
ments on nanoscale supermalloy (Ni80Fe14-
Mo5) dot arrays (4). From the profiles of the
hysteresis loops, they concluded that a col-
linear-type single-domain phase is stabilized in
dots with diameters smaller than a critical value
(about 100 nm) and that a vortex phase likely
occurs in dots with larger diameters. However,
the authors were not able to obtain direct infor-
mation on the spin structure in each dot. As
suggested by theoretical calculations, the size of
the perpendicular magnetization spot at the vor-
tex core should be fairly small, and hence con-
ventional magnetization measurements should
fail to distinguish a fraction of perpendicular
magnetization from the surrounding vortex
magnetic structure.

In this context, we report magnetic force
microscopy (MFM) measurements on circu-
lar dots of permalloy (Ni80Fe20) that give
clear evidence for the existence of a vortex
spin structure with perpendicular magnetiza-
tion core. Samples of ferromagnetic dots
were prepared by means of electron-beam
lithography and evaporation in an ultrahigh
vacuum using an electron-beam gun. The
desired patterns were defined on thermally
oxidized Si substrates capped by a layer of
resist and subsequently topped by a layer of
permalloy. By a lift-off process, the resist is
removed and permalloy dots with designed
sizes remain on top of the Si surface. The
thickness of the circular dots reported here is
50 nm; the diameter of the dots was varied
from 0.1 to 1 "m. In MFM, the instrument
was operated in ac mode to detect the mag-
netic force acting between the cantilever tip
and the surface of the permalloy dots. A
low-moment ferromagnetic tip of CoCr was
used to minimize the effect of stray fields.
The distance between tip and sample surface
was set to 80 nm on average. Sample scans
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vortex core detection.

Can see up/down Sz
vortex polarization!



Vortex control & switching?

How to control the position, 
circulation, and polarity of a 

magnetic vortex in a 
nanomagnet? 

--voids or holes?
--applied fields, currents?

--optical impulses?

circulation of the magnetization in the vortex state, which is
opposite compared to that reported in Ref. 6 for the same
direction of the externally applied field and the void position
with respect to the disk center. Since in Ref. 6 disks with a
much larger decentered elliptical void where used, the ob-
served difference suggests that the mechanisms determining
the vortex circulation depend critically on the shape and size
of the void.

The samples investigated here are two arrays of
25-nm-thick Permalloy dots, with nominal diameter of
1.0 !m arranged on a square lattice with a period of
2.00 !m, prepared using e-beam lithography and lift-off
techniques. A small circular void with a nominal diameter of
160 nm has been patterned into each disk. The circular void
is concentric to the disk in one sample and slightly decen-
tered in the other. Figure 1 shows the scanning electron mi-
croscopy images of the two samples.

The magnetization reversal in these structures has been
studied using the diffracted magneto-optic Kerr effect !D-
MOKE" combined with numerical micromagnetic simula-
tions; this technique has proven to be able to determine the
magnetization circulation in circular Py nanomagnets.10 The
incident beam of a HeNe laser !wavelength of 632.8 nm" for
the D-MOKE experiments is polarized in the plane of inci-
dence !p polarization" and the magnetic field is applied per-
pendicularly to the plane of incidence, as described in Refs.
10. This arrangement corresponds to the transverse MOKE
geometry where the changes in the sample magnetization
lead to changes in the intensity of reflected and diffracted
beams, leaving their polarization state unchanged. Since the
theory for magnetic effects in diffracted beams out of the

scattering plane has not yet been developed, we will restrict
our analysis to diffracted beams in the scattering plane !plane
xz, where z is the normal to the sample surface". In some
detail, the D-MOKE loops in this geometry are due to the
variation of the magnetic part of the scattered intensity
#"Id

m!n"$ of the nth diffracted order with field given by

"Id
m!n" # Re#fd!n"$%Re#fd

m!n"$ − A!n"Im#fd
m!n"$&

+ Im#fd!n"$%Im#fd
m!n"$ + A!n"Re#fd

m!n"$& ,

!1"

where fd!n"=''S exp#inG(
·x$ds is called the nonmagnetic

form factor, where G(=2$ /d !d is the array period along the
direction x parallel to the scattering plane" is the reciprocal
lattice vector of the array parallel to the scattering plane, and
the integral is carried out over a single dot. The magnetiza-
tion information in the diffracted beams is contained in the
so called magnetic form factor fd

m!n"=''Smy exp#inG(
·x$ds,

where my is the component of the magnetization perpendicu-
lar to the scattering plane !direction y". For particles with a
shape having a center of inversion symmetry, fd!n" is a real
number and Eq. !1" simplifies to10

"Id
m!n" # %Re#fd

m!n"$ − A!n"Im#fd
m!n"$& . !2"

The number A!n" depends on the angles that the inci-
dence and diffracted beams form with the sample normal and
the optical and magneto-optical coefficients of the material
and is treated usually as an adjustable parameter. For n=0,
i.e., in the case of the reflected beam, the signal "Id

m!0" is
just proportional to the average value of my in all the probed
dots. In this case, the MOKE loops are identical to those
measured using standard averaging techniques such as super-
conducting quantum interference device !SQUID" and vi-
brating sample magnetometry. As shown in Ref. 10, this
magnetic form factor can provide details of the magnetiza-
tion structures inside the elements of an array with a spatial
resolution below the laser light wavelength. In the case of
vortex state in Permalloy circular disks, we showed that the
loss of center of inversion symmetry in the magnetization
distribution when the vortex is nucleated leads to a large
imaginary part of the magnetic form factor, which changes
sign upon changing the sense of rotation of the
magnetization.10 As a results, if all dots or their great major-
ity develop a vortex state having the same magnetization
circulation !viz., there is spatial coherence for the disk
switching", the diffracted loops, especially for n%2, will
show characteristic features !e.g., peaks, shoulders, and
negative coercive field" that substantially change upon rota-
tion of the sample by 180° about its normal !viz., upon
changing the sense of rotation in the vortex state". This hap-
pens when an asymmetry is intentionally introduced in the
shape of the disks or the fabrication defects do not have a
random nature.10 In the case of equal number of disks devel-
oping vortex with clockwise and counterclockwise circula-
tions !viz., no spatial coherence for the disk switching be-
cause of the random nature of defects", the imaginary part of
the magnetic form factor averages to zero and no differences
will appear between diffracted loops recorded, rotating the
sample by 180°.

FIG. 1. Scanning electron images of a portion of the two patterns: symmet-
ric rings !upper panel" and asymmetric rings !lower panel".
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We studied the magnetization reversal of Permalloy disks with a small circular void either
concentric or decentered. In both systems the reversal takes place via the nucleation and annihilation
of a magnetic vortex. By applying the diffracted magneto-optic technique combined with numeric
micromagnetic simulations we retrieved the information about the sense of rotation of the
magnetization in the vortex state. For the disks with the concentric void no preferential rotation has
been observed. For the case of decentered void, the sense of rotation of all probed disks is
deterministically controlled by appropriately choosing the direction of the externally applied field
and the void position with respect to the disk center. © 2006 American Institute of Physics.
#DOI: 10.1063/1.2174115$

Ferromagnetic nanoelements developing magnetic vor-
tex structures are attracting a great deal of interest for their
potential application in high density data storage technology
and because of the underlying physics governing the vortex
formation/annihilation process, the vortex core displacement
under the action of an external field, and its dynamic
behavior.1,2 The application of such nanomagnets as device
elements in magnetic recording media and random access
memories requires the perfect controllability of the magneti-
zation circulation at room temperature. For this reason,
methods to achieve the required control over the magnetiza-
tion circulation in the vortex state in ferromagnetic nanoscale
disks and rings are continuously investigated, and various
solutions, more or less reliable, to achieve such a control
have been reported.3–6 In a disk the magnetization circulation
in the vortex was proved to be controllable by introducing a
slight ad hoc asymmetry !e.g., a flattening" into the geomet-
ric shape of the circular dots.3 More recently, the attention
has moved to ring nanostructures because of the higher sta-
bility shown by the vortex state in this geometric shape and
the higher scalability !below 100 nm" as compared to the
circular disk. In such nanoelements a control over the mag-
netization circulation has been achieved by introducing
notches in the ring that act as pinning centers for the domain
walls of the so called “onion” state, which has been found to
be the seed state preceding the vortex formation,4 or by mak-
ing the ring asymmetric.5,6 The pinning of magnetic vortex
by point defects has also been studied.7 Besides the capabil-
ity of “writing” the desired magnetization circulation in the
element, one has to be able to read the stored information.
Among the methods for reading the stored information in the

form of magnetization circulation, the one which is the most
likely candidate for practical applications, is the use of mag-
netotransport measurements. Magnetoresistive measure-
ments have indeed proven to be successful for retrieving in-
formation about the field dependence of magnetization
configurations inside laterally confined systems when ap-
plied to both disk and ring cases. However, in the case of
rings, the retrieval of the information about the sense of ro-
tation is rather complicated and the magnetoresistive signals
involved are quite small.8 We recently showed that in the
case of disks, magnetoresistive measurements can be carried
out in which the two senses of rotation of the magnetization
in the vortex state result in magnetoresistances having oppo-
site signs and, thus, are easily detectable.9 The success of the
method relies on the shifting and distortion of the vortex
structure as the external field is swept !the vortex shifts per-
pendicular to the applied field direction, with a consequent
distortion of the circular magnetization distribution that re-
sults in easily detectable variation of magnetoresistance9".
The aim of the present investigation is to find a method to
reliably select the vortex circulation in soft Py disks, which
stabilizes the vortex state as much as happens in a ring struc-
ture but, at the same time, ensures the controllable displace-
ment of the vortex structure through the disk as the external
field is swept. We have found that these goals can be
achieved with the introduction of a slightly decentered small
circular void into the disk. The void acts as a pinning center
for the vortex state after its nucleation. If the void is small
enough compared to the disk diameter, the application of an
external field can shift the vortex, producing a distortion of
the vortex configuration as required for the application of
magnetoresistance for determining the sense of rotation of
the vortex. It is worth noting that we obtained a sense ofa"Electronic mail: vavassori@fe.infn.it
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B. Dipolar interactions

The exchange strength between cells can be contrasted to the strength of their effective

dipolar interactions. We already saw that each cell has a dipole moment of magnitude

µcell = (4la3/a3
0)µatom. These interact as well according to a Hamiltonian like Eq. (6), but

substituting the atomic dipoles with these cell dipoles. Also, lengths (or positions) will be

measured in units of the cell size, a, and it is convenient to use the unit vector magnetic

moments (fictitious “spins”), σ̂i = "µi/µ. Thus we have the dipolar terms convenient for

micromagnetics calculations,

Hdd = −
µ0

4π

µ2
cell

a3

∑
i>j

[3(σ̂i · r̂ij)(σ̂j · r̂ij) − σ̂i · σ̂j ]

(rij/a)3
. (17)

This leads us to define the effective dipolar coupling strength, using the cell’s magnetic

moment and size,

Dcell =
(µ0

4π

) µ2
cell

a3
. (18)

Substituting the cell’s magnetic moment, it is interesting to quote this in units of the atomic

dipolar coupling, viz.,

Dcell =
(µ0

4π

) [(4la3/a3
0)µatom]2

a3
=

16l2a3

a3
0

× D, (19)

where the atomic dipolar coupling strength D is defined in Eq. (7). D gets enhanced for a

cell by the factor (4l)2(a/a0)3. Taking the cell-to-cell exchange as the basic energy unit, the

dipole to exchange ratio is

δcell ≡
Dcell

Jcell
=

D(4l)2( a
a0

)3

4l a
a0

JS2
=

[
D

JS2

]
× 4l

(
a

a0

)2

, (20)

which will indicate the relative dipole coupling strength in the micromagnetics. Of course,

the quantity δ = D/JS2 just represents the corresponding strength of dipolar couplings

to exchange couplings in the atomic system. For Permalloy with µatom = 9.62 × 10−24

A·m2, the atomic values D = 2.07 × 10−25 joules and JS2 = 2.31 × 10−21 joules give the

fundamental value δ = 8.96 × 10−5. So the net enhancement of that, for the interactions of

the micromagnetics cells, is by the factor 4l(a/a0)2.

δcell = δ × 4l

(
a

a0

)2

. (21)
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Influence of a perpendicular current on the circulation of a pinned magnetic vortex

G. M. Wysin∗
Department of Physics, Kansas State Universi ty, Manhattan, KS 66506-2601

(Dated: Mar. 7, 2008)

The influence of a current’s magnetic field on a vortex pinned in a thin magnetic nanodot is
considered. Pinning due to a non-magnetic region or hole in the center of the nanodot is assumed.
Then the vortex ground state is planar and has vorticity q= +1, with a double degeneracy due to
the two opposite directions (curling or circulation) in which the spins can align around the hole.
Dipole interactions lead to a finite energy barrier between the two states. Monte Carlo relaxation
is used to study the current-induced reversal of the circulation. At least two diÿerent processes can
take place during reversal: formation of an outward moving circular domain wall, or, nucleation of
two outward moving vortices of opposite vorticity (q= +1 followed by q= − 1).

VORT IC I T Y IN A T H IN CIRCULAR
NANOM AGNET

In a thin circular nanomagnet of suÿ cient size, it is
known that the lowest energy stable configurat ion of
magnet ic moments forms a vortex [1, 2], rather than a
state of a single domain [3]. Such states have been ob-
served, for example, in nanodots of permalloy [4, 5], Fe
[6, 7] and Co [8, 9], and oÿer great possibilit ies for high-
density and high-speed magnet ic storage [10].
It is usual to expect that the spins interact via

isot ropic short -range ferromagnet ic exchange interac-
t ions, together with long-range but weaker dipole-dipole
interact ions. The spins become most ly confined within
the (xy) plane of thematerial, due to dipole-dipole inter-
act ions which act equivalent to an easy-plane anisotropy
[11] which even varies with posit ion in the nanomagnet
[12]. Addit ionally, the dipole interact ions cause the spins
to lie parallel to the circular boundary at the edge, lead-
ing to a vortex state with either a clockwise (CW, nega-
t ive) or counterclockwise (CCW, posit ive) curling or cir-
culation of the spins around the circle. At the center,
however, to reduce their exchangeenergy, the vortex core
spins must t ilt out of the xy-plane (out-of-plane vortex),
acquiring either a posit ive or negat ive out-of-planemag-
net izat ion, Mz (posit ive/ negat ive vortex polarity). This
concent rated region of nonzero Mz has been used to lo-
cate the vortex [13]. The coreout-of-plane t ilt ing is simi-
lar to that found in easy-planemagnet ic vort ices [14–16],
which exhibit a crit ical anisot ropy st rength above which
the spins become confined in the easy plane [16–18].
Thus, in a uniform circular system, there are actually

four diÿerent typesof out-of-planemagnet ic vort ices that
could be the ground state (+ /− circulat ion, with + /−
polarity). In all four of these cases, the usual quant ized
vortex charge or vorticity, is q = + 1, being the charge
that refers to a line integral of the gradient of in-plane
spin angle, taken around any path that encloses the vor-
tex core:

q = 1
2π

∮
"∇φ · d"r. (1)

A vortex with a negat ive vort icity (i.e., ant ivortex, q =
−1) would not have its spins follow the contour of the
boundary, and hence, would possess considerably higher
dipolar energy, but the same exchange energy.
The presence of mult iple degenerate discrete ground

states, separated by energy barriers, suggests using vari-
ous tact ics for switching between them. For example, an
out-of-plane applied magnet ic field removes the polarity
degeneracy [19] and results in light and heavy vort ices
[20]. Vortex polarity switching due to a magnet ic field
pulse has been observed experimentally [21]. It is also
expected that applicat ion of a spin-polarized current [22]
or an in-planemagnet ic field pulse [23] should switch the
vortex polarity.
Theaboveexampleswereconcerned with changing the

out-of-plane spin configurat ion. It is our intent ion here,
rather, to concentrate on the switching of the circulation
of a vortex pinned around a “ hole” within a nanodot ,
whose eÿect is to minimize the out-of-plane spin t ilt ing
and eliminate the polarity. Changes in the circulat ion
might be detected using a nonlocal spin-valve measure-
ment [24]. We concent rate mainly on the eÿects caused
by the magnet ic field of the switching current (Oersted
field) flowing perpendicular to the xy-plane. Miltat et al.
[25] found using micromagnet ics for rectangular permal-
loy platelets, that theOersted field can havea significant
eÿect on the switching of S and Leaf states. The cur-
rent ’s inhomogeneousfield was found to causevortex nu-
cleat ion, propagat ion, and interact ion during switching.
Here we analyze a simpler problem with higher symme-
t ry, and focus most ly on the eÿects of the Oersted field.
Swit ching a vor t ex formed around a hole. In the

study here, we consider some aspects of how an unpolar-
ized cent ral current could aÿect the vortex in a nanodot .
To avoid the discussion of elect ron-magnet ic ion scat ter-
ing eÿects, we consider a current applied through the
center of the dot , in a small region or “ hole” that is sep-
arate from the magnet ic ions. It is supposed that the
current itself does not flow through themagnet ic lat t ice.
Thismay bediÿ cult to accomplish in the laboratory, but
nevertheless it is interest ing to consider.
The magnet ic model employed here is that for a thin
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FIG. 2: Estimated energy barriers ∆ = Eint(0
◦) − Eint(90◦),

for reversal of circulation of a planar vortex, assuming a co-
herent rotation of spins, for relative dipole strength D/JS2 =
0.02 . The system radius R and hole radius Rh are given in
units of the lattice constant a. The barrier is directly propor-
tional to the dipole coupling D.

tion (or curling) of any spin configuration can be defined
according to a general expression

C =
1
N

∑
i

σ̂i · φ̂i. (13)

where again, φ̂i is the azimuthal unit vector at a site.
Each term in the sum ranges from −1 to +1, which is then
normalized by the total number of spins, N . Hence, the
circulation falls in the continuous range −1 ≤ C ≤ +1,
and how closely it approaches the limits gives a sense of
the alignment of the spins around the circular bound-
ary. For the planar vortex (12), it is obvious that the
circulation is C = sin φ0. Clearly, larger absolute values
of C should be more greatly favored at stronger dipole
coupling, δ.

Initially, it is interesting to observe the change in vor-
tex internal energy Eint as a function of φ0, or equiv-
alently, as a function of C. The expression (12) will
be close to the actual vortex structure on the square
lattice because the dipolar and discreteness effects only
make minor modifications. Typical results for Eint(φ0)
are close to sinusoidal, as shown in Fig. 1.

Assuming a vortex could reverse its circulation via a
coherent rotation of all spins, just by slowly changing φ0,
results in an obvious energy barrier. It is clear that the
barrier, ∆ = Eint(0◦)−Eint(90◦), is zero when D = 0 and
must be proportional to D otherwise. Also, the barrier
changes slowly as the hole size increases, but it increases
with increasing system size R, as shown in Fig. 2.

When a current I is turned on, the magnetic energy
effect [hamiltonian (9)] for this planar vortex can be es-

timated quickly by a continuum integral:

EB = −K

∫
d2r

a2

σ̂ · φ̂

(r/a)
= −2πK

(R − Rh)
a

sin φ0. (14)

If the current’s magnetic field has the opposite sense as
C = sin φ0, then the energy shifts upward by 2πK(R −
Rh)/a compared to the situation without a current. Then
roughly one could expect that a reversal must become
easy when the extra magnetic energy lifts the system
over the barrier, or 2πK(R−Rh)/a ≈ ∆. This last rela-
tion can be considered to define a critical current level for
switching, which is tested in the MC simulations. Specif-
ically, it suggests that the critical current could decrease
as the effective “system radius” R−Rh is increased (but
only if ∆ does not change with R − Rh). Of course, all
of this is only an upper limit, because the barrier found
assumes all spins rotate in unison. If the system reverses
circulation by other paths (such as a circular domain wall
around the system), then the barrier that is surpassed
could be smaller. This possibility is tested by using a
Monte Carlo scheme to watch the relaxation after turn-
ing on a current in the “wrong” direction (i.e., a reversing
current whose field is opposite to C).

MONTE CARLO RELAXATION

A Monte Carlo approach is useful for investigating vor-
tex relaxation and stability, because it realistically in-
cludes thermal fluctuations. It also will take into account
the dynamically important out-of-plane motions.

To test these ideas, we applied a standard Metropo-
lis algorithm using single spin flip moves, as developed
in many references [41–45], and applied to easy-plane
Heisenberg models with vacancies in Ref. 34. For a cho-
sen temperature T , the total hamiltonian E = Hex +
Hdd + HB for a system of N spins is employed. A Monte
Carlo step (MCS) is defined by making trial spin moves
on all N spins, chosen in a random sequence. A cho-
sen spin σi is changed by adding a small increment in a
random three-dimensional direction, and then renormal-
izing the spin to unit length, accepting or rejecting each
change according to the Metropolis algorithm: Changes
that reduce the total system energy are always accepted,
whereas, changes that increase the system energy are ac-
cepted only with a probability of exp(−∆E/kBT ). The
spin increments are dynamically adjusted in length so
that the acceptance rate falls between 30% and 60%.
Tables of inter-spin distances (and their powers) were
determined once and then re-used to speed the dipole
energy evaluation. Although the sequence of MC states
is not a real time evolution, it gives a good idea of what
could happen in the presence of thermal fluctuations and
is an interesting alternative to the usual micromagnetic
simulations.
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FIG. 1: Behavior of cell dipoles around a vortex core, with
cell size a = 2.0 nm. The arrows’ lengths in this view are
proportional to each cell’s out-of-plane magnetization com-
ponent, mz. Spatial variations in mz occur over an exchange
length λex = 5.3 nm.

When combined with the length constraint we get

!m2
i =

1

4α2
i

[(F x
i )2 + (F y

i )2 + (F z
i )2] = m2,

αi =
1

2m

∣∣∣!Fi

∣∣∣ . (81)

Then the iteration algorithm to minimize the energy,
while satisfying the length constraint, would be

mβ
i = m

F β
i

|!Fi|
. (82)

This is the usual “local field relaxation” algorithm for en-
ergy minimization, scaling to unit lengths, m = 1. Each
dipole is placed along the direction of the effective field
acting on it, and the process is repeated iteratively until
a desired precision is achieved. It was used in Ref. 43,
although not developed there by the Lagrange technique.

B. Constrained vortex core position

The vortex core position can be controlled by including
an additional constraint. As a first approximation, with
Nc = 4 core cells symmetrically located around the core
position (Fig. 1), the core dipoles are assumed to satisfy
a constraint

Nc∑
i=1

mx
i =

Nc∑
i=1

my
i = 0 (83)

This would hold if a vortex is centered at the common
corner of the four grid cells, see Figure 1. This term is
included to make a new functional, applied when using
Nc core sites (where Nc may be greater than four):

Λ[!mi] = E[!mi] +
∑

i

αi(!m
2
i − m2) − !λ ·

Nc∑
n=1

!mn (84)

The new Lagrange multiplier !λ is a vector with only x
and y components. Now the minimization equations (in
the core region) are

∂Λ

∂mx
n

=
∂E

∂mx
n

+ 2αnmx
n − λx = 0

∂Λ

∂my
n

=
∂E

∂my
n

+ 2αnmy
n − λy = 0

∂Λ

∂mz
n

=
∂E

∂mz
n

+ 2αnmz
n = 0 (85)

The results inside the core are

−F x
n + 2αnmx

n − λx = 0 −→ mx
n =

1

2αn
(F x

n + λx)

−F y
n + 2αnmy

n − λy = 0 −→ my
n =

1

2αn
(F y

n + λy)

−F x
n + 2αnmz

n = 0 −→ mz
n =

1

2αn
F z

i (86)

The constraint is just an extra magnetic field, applied
only in the core cells. To complete the solution, one
needs to determine that field. That comes from using
the spin length constraint,

!m2
n =

1

4α2
n

[
(F x

n + λx)2 + (F y
n + λy)2 + (F z

n )2
]

= m2,

(87)
which gives

1

αn
=

2m√
(F x

n + λx)2 + (F y
n + λy)2 + (F z

n)2
. (88)

The constraint (83) also has to be applied to make the
solution complete. Doing the sums in the core,

∑
core

mβ
n =

∑
core

1

2αn
(F β

n + λβ) = 0, (89)

this leads to (for β = x, y only)

λβ = −
∑

core F β
n /αn∑

core 1/αn
. (90)

Now we can see the algorithm for spin update is fairly
simple. Initially, !λ is set to zero. On each iteration step
the new value of !λ is found from expressions (88) and
(90). Then do

!mn = m
(F x

n + λx)x̂ + (F y
n + λy)ŷ + F z

n ẑ√
(F x

n + λx)2 + (F y
n + λy)2 + (F z

n )2
. (91)



Approaches:

Energy minimization for 
the metastable states.

Monte Carlo or Langevin
dynamics simulation for 
including thermal 
fluctuations and seeing 
the switching process.

possible bistable nanomagnetic switches 

magnetic material

hole hole

Can an applied magnetic 
field control whether a 
vortex surrounds the 
left hole or the right 

hole?

B



!"#!$#!%&'()!264

*+)!),-!.(/0()!/0,!1&2345),6!.(/0!+)4&!'7544,8!-&)57(*!+9/2+:2345),!7+/(+)'#!;05/!+)4&!

4,5<,'!/0,!<+8/,1!*(8*945/(+)!5'!5!*5)-(-5/,!:+8!8,<,8'54#!!

!

Energy barrier and current effects  
! =4,584&!/0,!38,',)*,!+:!5!*988,)/!/08+9>0!/0,!0+4,!+)!.0(*0!5!<+8/,1!('!*,)/,8,-!.(44!

>(<,! 5)! ,),8>,/(*! 38,:,8,)*,! :+8! /0,! <+8/,1! *(8*945/(+)! 05<()>! /0,! '57,! ',)',! 5'! /0,!

*988,)/?'!75>),/(*!!,4-#!;0,)!.,!58,!38(758(4&! ()/,8,'/,-! ()!0+.!/0,!<+8/,1!*(8*945/(+)!

*5)!@,!'.(/*0,-!:8+7!(/'!*988,)/!'/5/,!@&!5!*988,)/!.0+',!!,4-!('! ()! /0,!+33+'(/,!',)',#!

;0,! >+54! +:! /0,! *54*945/(+)'! 0,8,! ('! /+! ,134+8,! -(::,8,)/! 3+''(@4,! 35/0'! /05/! /0,! '3()!

*+)!>985/(+)'!*5)!:+44+.!.0,)!8,<,8'()>!/0,!*(8*945/(+)#!!

! A5/98544&6! -98()>! /0,! 8,<,8'546! /0,! '3()! '&'/,7! 79'/! 05<,! 5/! 4,5'/! '+7,! +:! (/'!

7,7@,8'!3+()/!5>5()'/!/0,!75>),/(*!!,4-#!;0,8,!79'/!@,!5)!,),8>&!@588(,8!!!+<,8!.0(*0!

/0,! '3()! *+)!>985/(+)?'! ()/,8)54! ,),8>&! 79'/! 35''6! /+! >,/! /+! /0,! 38,:,88,-! '/5/,#! ;0('!

@588(,8!.+94-!<5)('0! ()! /0,! 4(7(/! +:! <5)('0()>!-(3+4,! *+934()>6! @,*59',! 544! '3()'! *+94-!

8+/5/,! /+>,/0,8! /+! /0,(8! 38,:,88,-! -(8,*/(+)6! .(/0! )+! *05)>,! ()! ,1*05)>,! ,),8>&#!%(/0!

-(3+458! ()/,85*/(+)'! 38,',)/6! /0,! @588(,8! 79'/! ()*8,5',#! B9/! (:! /0,! '3()'! 8,<,8',! /0,(8!

54(>)7,)/!C5)-!*(8*945/(+)D!()!.,442-,!),-!>8+93()>'!+8!38+*,'','6!/0,!/(7,!,<+49/(+)!+:!

/0,! '&'/,7?'! ()/,8)54! ,),8>&! .(44! @,! '9@',E9,)/4&! 5::,*/,-#! ;0,8,:+8,6! /0,! '.(/*0()>!

7(>0/!3+''(@4&!38+*,,-!54+)>!-(::,8,)/!35/0'!()!/0,!*+)!>985/(+)!'35*,6!-,3,)-()>!+)!/0,!

8,45/(<,!'/8,)>/0'!+:!/0,!-(3+4,!*+934()>'!*+7358,-!/+!/0,!5334(,-*988,)/#!F,8,!.,75G,!

'+7,! ,'/(75/,'! +:! /0,! 3+''(@(4(/(,'6! 9'()>! 5!$+)/,! =584+! C$=D! 5338+5*0! /05/! ()*49-,'!

/0,8754!"9*/95/(+)'#!!

!

The model and energy barriers 
! H+8!5!/0()!)5)+75>),/6!8+9>0!,'/(75/,'!*5)!@,!+@/5(),-!@&!9'()>!5!IJ!7+-,46!/5G()>!

*45''(*54!'3()'!+:!4,)>/0!!"5)-!75>),/(*!7+7,)/!#$%"!6!4+*5/,-!+)!'(/,'!+:!5!'E958,!45//(*,!

()! /0,!&'2345),#!;0,!'&'/,7!('!5!*(8*4,!+:!85-(9'!(6!.(/0!5!0+4,!*9/!+9/!+:! /0,!*,)/,86!+:!

85-(9'!()6! 5)-! /0,! +8(>()! +:! *++8-()5/,'! ('! 5/! /0,! *,)/,8! +:! /0,! 0+4,#! K)&! 3+()/! ()! /0,!

'&'/,7! *5)! @,! '3,*(!,-! ,(/0,8! @&! (/'! =58/,'(5)! *++8-()5/,'! C&*" 'D! +8! ,E9(<54,)/4&6! @&!

85-(9'!5)-!5L(79/054!5)>4,6! C+*"!D#!%,!5''97,!),58,'/!),(>0@+8! ('+/8+3(*!:,88+75>),/(*!
,1*05)>,!*+934()>6!,6! /+>,/0,8!.(/0!4+)>285)>,!-(3+458!()/,85*/(+)'6!/0,!()/,85*/(+)!.(/0!

/0,!!,4-!+:!5!*,)/854!*988,)/!-6!5)-!/0,8754!"9*/95/(+)'!<(5!$+)/,!=584+#!!

! ;0,!,1*05)>,!057(4/+)(5)!@,/.,,)!'3()'! "('!!

!

!! ! ! ! ! ! ! !!!!!!!!!

CID

!!
!

.0,8,! C.*" /D! ()-(*5/,'! '977()>! +<,8! 544! ),58,'/! ),(>0@+8! 35(8'6! .(/0! ." 5)-! /" -,)+/()>!

45//(*,! '(/,'#!K)&!75>),/(*!7+7,)/! "M!#$%" ">,),85/,'! 5!-(3+4,!!,4-!5/!3+'(/(+)! "

7,5'98,-!5.5&!:8+7!/05/!'3()?'!'(/,6!5**+8-()>!/+!!

!

!! ! ! ! ! !!!!!!!!!
CND
!!

Microscopic Theory.  Model for interacting atomic dipoles.

Hamiltonian:      H=Hex+Hdd+HB

exchange:

dipole-dipole:

applied field:

!"#!$#!%&'()!264

*+)!),-!.(/0()!/0,!1&2345),6!.(/0!+)4&!'7544,8!-&)57(*!+9/2+:2345),!7+/(+)'#!;05/!+)4&!

4,5<,'!/0,!<+8/,1!*(8*945/(+)!5'!5!*5)-(-5/,!:+8!8,<,8'54#!!

!

Energy barrier and current effects  
! =4,584&!/0,!38,',)*,!+:!5!*988,)/!/08+9>0!/0,!0+4,!+)!.0(*0!5!<+8/,1!('!*,)/,8,-!.(44!

>(<,! 5)! ,),8>,/(*! 38,:,8,)*,! :+8! /0,! <+8/,1! *(8*945/(+)! 05<()>! /0,! '57,! ',)',! 5'! /0,!

*988,)/?'!75>),/(*!!,4-#!;0,)!.,!58,!38(758(4&! ()/,8,'/,-! ()!0+.!/0,!<+8/,1!*(8*945/(+)!

*5)!@,!'.(/*0,-!:8+7!(/'!*988,)/!'/5/,!@&!5!*988,)/!.0+',!!,4-!('! ()! /0,!+33+'(/,!',)',#!

;0,! >+54! +:! /0,! *54*945/(+)'! 0,8,! ('! /+! ,134+8,! -(::,8,)/! 3+''(@4,! 35/0'! /05/! /0,! '3()!

*+)!>985/(+)'!*5)!:+44+.!.0,)!8,<,8'()>!/0,!*(8*945/(+)#!!

! A5/98544&6! -98()>! /0,! 8,<,8'546! /0,! '3()! '&'/,7! 79'/! 05<,! 5/! 4,5'/! '+7,! +:! (/'!

7,7@,8'!3+()/!5>5()'/!/0,!75>),/(*!!,4-#!;0,8,!79'/!@,!5)!,),8>&!@588(,8!!!+<,8!.0(*0!

/0,! '3()! *+)!>985/(+)?'! ()/,8)54! ,),8>&! 79'/! 35''6! /+! >,/! /+! /0,! 38,:,88,-! '/5/,#! ;0('!

@588(,8!.+94-!<5)('0! ()! /0,! 4(7(/! +:! <5)('0()>!-(3+4,! *+934()>6! @,*59',! 544! '3()'! *+94-!

8+/5/,! /+>,/0,8! /+! /0,(8! 38,:,88,-! -(8,*/(+)6! .(/0! )+! *05)>,! ()! ,1*05)>,! ,),8>&#!%(/0!

-(3+458! ()/,85*/(+)'! 38,',)/6! /0,! @588(,8! 79'/! ()*8,5',#! B9/! (:! /0,! '3()'! 8,<,8',! /0,(8!

54(>)7,)/!C5)-!*(8*945/(+)D!()!.,442-,!),-!>8+93()>'!+8!38+*,'','6!/0,!/(7,!,<+49/(+)!+:!

/0,! '&'/,7?'! ()/,8)54! ,),8>&! .(44! @,! '9@',E9,)/4&! 5::,*/,-#! ;0,8,:+8,6! /0,! '.(/*0()>!

7(>0/!3+''(@4&!38+*,,-!54+)>!-(::,8,)/!35/0'!()!/0,!*+)!>985/(+)!'35*,6!-,3,)-()>!+)!/0,!

8,45/(<,!'/8,)>/0'!+:!/0,!-(3+4,!*+934()>'!*+7358,-!/+!/0,!5334(,-*988,)/#!F,8,!.,75G,!

'+7,! ,'/(75/,'! +:! /0,! 3+''(@(4(/(,'6! 9'()>! 5!$+)/,! =584+! C$=D! 5338+5*0! /05/! ()*49-,'!

/0,8754!"9*/95/(+)'#!!

!

The model and energy barriers 
! H+8!5!/0()!)5)+75>),/6!8+9>0!,'/(75/,'!*5)!@,!+@/5(),-!@&!9'()>!5!IJ!7+-,46!/5G()>!

*45''(*54!'3()'!+:!4,)>/0!!"5)-!75>),/(*!7+7,)/!#$%"!6!4+*5/,-!+)!'(/,'!+:!5!'E958,!45//(*,!

()! /0,!&'2345),#!;0,!'&'/,7!('!5!*(8*4,!+:!85-(9'!(6!.(/0!5!0+4,!*9/!+9/!+:! /0,!*,)/,86!+:!

85-(9'!()6! 5)-! /0,! +8(>()! +:! *++8-()5/,'! ('! 5/! /0,! *,)/,8! +:! /0,! 0+4,#! K)&! 3+()/! ()! /0,!

'&'/,7! *5)! @,! '3,*(!,-! ,(/0,8! @&! (/'! =58/,'(5)! *++8-()5/,'! C&*" 'D! +8! ,E9(<54,)/4&6! @&!

85-(9'!5)-!5L(79/054!5)>4,6! C+*"!D#!%,!5''97,!),58,'/!),(>0@+8! ('+/8+3(*!:,88+75>),/(*!
,1*05)>,!*+934()>6!,6! /+>,/0,8!.(/0!4+)>285)>,!-(3+458!()/,85*/(+)'6!/0,!()/,85*/(+)!.(/0!

/0,!!,4-!+:!5!*,)/854!*988,)/!-6!5)-!/0,8754!"9*/95/(+)'!<(5!$+)/,!=584+#!!

! ;0,!,1*05)>,!057(4/+)(5)!@,/.,,)!'3()'! "('!!

!

!! ! ! ! ! ! ! !!!!!!!!!

CID

!!
!

.0,8,! C.*" /D! ()-(*5/,'! '977()>! +<,8! 544! ),58,'/! ),(>0@+8! 35(8'6! .(/0! ." 5)-! /" -,)+/()>!

45//(*,! '(/,'#!K)&!75>),/(*!7+7,)/! "M!#$%" ">,),85/,'! 5!-(3+4,!!,4-!5/!3+'(/(+)! "

7,5'98,-!5.5&!:8+7!/05/!'3()?'!'(/,6!5**+8-()>!/+!!

!

!! ! ! ! ! !!!!!!!!!
CND
!!

It makes sense to consider a dot with two intentionally designed defects. The vortex can

be attracted by either one, but if the system is symmetrical, then one expects a doubly-

degenerate single vortex ground state. We consider simple energetics of these states, and

whether an externally applied magnetic field can move the vortex reversibly from one defect

to the other, without annihilating it.

We are interested in the finite temperature dynamics of the vortex switching; we apply

a Metropolis algorithm Monte Carlo approach. However, for real systems of interest, the

computational effort would be too great to follow the dynamics of the atomic spins, because

there are too many, in even a 100 nm diameter dot of 15 nm thickness. Instead, the system is

partitioned into larger cells containing many atoms, as is done in micromagnetic simulations.

There are small errors in this approximation, so it is a way to get an approximate idea of

the processes, but without precise estimates of threshold field, etc.

The usual micromagnetics approach uses the Landau-Lifshitz equation with damping to

approach to a local minimum energy state. In contrast, we use the Metropolis algorithm

to produce a fictitious dynamics, without real time, however, it naturally includes thermal

fluctuations which occur in a real system, that could have de-stabilizing or enhancing effects

on the vortex switching process.

Once a vortex is pinned on a defect, there is a threshold applied field needed to free the

vortex from the pinning center.34 Presumably, a field near that strength should be able to

move the vortex to an oppositely placed defect in a circular cylinder magnetic dot. Toward

that end, we also use a local field relaxation of the magnetic dipoles to show how the presence

of holes in a magnetic dot produces an effective potential for vortex motion within the dot.

As a test application, the calculations are carried out for the parameters of Permalloy-79

(Fe21Ni79), which has saturation magnetization MS = 860 kA/m, continuum exchange stiff-

ness A = 13 pJ/m, Curie temperature near 630 K, and face-centered-cubic lattice structure

with conventional unit cell parameter a0 = 0.355 nm.

II. EFFECTIVE ATOMIC HAMILTONIAN

In the underlying atomic system, the spins have atomic magnetic dipole moments of

magnitude µatom = gµBS, where g is the Landee g-factor, µB is the Bohr magneton, and S

is the spin length. Assuming fcc lattice structure, there are four atoms per conventional unit

3

The dipolar interactions involve the response of one spin to the effective dipolar fields

produced by all other spins. Therefore, the dipolar interaction hamiltonian is

Hdd = −
(µ0

4π

)∑
i>j

[3("µi · r̂ij)("µj · r̂ij) − "µi · "µj]

r3
ij

, (6)

where r̂ij is the unit vector pointing from site i towards site j and the "µi are the atomic

dipole moments. The sum with i > j avoids double counting the interactions. In the work

here, any demagnetization effects are taken into account via the dipole-dipole interactions.

Using the atomic dipoles and distances measured in terms of the lattice parameter of the

conventional unit cell, defines the strength of dipolar couplings,

D =
(µ0

4π

) µ2
atom

a3
0

. (7)

In Permalloy, this gives D = 2.07× 10−25 joules, which can be compared with the exchange

JS2 to give an idea of the relative importance of the two energies. We can define the relative

dipolar coupling strength δ by their ratio,

δ =
D

JS2
. (8)

For Py, this fundamental atomic value is δ = 8.96×10−5, which shows that only the combined

interactions (or torques) of many dipoles can overcome the local exchange interactions.

Finally an externally generated applied magnetic field, "B, is assumed to act on the spins,

with hamiltonian,

HB = −
∑

i

"B · "µi. (9)

The system also is assumed to be affected by thermal fluctuations corresponding to the

ambient absolute temperature in kelvin, T .

III. MICROMAGNETICS VIEWPOINT

Of course, for typical micron sized dots, the number of individual atoms is too great

for computer simulations of such a large number of degrees of freedom. Instead, in the

micromagnetic viewpoint, the system is broken up into larger cells, each of which contains

many atoms, but which are small enough that the net magnetic moment might have nearly

a constant magnitude, but varying direction. The simulations need only keep track of the

5

cell of size a3
0, giving a volume per atom of v1 = a3

0/4, and the saturation magnetization is

MS =
gµBS

v1
. (1)

(With the parameters for Py, this implies atomic dipole moments µatom = 9.62 × 10−24 A ·

m2.) The spins interact with their nearest neighbors via ferromagnetic exchange of strength

J , and with all other spins through long-range dipolar forces. The local anisotropy forces

are much weaker, and not included here. The exchange hamiltonian between spins !Si on the

underlying fcc lattice is

Hex = −J
∑
(i,j)

!Si · !Sj (2)

where (i, j) indicates summing over all nearest neighbor pairs with each pair counted once,

where i and j denote lattice sites, and J is the atomic exchange constant. J is proportional

to the commonly used continuum exchange stiffness A, which is used to define the exchange

energy based on the scaled continuum magnetization, !m = !M/MS, through

Hex = A

∫
dV ∇!m ·∇!m. (3)

These two ways of writing the system exchange exchange energy can be matched, to get

the relation bewteen J and A, by making a continuum limit of the discrete hamiltonian

(2). Expanding the spins around an arbitrarily chosen central spin on the fcc lattice, and

converting the summation to an integration leads to

Hex = 2J

∫
dV

a3
0

∇!S ·∇!S a2
0 (4)

To arrive at this, a constant energy proportional to the number of spins was dropped. The

scaled magnetization !m is the same as a continuum version of the normalized spin field !S/S,

hence it is easy to show the desired relation,

JS2 =
1

2
Aa0. (5)

It may be useful to note that the factor of 1
2 present here for fcc lattice changes to 2 for

simple cubic lattice, and becomes 1 for body centered cubic lattice. In all these cases, a0

is the size of the conventional cubic cell used to define that lattice. For instance, using

A = 1.3 × 10−11 J/m and a lattice constant of 0.355 nm for fcc Permalloy, the relation

gives exchange constant JS2 = 2.31 × 10−21 joules, or JS2/kB = 167 kelvin, where kB is

Boltzmann’s constant.
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Micromagnetics.  
a more practical

Model for 

interacting cells.

• Model for cylindrical nanodot, radius R, height L.

• partition the sample into cells of size a x a x L.

• assume magnetization is saturated (MS) in each cell, but 

the directions vary from cell to cell.

• the cells interact as dipoles, with exchange & 
demagnetization fields.

a
a

substituting the atomic dipoles with these cell dipoles. Also, lengths (or positions) will be

measured in units of the cell size, a, and it is convenient to use the unit vector magnetic

moments (fictitious “spins”), m̂i = !µi/µ, the discrete version of m̂ = !M/MS. Thus we have

the dipolar terms convenient for micromagnetics calculations,

Hdd = −µ0

4π

µ2
cell

a3

∑
i>j

[3(m̂i · r̂ij)(m̂j · r̂ij)− m̂i · m̂j]

(rij/a)3
. (13)

However, for micromagnetics, we do not evaluate the dipolar energy this way, because it gets

very slow for even moderate system size. Instead, we resort to finding the “stray field” or

demagnetization field, which then interacts with the dipoles. We do this by a FFT solution

of the effective magnetics equation, which gives the solution for magnetic potential ΦM when

a given magnetization distribution is provided. Based on

!∇ · !B = µ0(!∇ · !H + !∇ · !M) = 0. (14)

We assume the magnetic field is derived from a potential, in the absence of free currents.

!HM = −!∇ΦM , then −∇2ΦM = −!∇ · !M. (15)

The RHS is an effective magnetic charge density, so we can write

−∇2ΦM = ρM , where ρM = −!∇ · !M. (16)

Once the magnetic field is known, the demagnetization energy is known to be given by the

expression,

Hdd = Hdemag = −1

2
µ0

∫
dV !M · !HM . (17)

The factor of 1/2 takes care of double counting of the field interactions. If there is also an

externally applied magnetic field, then it makes an additional energy contribution,

HB = −
∑

i

!Bext · !µi = −µ0MS

∫
dV !Hext · m̂ (18)

B. Units for Computations

To continue, it is convenient to use some dimensionless units, from which the definition

of the magnetic exchange length emerges. Magnetization is already scaled by MS to give the

4

each cell has 
a unit dipole:



Hamiltonian:      H=Hex+Hdemag+HB

exchange:

demagnetization:

applied field:

mjmi

I. SYSTEM AND HAMILTONIAN

The exchange hamiltonian between spins !Si is

Hex = −J
∑
(i,j)

!Si · !Sj (1)

where (i, j) indicates summing over all nearest neighbor pairs, with i and j denoting lattice

sites. The energy associated with exchange interactions can be written in a continuum limit.

For simplicity, suppose the atomic spins occupy sites of a simple cubic lattice, with lattice

constant a0. Then expanding around a given spin (see Appendix), to get its 6 neighbors,

each a distance a0 away, leads to

Hex = −J
∑
(i,j)

!Si · !Sj =
1

2
J

∫
dx

a0

dy

a0

dz

a0
∇!S ·∇!S a2

0 (2)

Now this can be re-written in terms of the local magnetization scaled by the saturation

magnetization, i.e., use local magnetization !M = !µ/a3
0 = gµB

!S/a3
0, divided by MS within

the integrand,

Hex =
1

2
J

∫
dx dy dz

∇ !M ·∇ !M

M2
Sg2µ2

B

a3
0a

2
0M

2
S (3)

which simplifies to

Hex =
1

2

JM2
Sa5

0

g2µ2
B

∫
dx dy dz ∇( !M

MS

) · (∇ !M

MS

)
. (4)

This then is where the continuum exchange stiffness is defined in terms of the atomic ex-

change constant:

A =
1

2

JM2
Sa5

0

g2µ2
B

. (5)

Exchange energy can be expressed for micromagnetics application in terms of unit mag-

netization vectors m̂,

Hex = A

∫
dV ∇m̂ ·∇m̂, (6)

where the magnetization scaled by its saturation value is

m̂ = !M/MS. (7)

If the definition for MS is inserted, using the cubic unit cell volume as the volume per atom,

v1 = a3
0, then we get a direct relation between J and A:

A =
1

2

JS2(gµBS/a3
0)

2a5
0

g2µ2
BS2

=
JS2

2a0
. (8)
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demagnetization field, which then interacts with the dipoles. We do this by a FFT solution

of the effective magnetics equation, which gives the solution for magnetic potential ΦM when

a given magnetization distribution is provided. Based on

!∇ · !B = µ0(!∇ · !H + !∇ · !M) = 0. (14)

We assume the magnetic field is derived from a potential, in the absence of free currents.

!HM = −!∇ΦM , then −∇2ΦM = −!∇ · !M. (15)

The RHS is an effective magnetic charge density, so we can write

−∇2ΦM = ρM , where ρM = −!∇ · !M. (16)

Once the magnetic field is known, the demagnetization energy is known to be given by the

expression,

Hdd = Hdemag = −1

2
µ0

∫
dV !HM · !M. (17)

The factor of 1/2 takes care of double counting of the field interactions. If there is also an

externally applied magnetic field, then it makes an additional energy contribution,

HB = −µ0

∫
dV !Hext · !M (18)

HB = −
∑

i

!Bext · !µi = −µ0MS

∫
dV !Hext · m̂ (19)

B. Units for Computations

To continue, it is convenient to use some dimensionless units, from which the definition

of the magnetic exchange length emerges. Magnetization is already scaled by MS to give the

4
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out stable equilibrium configurations.

Difficulties:   Finding demagnetization field HM 
and constraining the vortex location
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measured in units of the cell size, a, and it is convenient to use the unit vector magnetic

moments (fictitious “spins”), m̂i = !µi/µ, the discrete version of m̂ = !M/MS. Thus we have

the dipolar terms convenient for micromagnetics calculations,

Hdd = −µ0

4π

µ2
cell

a3

∑
i>j

[3(m̂i · r̂ij)(m̂j · r̂ij)− m̂i · m̂j]

(rij/a)3
(14)

However, for micromagnetics, we do not evaluate the dipolar energy this way, because it gets

very slow for even moderate system size. Instead, we resort to finding the “stray field” or

demagnetization field, which then interacts with the dipoles. We do this by a FFT solution

of the effective magnetics equation, which gives the solution for magnetic potential ΦM when

a given magnetization distribution is provided. Based on

!∇ · !B = µ0(!∇ · !H + !∇ · !M) = 0 (15)

We assume the magnetic field is derived from a potential, in the absence of free currents.

!HM = −!∇ΦM , then −∇2ΦM = −!∇ · !M (16)

The RHS is an effective magnetic charge density, so we can write

−∇2ΦM = ρM , where ρM = −!∇ · !M (17)

Once the magnetic field is known, the demagnetization energy is known to be given by the

expression,

Hdd = Hdemag = −1

2
µ0

∫
dV !HM · !M (18)

The factor of 1/2 takes care of double counting of the field interactions. If there is also an
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∑
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“magnetic exchange length”

But it will be necessary to measure all energies in the same, units, say, in units of the

cell-to-cell exchange constant, Jcell = 2AL. So we write

UM

Jcell
= −1

2

µ0M2
SLa2

2AL
(H̃M · m̂i)

UM

Jcell
= −1

2

µ0M2
Sa2

2A
(H̃M · m̂i)

UM

Jcell
= −1

2

(
a

λex

)2

(H̃M · m̂i) (30)

where the exchange length is defined from

λex =

√
2A

µ0M2
S

(31)

Similarly, if there is an externally applied magnetic field, the interaction energy is scaled in

the same way,
UB

Jcell
= −

(
a

λex

)2

(H̃ext · m̂i) (32)

where the external magnetic induction and field are related by

"Bext = µ0
"Hext = µ0MSH̃ext (33)

C. Dimensionless Hamiltonian and Effective Field

Summarizing the interactions in dimensionless form, involving the unit vector “spins”

m̂i = "µi/µcell, we have

Exchange : Uex = −Jcell × m̂i · m̂j (34)

Demagnet : UM = −Jcell ×−1

2

(
a

λex

)2

(H̃M · m̂i)

External : UB = −Jcell ×
(

a

λex

)2

(H̃ext · m̂i)

The total Hamiltonian for the micromagnetics cells is

Hmm = −Jcell

∑
(i,j)

m̂i · m̂j +

(
a

λex

)2 ∑
i

(
H̃ext +

1

2
H̃M

)
· m̂i

 (35)

This is associated with the effective field on a site,

"Fi = −∂Hmm

∂m̂i
= Jcell

{∑
nbrs

m̂j +

(
a

λex

)2 (
H̃ext +

1

2
H̃M

)}
(36)
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Of course, the derivation is for a simple cubic lattice, relating the near neighbor exchange

J with the exchange stiffness and lattice constant.

A. Micromagnetics Viewpoint

In the alternative micromagnetic viewpoint, the system is broken up into larger cells, each

of which contains many atoms, but which are small enough that the net magnetic moment

might have nearly a constant magnitude, but varying direction. The nano-disk has a radius

R and thickness L. It is partitioned into cells of size a× a× L = La2. Or we take L = la.

The cell parameter a is likely many times the unit cell size a0. The volume of a working cell

being vcell = la3, contains many atoms. Then the saturated magnetic moment µcell in a cell

would be

µcell = Msvcell =
gµBS

a3
0/4

× la3 = 4l

(
a

a0

)3

µatom. (9)

However, we really now will not use these, but rather, will use the unit vectors m̂(!r). A cell

centered at the origin is surrounded by four other cells, at displacements of ±ax̂ and ±aŷ

(measured to their centers). Then the exchange energy of our cell at the origin interacting

with only the two neighbors to the right and above, as a lowest order finite difference

approximation to (6), is

Hex,cell = Avcell×
{(

m̂(ax̂)− m̂(0)

a

)2

+

(
m̂(aŷ)− m̂(0)

a

)2
}

. (10)

Finally, it can be expressed as the exchange energy per bond,

Hex,bond =
2Avcell

a2
[1− m̂(0) · m̂(ax̂)] . (11)

It demonstrates that the effective exchange coupling between the cells (i.e., cell-to-cell) is

Jcell =
2Avcell

a2
= 2AL. (12)

Jcell =
2Avcell

a2
=

2A(la3)

a2
= 2Aal = 2AL. (13)

1. Dipolar interactions

The exchange strength between cells needs to be contrasted to the strength of their effec-

tive dipolar interactions. We already saw that each cell has a dipole moment of magnitude

3
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Hamiltonian on the grid of cells:
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Need less than 1 for reliable solutions.

B. Units for Computations

To continue, it is convenient to use some dimensionless units, from which the definition

of the magnetic exchange length emerges. Magnetization is already scaled by MS to give the

dimensionless form, m̂. The gradient operator is scaled by the cell size, to give a unit-less

gradient,

∇̃ ≡ a!∇ (21)

This then leads to the dimensionless magnetic charge density ρ̃,

ρM = −!∇ · !M = −1

a
∇̃ · (MSm̂) =

MS

a
ρ̃, (22)

which means the definition is

ρ̃ ≡ −∇̃ · m̂. (23)

Similarly there is the dimensionless magnetic potential, derived from ρ̃,

−∇2ΦM = − 1

a2
∇̃2ΦM = −1

a
∇̃ · (MSm̂) =

MS

a
ρ̃, (24)

ΦM = aMSΦ̃ (25)

Then the equation being solved computationally is

−∇̃2Φ̃ = ρ̃. (26)

The demagnetization field is

!HM = −!∇ΦM = −1

a
∇̃(aMSΦ̃) = −MS∇̃Φ̃. (27)

Then it makes sense to define the dimensionless demag field,

H̃M = −∇̃Φ̃ , !HM = MSH̃M (28)

The associated magnetic induction is

!BM = µ0
!HM = −µ0MS∇̃Φ̃ = µ0MSH̃M . (29)
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(cells smaller than exchange length)

demag. field:



 The magnetostatics problem has no free currents:

Finding the demagnetization field via Green/FFT approach.
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use Green’s function solution:

II. ABOUT SOLVING FOR THE DEMAGNETIZATION FIELD H̃M

The solution of the Poisson equation (26) is effected by a Green’s function,

Φ̃(!r) =

∫
d3r′ G(!r,!r ′) ρ̃(!r ′) (42)

The charge density may include parts on the surface that appear more as a surface charge

density,

σ̃ = !m · n̂ (43)

where n̂ is the outward normal from the system. The system is assumed to be a thin cylinder.

The magnetization is assumed to depend only on x and y, but not on the vertical coordinate,

z.

In this section we drop the M subscript on H̃M . It is understood we are only discussing

the demagnetization field.

The basic Green’s function for Poisson equation is

G(!r,!r ′) =
1

4π|!r − !r ′| (44)

We apply this to the obvious cases.

A. Finding the longitudinal field component

The contributions to H̃z come from the charges on upper and lower circular faces. Let

the coordinate z inside range −δ ≤ z ≤ +δ. From some area element dA′ = dx′ dy′, where

dq = σ′dA′ = !m · n̂ dx′ dy′, we get

dΦ̃ =
1

4π

{
mz√

r2 + (z − δ)2
+

−mz√
r2 + (z + δ)2

}
dx′ dy′ (45)

where r2 ≡ (x− x′)2 + (y − y′)2. The gradient w.r.t. z gives the field increment required,

dH̃z = − ∂

∂z
(dΦ̃) = − 1

4π

{ −mz(z − δ)

(r2 + (z − δ)2)3/2
+

mz(z + δ)

(r2 + (z + δ)2)3/2

}
(46)

At the center of the sample, z = 0, we would get the net demag field there from integrating

over all elements,

H̃z(0) =

∫
dx′ dy′dH̃z(0) =

∫
dx′ dy′

{
−1

4π

2δ

[r2 + δ2]3/2

}
mz(x

′, y′) (47)
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specialize to a thin cylinder (2D) geometry:
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The factor within braces is an effective Green’s function, used to get the demag field in the

middle of the cylinder. We might call it G0, it is understood that it gives you H̃z(0).

H̃z(0) =

∫
dx′ dy′ G0(r) mz(x

′, y′) (48)

G0(r) =
−1

4π

2δ

[r2 + δ2]3/2
, r2 = (x− x′)2 + (y − y′)2 (49)

To get a better approximation for total magnetic energy, we instead need the average demag

field over the whole range of z. So we find instead ¯̃H where the bar indicates the average

over z,

d ¯̃Hz =
1

2δ

∫ δ

−δ

dz

(−∂

∂z
dΦ̃

)
=
−1

2δ
dΦ̃|+δ

−δ (50)

Then including also the integration over x′ and y′ gives us

¯̃Hz =

∫
dx′ dy′d ¯̃Hz =

∫
dx′ dy′

{
1

4πδ

[
1√

r2 + (2δ)2
− 1

r

]}
mz(x

′, y′) (51)

Again, the part in braces is a Green’s function, we will call it just Gz. It gives the average

field within a cell.
¯̃Hz(x, y) =

∫
dx′ dy′ Gz(r) mz(x

′, y′) (52)

Gz(r) =
1

4πδ

[
1√

r2 + (2δ)2
− 1

r

]
, r2 = (x− x′)2 + (y − y′)2 (53)

Probably it is better to write this using the two-dimensional (in-plane) vectors r̃ = (x, y)

and r̃ ′ = (x′, y ′), as (and dropping the bar, for simplicity, which gives the field in a cell)

H̃z(r̃) =

∫
d2r̃ ′ Gz(r̃ − r̃ ′) mz(r̃

′) , r̃ ≡ (x, y) (54)

Gz(r̃) =
1

2πL

[
1√

r̃2 + L2
− 1

|r̃|
]

, r̃2 ≡ x2 + y2 (55)

B. Finding the in-plane demag field components.

The volume charge density will produce the in-plane field components. From the basic

Green’s function for Poisson equation

G($r,$r ′) =
1

4π|$r − $r ′| (56)

look at the contribution to potential caused by the volume charge density, etc etc.
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Eventually we get the Green’s function for the in-plane field,

!Gxy(r̃) =
1

2πL

√
1 +

(
L

r̃

)2

− 1

 êr̃ (57)

This determines the (x, y) demag field components

H̃xy(r̃) =

∫
d2r̃ ′ !Gxy(r̃ − r̃ ′) ρ̃(r̃ ′) (58)

That is, to be specific, we do

H̃xy(r̃) =

∫
d2r̃ ′ 1

2πL

√
1 +

(
L

r̃ − r̃ ′

)2

− 1

 êr̃−r̃ ′ ρ̃(r̃ ′) (59)

where the unit vector needed is as expected,

êr̃−r̃ ′ =
r̃ − r̃ ′

|r̃ − r̃ ′| (60)

C. Treatment of Green’s functions near r = 0

The Green’s function for H̃z is singular at the origin. Therefore we make an approximation

to it when we apply it on a grid with finite sized cells. Instead of using its value exactly at

r = 0, which is undefined, we do an averaging over a circular area with the same area. That

is, we average over a radius r0 defined so that

A = πr2
0 = a2 , r0 =

a√
π

(61)

Also it is convenient to write in terms of the disk thickness, L = 2δ, for instance,

Gz(r) =
1

2πL

[
1√

r2 + L2
− 1

r

]
(62)

The averaged value out to r0 is

〈Gz〉r0

0 =
1

a2

∫ r0

0

2πr dr Gz(r)

〈Gz〉r0

0 =
1

2πL

[〈
1√

r2 + L2

〉
−

〈
1

r

〉]r0

0

〈Gz〉r0

0 =
1

2πL

[
2π

a2
(
√

r2
0 + L2 − L)− 2πr0

a2

]
〈Gz〉r0

0 =
1

La2

[√
r2
0 + L2 − L− r0
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Eventually we get the Green’s function for the in-plane field,

!Gxy(r̃) =
1

2πL

√
1 +

(
L

r̃

)2

− 1

 êr̃ (57)

This determines the (x, y) demag field components

H̃xy(r̃) =

∫
d2r̃ ′ !Gxy(r̃ − r̃ ′) ρ̃(r̃ ′) (58)

That is, to be specific, we do

H̃xy(r̃) =

∫
d2r̃ ′ 1

2πL

√
1 +

(
L

r̃ − r̃ ′

)2

− 1

 êr̃−r̃ ′ ρ̃(r̃ ′) (59)

where the unit vector needed is as expected,

êr̃−r̃ ′ =
r̃ − r̃ ′

|r̃ − r̃ ′| (60)
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π
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The factor within braces is an effective Green’s function, used to get the demag field in the

middle of the cylinder. We might call it G0, it is understood that it gives you H̃z(0).

H̃z(0) =

∫
dx′ dy′ G0(r) mz(x

′, y′) (48)

G0(r) =
−1

4π

2δ

[r2 + δ2]3/2
, r2 = (x− x′)2 + (y − y′)2 (49)

To get a better approximation for total magnetic energy, we instead need the average demag

field over the whole range of z. So we find instead ¯̃H where the bar indicates the average

over z,

d ¯̃Hz =
1

2δ

∫ δ

−δ

dz

(−∂

∂z
dΦ̃

)
=
−1

2δ
dΦ̃|+δ

−δ (50)

Then including also the integration over x′ and y′ gives us

¯̃Hz =

∫
dx′ dy′d ¯̃Hz =

∫
dx′ dy′

{
1

4πδ

[
1√

r2 + (2δ)2
− 1

r

]}
mz(x

′, y′) (51)

Again, the part in braces is a Green’s function, we will call it just Gz. It gives the average

field within a cell.
¯̃Hz(x, y) =

∫
dx′ dy′ Gz(r) mz(x

′, y′) (52)

Gz(r) =
1

4πδ

[
1√

r2 + (2δ)2
− 1

r

]
, r2 = (x− x′)2 + (y − y′)2 (53)

Probably it is better to write this using the two-dimensional (in-plane) vectors r̃ = (x, y)

and r̃ ′ = (x′, y ′), as (and dropping the bar, for simplicity, which gives the field in a cell)

H̃z(r̃) =

∫
d2r̃ ′ Gz(r̃ − r̃ ′) mz(r̃

′) , r̃ ≡ (x, y) (54)

Gz(r̃) =
1

2πL

[
1√

r̃2 + L2
− 1

|r̃|
]

, r̃2 ≡ x2 + y2 (55)

B. Finding the in-plane demag field components.

The volume charge density will produce the in-plane field components. From the basic

Green’s function for Poisson equation

G($r,$r ′) =
1

4π|$r − $r ′| (56)

look at the contribution to potential caused by the volume charge density, etc etc.
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B. Units for Computations

To continue, it is convenient to use some dimensionless units, from which the definition

of the magnetic exchange length emerges. Magnetization is already scaled by MS to give the

dimensionless form, m̂. The gradient operator is scaled by the cell size, to give a unit-less

gradient,

∇̃ ≡ a!∇ (21)

This then leads to the dimensionless magnetic charge density ρ̃,

ρM = −!∇ · !M = −1

a
∇̃ · (MSm̂) =

MS

a
ρ̃ (22)

which means the definition is

ρ̃ ≡ −∇̃ · m̂ (23)

Similarly there is the dimensionless magnetic potential, derived from ρ̃,

−∇2ΦM = − 1

a2
∇̃2ΦM = −1

a
∇̃ · (MSm̂) =

MS

a
ρ̃ (24)

ΦM = aMSΦ̃ (25)

Then the equation being solved computationally is

−∇̃2Φ̃ = ρ̃ (26)

The demagnetization field is

!HM = −!∇ΦM = −1

a
∇̃(aMSΦ̃) = −MS∇̃Φ̃ (27)

Then it makes sense to define the dimensionless demag field,

H̃M = −∇̃Φ̃ , !HM = MSH̃M (28)

The associated magnetic induction is

!BM = µ0
!HM = −µ0MS∇̃Φ̃ = µ0MSH̃M (29)
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The magnetic charge densities depend on the 
present magnetic configuration, such as:

Integrals are evaluated using fast fourier transforms.

Use zero padding to avoid the wrap-around problem.

The solution for demagnetization field is that for a 
disk isolated from others.

 Some details.

The total Hamiltonian for the micromagnetics cells is

Hmm = −Jcell

∑
(i,j)

m̂i · m̂j +

(
a

λex

)2 ∑
i

(
H̃ext +

1

2
H̃M

)
· m̂i

 (36)

This is associated with the effective field on a site,

"Fi = −∂Hmm

∂m̂i
= Jcell

{∑
nbrs

m̂j +

(
a

λex

)2 (
H̃ext +

1

2
H̃M

)}
(37)

D. Finite difference approximations for magnetic charges

We need to use short formulas to approximate the magnetic charge densities, both in the

volume and at surfaces. A surface site is any site with less than 4 neighbors (for square

grid). As long as a site has four neighbors, it must be a volume site, then it only has volume

charge density, defined from its charge,

qvol
M = −

∫
d3x "∇ · m̂ = −

∫
m̂ · d "A (38)

Can ignore top and bottom cell surfaces (at z = ±δ), which cancel. This leaves only the

edge terms,

qvol
M = − {m̂01 · x̂− m̂03 · x̂ + m̂02 · ŷ − m̂04 · ŷ} (aL)

qvol
M = −1

2
{(mx

0 + mx
1)− (mx

0 + mx
3) + (my

0 + my
2)− (my

0 + my
4)} (aL)

qvol
M = −1

2
aL [mx

1 −mx
3 + my

2 −my
4] (39)

The notation is that “0” is a central site, and 1,2,3,4 are located at right, top, left, bottom

nbrs sites. Then the contribution to charge density at the central site is this divided by the

cell volume

ρ̃vol
0 =

qvol
M

La2
= − 1

2a
[mx

1 −mx
3 + my

2 −my
4] (40)

For the surface sites, we also need to include an extra amount of charge, the surface charge.

qsur
M =

1

2
m̂ · "A =

aL

2
m̂ · n̂ , ρ̃sur

0 =
qsur
M

La2
=

∑
cell edges

1

2a
m̂0 · n̂edge (41)

Associated in each cell we use the total charge found there, equally whether surface or volume

charge. Note that these charges only determine the in-plane demagnetization components,

H̃x, H̃y, as described in the next section. The mz component determines the out-of-plane

demagnetization field, H̃z.
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How to minimize the energy
for a vortex in a desired location?

Use Lagrange 
undetermined 

multipliers technique.

Then the iteration algorithm to minimize the energy, while satisfying the length constraint,

would be

mx
i = m

F x
i

|!Fi|
, my

i = m
F y

i

|!Fi|
, mz

i = m
F z

i

|!Fi|
(81)

That has been the usual algorithm, just place each spin along the direction of the effective

field. Now to add the vortex position constraint, change to a new functional,

Λ[!mi] = E[!mi] +
∑

i

αi(!m
2
i −m2)− !λ ·

core∑
n

!mn (82)

The new Lagrange multiplier !λ is a vector with only x and y components. Now the mini-

mization equations are (in the core)

∂Λ

∂mx
n

=
∂E

∂mx
n

+ 2αnm
x
n − λx = 0

∂Λ

∂my
n

=
∂E

∂my
n

+ 2αnm
y
n − λy = 0

∂Λ

∂mz
n

=
∂E

∂mz
n

+ 2αnm
z
n = 0 (83)

Now we get the results (inside the core),

−F x
n + 2αnm

x
n − λx = 0 −→ mx

n =
1

2αn
(F x

n + λx)

−F y
n + 2αnm

y
n − λy = 0 −→ my

n =
1

2αn
(F y

n + λy)

−F x
n + 2αnm

z
n = 0 −→ mz

n =
1

2αn
F z

i (84)

So the constraint is just an extra magnetic field, applied only in the core. But to finish this,

need to determine these fields. That comes from using the spin length constraint,

!m2
n =

1

4α2
n

[
(F x

n + λx)
2 + (F y

n + λy)
2 + (F z

n)2
]

= m2

1

αn
=

2m√
(F x

n + λx)2 + (F y
n + λy)2 + (F z

n)2
(85)

Need to also use the !λ constraint, or you don’t go anywhere. Do the sums in the core,∑
core

mx
n =

∑
core

1

2αn
(F x

n + λx) = 0 −→ λx = −
∑

core F x
n /αn∑

core 1/αn∑
core

my
n =

∑
core

1

2αn
(F y

n + λy) = 0 −→ λy = −
∑

core F y
n/αn∑

core 1/αn
(86)

14

Energy functional:

hamiltonian
length constraints vortex position constraintUnrelax E=13.93 ex=13.31 ddx= 0.36 ddz= 0.26 eb= 0.00 x0= -4.0

Sys 1/1, 16 Spins v=1, pin=0, dbl=0 State 49/123

Then the iteration algorithm to minimize the energy, while satisfying the length constraint,

would be

mx
i = m

F x
i

|!Fi|
, my

i = m
F y

i

|!Fi|
, mz

i = m
F z

i

|!Fi|
(81)

That has been the usual algorithm, just place each spin along the direction of the effective

field. Now to add the vortex position constraint, change to a new functional,

Λ[!mi] = E[!mi] +
∑

i

αi(!m
2
i −m2)− !λ ·

core∑
n

!mn (82)

The new Lagrange multiplier !λ is a vector with only x and y components. Now the mini-

mization equations are (in the core)

∂Λ

∂mx
n

=
∂E

∂mx
n

+ 2αnm
x
n − λx = 0

∂Λ

∂my
n

=
∂E

∂my
n

+ 2αnm
y
n − λy = 0

∂Λ

∂mz
n

=
∂E

∂mz
n

+ 2αnm
z
n = 0 (83)

Now we get the results (inside the core),

−F x
n + 2αnm

x
n − λx = 0 −→ mx

n =
1

2αn
(F x

n + λx)

−F y
n + 2αnm

y
n − λy = 0 −→ my

n =
1

2αn
(F y

n + λy)

−F x
n + 2αnm

z
n = 0 −→ mz

n =
1

2αn
F z

i (84)

So the constraint is just an extra magnetic field, applied only in the core. But to finish this,

need to determine these fields. That comes from using the spin length constraint,

!m2
n =

1

4α2
n

[
(F x

n + λx)
2 + (F y

n + λy)
2 + (F z

n)2
]

= m2

1

αn
=

2m√
(F x

n + λx)2 + (F y
n + λy)2 + (F z

n)2
(85)

Need to also use the !λ constraint, or you don’t go anywhere. Do the sums in the core,∑
core

mx
n =

∑
core

1

2αn
(F x

n + λx) = 0 −→ λx = −
∑

core F x
n /αn∑

core 1/αn∑
core

my
n =

∑
core

1

2αn
(F y

n + λy) = 0 −→ λy = −
∑

core F y
n/αn∑

core 1/αn
(86)

14

Then the iteration algorithm to minimize the energy, while satisfying the length constraint,

would be

mx
i = m

F x
i

|!Fi|
, my

i = m
F y

i

|!Fi|
, mz

i = m
F z

i

|!Fi|
(81)

That has been the usual algorithm, just place each spin along the direction of the effective

field. Now to add the vortex position constraint, change to a new functional,

Λ[!mi] = E[!mi] +
∑

i

αi(!m
2
i −m2)− !λ ·

core∑
n

!mn (82)

The new Lagrange multiplier !λ is a vector with only x and y components. Now the mini-

mization equations are (in the core)

∂Λ

∂mx
n

=
∂E

∂mx
n

+ 2αnm
x
n − λx = 0

∂Λ

∂my
n

=
∂E

∂my
n

+ 2αnm
y
n − λy = 0

∂Λ

∂mz
n

=
∂E

∂mz
n

+ 2αnm
z
n = 0 (83)

Now we get the results (inside the core),

−F x
n + 2αnm

x
n − λx = 0 −→ mx

n =
1

2αn
(F x

n + λx)

−F y
n + 2αnm

y
n − λy = 0 −→ my

n =
1

2αn
(F y

n + λy)

−F x
n + 2αnm

z
n = 0 −→ mz

n =
1

2αn
F z

i (84)

So the constraint is just an extra magnetic field, applied only in the core. But to finish this,

need to determine these fields. That comes from using the spin length constraint,

!m2
n =

1

4α2
n

[
(F x

n + λx)
2 + (F y

n + λy)
2 + (F z

n)2
]

= m2

1

αn
=

2m√
(F x

n + λx)2 + (F y
n + λy)2 + (F z

n)2
(85)

Need to also use the !λ constraint, or you don’t go anywhere. Do the sums in the core,∑
core

mx
n =

∑
core

1

2αn
(F x

n + λx) = 0 −→ λx = −
∑

core F x
n /αn∑

core 1/αn∑
core

my
n =

∑
core

1

2αn
(F y

n + λy) = 0 −→ λy = −
∑

core F y
n/αn∑

core 1/αn
(86)

14

Then the iteration algorithm to minimize the energy, while satisfying the length constraint,

would be

mx
i = m

F x
i

|!Fi|
, my

i = m
F y

i

|!Fi|
, mz

i = m
F z

i

|!Fi|
(81)

That has been the usual algorithm, just place each spin along the direction of the effective

field. Now to add the vortex position constraint, change to a new functional,

Λ[!mi] = E[!mi] +
∑

i

αi(!m
2
i −m2)− !λ ·

core∑
n

!mn (82)

The new Lagrange multiplier !λ is a vector with only x and y components. Now the mini-

mization equations are (in the core)

∂Λ

∂mx
n

=
∂E

∂mx
n

+ 2αnm
x
n − λx = 0

∂Λ

∂my
n

=
∂E

∂my
n

+ 2αnm
y
n − λy = 0

∂Λ

∂mz
n

=
∂E

∂mz
n

+ 2αnm
z
n = 0 (83)

Now we get the results (inside the core),

−F x
n + 2αnm

x
n − λx = 0 −→ mx

n =
1

2αn
(F x

n + λx)

−F y
n + 2αnm

y
n − λy = 0 −→ my

n =
1

2αn
(F y

n + λy)

−F x
n + 2αnm

z
n = 0 −→ mz

n =
1

2αn
F z

i (84)

So the constraint is just an extra magnetic field, applied only in the core. But to finish this,

need to determine these fields. That comes from using the spin length constraint,

!m2
n =

1

4α2
n

[
(F x

n + λx)
2 + (F y

n + λy)
2 + (F z

n)2
]

= m2

1

αn
=

2m√
(F x

n + λx)2 + (F y
n + λy)2 + (F z

n)2
(85)

Need to also use the !λ constraint, or you don’t go anywhere. Do the sums in the core,∑
core

mx
n =

∑
core

1

2αn
(F x

n + λx) = 0 −→ λx = −
∑

core F x
n /αn∑

core 1/αn∑
core

my
n =

∑
core

1

2αn
(F y

n + λy) = 0 −→ λy = −
∑

core F y
n/αn∑

core 1/αn
(86)

14

But need to get α and λ by applying the 
constraints.

in core:
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need to determine these fields. That comes from using the spin length constraint,

!m2
n =

1

4α2
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(F x
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2 + (F y
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2 + (F z
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= m2
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=
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(F x
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n + λy)2 + (F z

n)2
(85)

Need to also use the !λ constraint, or you don’t go anywhere. Do the sums in the core,∑
core

mx
n =

∑
core

1

2αn
(F x

n + λx) = 0 −→ λx = −
∑

core F x
n /αn∑

core 1/αn∑
core

my
n =

∑
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1

2αn
(F y

n + λy) = 0 −→ λy = −
∑
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n/αn∑

core 1/αn
(86)
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Then the iteration algorithm to minimize the energy, while satisfying the length constraint,

would be

mx
i = m

F x
i

|!Fi|
, my

i = m
F y

i

|!Fi|
, mz

i = m
F z

i

|!Fi|
(81)

That has been the usual algorithm, just place each spin along the direction of the effective

field. Now to add the vortex position constraint, change to a new functional,

Λ[!mi] = E[!mi] +
∑

i

αi(!m
2
i −m2)− !λ ·

core∑
n

!mn (82)

The new Lagrange multiplier !λ is a vector with only x and y components. Now the mini-

mization equations are (in the core)
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Now we get the results (inside the core),
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So the constraint is just an extra magnetic field, applied only in the core. But to finish this,

need to determine these fields. That comes from using the spin length constraint,
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Need to also use the !λ constraint, or you don’t go anywhere. Do the sums in the core,∑
core
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∑

core F x
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Now we can see the algorithm for spin update is fairly simple. After calculating !λ, do

!mn = m
(F x

n + λx)x̂ + (F y
n + λy)ŷ + F z

n ẑ√
(F x

n + λx)2 + (F y
n + λy)2 + (F z

n)2
(87)

By its design, the result is obviously of length m. Further, it is clear that it must satisfy the

position constraint. This is the basic algorithm.

It can be improved slightly, taking into account the possibility to constrain a vortex

off center in a cell, and also, to allow for out-of-plane tilting in the core. So instead of

constraining the core sums to zero, we suppose they are constrained to a value that is set by

the initial configuration (although that may not be the best). The functional is modified to

Λ[!mi] = E[!mi] +
∑

i

αi(!m
2
i −m2)− !λ ·

(∑
core

!mn − !T

)
(88)

During the iteration, compute the nonzero sums∑
core

mx
n =

∑
core

1

2αn
(F x

n + λx) = Tx −→ λx =
Tx −

∑
core F x

n /αn∑
core 1/αn∑

core

my
n =

∑
core

1

2αn
(F y

n + λy) = Ty −→ λy =
Ty −

∑
core F y

n/αn∑
core 1/αn

(89)

The thing is, the spins will tilt out of plane in the vortex core. So we consider that the

constraining constant Tx and Ty are moving constraints. As the iteration proceeds, they are

continuously re-evaluated, according to

Tx =
∑
core

mx
n(0)

√
1− (mz

n/m)2 , Ty =
∑
core

my
n(0)

√
1− (mz

n/m)2 (90)

where !mn(0) are the original spins in the starting configuration, which give some values to

define the core location. In actual application, I used the 12 core spins, the ones closest to

the desired vortex center.

∗ Electronic address: wysin@phys.ksu.edu; URL: http://www.phys.ksu.edu/personal/wysin
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(length constraints)

(vortex position 
constraint)

Iterate, placing each dipole along its effective field:

Iterations . . .

A.

B.

C.

(not using Landau-Lifshitz dynamic equations)
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FIG. 2: (Color online) Result of the relaxation process for
a vortex in a nanodisk of radius R = 40a, height L = 6a,
using cell size a = 2.0 nm, λex = 5.3 nm, without applied
field. The total disk energy in units of Jcell = 2AL is shown
both before and after the converged relaxation, as a function
of the constrained center position of the vortex. The “before”
configuration consisted of a planar vortex; the relaxed con-
figuration has an out-of-plane tilting of the magnetization at
the vortex core.

By its design, the result is obviously of length m, which
is set to m = 1. Further, it is clear that the spin solution
must satisfy the position constraint (83). This is the
basic vortex position algorithm.

It can be improved slightly, taking into account the
possibility to constrain a vortex off-center in a cell, and
also, to allow for out-of-plane tilting of the dipoles in
the core. Instead of constraining the core sums to zero,
suppose they are constrained to a value !T = (Tx, Ty) that
is set by the initial configuration, which is supposed to
impose the desired position. The functional is modified
to

Λ[!mi] = E[!mi] +
∑

i

αi(!m
2
i − m2) − !λ ·

(∑
core

!mn − !T

)

(92)
During the iteration, compute the nonzero sums

∑
core

mβ
n =

∑
core

1

2αn

(
F β

n + λβ

)
= Tβ , β = x, y. (93)

The solution for the constraining field is now

λβ =
Tβ − ∑

core F β
n /αn∑

core 1/αn
. (94)

During iteration, the dipoles will tilt out of plane in the
vortex core. So we consider that the constraining param-
eters Tx and Ty are moving constraints that change as the
core dipoles tilt out of plane. As the iteration proceeds,
Tx and Ty are continuously re-evaluated, according to a
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FIG. 3: (Color online) The relaxed vortex potentials for dif-
ferent disk radii as indicated, in disks of height L = 6a = 12.0
nm. x0 is the horizontal displacement of the vortex core from
the center. The potential is softer (lower force constant) but
deeper in the wider disks.

definition,

Tβ =

[∑
core

mβ
n(0)

]〈√
1 − (mz

n/m)2
〉

, (95)

where !mn(0) are from the original starting configuration,
which give some values to define the core location. The
mz

n are the continuously changing out-of-plane compo-
nents, increasing mainly near the vortex core. The square
root factor gives the dipoles’ projections into the xy-
plane, which become smaller as the iteration proceeds.
We use the average over the core region. If the vortex
is centered in a unit cell, and the core region does not
extend beyond the system edge nor into a hole, this new
constraint has Tx = Ty = 0, reproducing constraint (83).
Nonzero values of Tx or Ty only come into play when the
vortex core is near an edge or hole in the system.

C. About the simulation parameters

The size of the core region is defined somewhat arbi-
trarily, using at least four cells, or other numbers such as
Nc = 12, 16, 24, 48, 96, all of which give a symmetrical set
of cells around a vortex located in the center of a unit
cell. In most of our application, we used 24 core cells,
defined as the ones closest to the desired vortex center.
The cell size used was a = 2.0 nm, slightly smaller than
the Permalloy exchange length λex = 5.3 nm.

In some cases the constraint produces particularly
strong forces in the system. To avoid production of unde-
sired solutions such as vortex-antivortex pairs, it is im-
portant that the diameter of the constrained region be
larger than the magnetic exchange length. The Nc con-
strained cells have a total area Nca2 = πr2

c , leading to

Example A.   Vortex-in-dot total energy
a=2.0 nm,  λex=5.3 nm,  L=12 nm, R=80 nm
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FIG. 4: (Color online) The relaxed vortex potentials for dif-
ferent disk radii as indicated, in very thin disks of height
L = 2a = 4.0 nm. The potential is softer in these thin disks
than in the thicker disks of Fig. 3, which makes it easier to
move the vortex around by an applied external field.

a constrained radius rc =
√

Nc/π a. The process does
result in a slight deformation of the vortex near its core.
This is to be expected, because of the competition be-
tween the long-range forces acting on the vortex and the
constraining forces applied on the core region. Relax-
ations that did not preserve the desired single vortex,
usually due to very large forces, were thrown out from
the results. These included vortex-free single-domain so-
lutions at high applied fields and other configurations.

The applied and demagnetization fields in the Hamil-
tonian (36) and its extension Λ["mi] in (92) appear mul-
tiplied by the factor (a/λex)2. In order to compare them
to the position constraint field "λ it makes sense to define
the scaled external field used in the simulations,

"hext =
a2

λ2
ex

H̃ext =
a2

λ2
ex

"Hext

MS
. (96)

In the calculations we specify the values of h = |"hext|.
In this way, "λ and "hext are in the same units. A similar
transformation can also be defined for scaled demagneti-
zation field. Indeed, this relation can be used in reverse
to define a physical field strength "Hλ that corresponds
to the constraint field "λ (switch "hext to "λ on LHS and
switch "Hext to "Hλ on RHS). For the simulations here,
the ratio λ2

ex/a2 ≈ 7.02 is needed for the conversion from
hy to Hext in units of MS

VI. EFFECTIVE VORTEX-IN-DOT
POTENTIALS

The approximate shape of the potential experienced by
a vortex can be obtained through the zero-temperature
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FIG. 5: (Color online) The constraining field λy needed to
insure a desired vortex location (x0, 0), for the disks of height
L = 6a = 12.0 nm whose potentials are shown in Fig. 3. The
vortex has a positive rotation of the magnetic moments (i.e.,
counterclockwise viewed from above, φ0 = +90◦, or C = +1).
When requiring a desired position (x0, 0) the constraining
field must be in the perpendicular direction. The constraining
field increases more slowly for the larger disks.
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FIG. 6: (Color online) The constraining field λy needed to
insure a desired vortex location (x0, 0), for the thinner disks
of height L = 6a = 12.0 nm whose potentials are shown in Fig.
4. The vortex has a positive rotation of the magnetic moments
(counterclockwise viewed from above). The constraining field
needed is weaker than that in the thicker disks. The large
nearly vertical sections are in unstable regions.

calculation of the total system energy described above,
for a sequence of constrained vortex locations, "X =
(x0, y0). The origin (0, 0) is the center of the disk; the
vortex is “moved” along the x-axis, taking y0 = 0. The
energy minimization is carried out while artificially hold-
ing the vortex in place at position "X via the constraining
field "λ that acts only on the Nc cells closest to the vortex

Example A.   Vortex-in-dot total energy
a=2.0 nm,  λex=5.3 nm,  L=4.0 nm, R=40, 80, 120 nm
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FIG. 2: (Color online) Result of the relaxation process for
a vortex in a nanodisk of radius R = 40a, height L = 6a,
using cell size a = 2.0 nm, λex = 5.3 nm, without applied
field. The total disk energy in units of Jcell = 2AL is shown
both before and after the converged relaxation, as a function
of the constrained center position of the vortex. The “before”
configuration consisted of a planar vortex; the relaxed con-
figuration has an out-of-plane tilting of the magnetization at
the vortex core.

By its design, the result is obviously of length m, which
is set to m = 1. Further, it is clear that the spin solution
must satisfy the position constraint (83). This is the
basic vortex position algorithm.

It can be improved slightly, taking into account the
possibility to constrain a vortex off-center in a cell, and
also, to allow for out-of-plane tilting of the dipoles in
the core. Instead of constraining the core sums to zero,
suppose they are constrained to a value !T = (Tx, Ty) that
is set by the initial configuration, which is supposed to
impose the desired position. The functional is modified
to

Λ[!mi] = E[!mi] +
∑

i

αi(!m
2
i − m2) − !λ ·

(∑
core

!mn − !T

)

(92)
During the iteration, compute the nonzero sums

∑
core

mβ
n =

∑
core

1

2αn

(
F β

n + λβ

)
= Tβ , β = x, y. (93)

The solution for the constraining field is now

λβ =
Tβ − ∑

core F β
n /αn∑

core 1/αn
. (94)

During iteration, the dipoles will tilt out of plane in the
vortex core. So we consider that the constraining param-
eters Tx and Ty are moving constraints that change as the
core dipoles tilt out of plane. As the iteration proceeds,
Tx and Ty are continuously re-evaluated, according to a
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FIG. 3: (Color online) The relaxed vortex potentials for dif-
ferent disk radii as indicated, in disks of height L = 6a = 12.0
nm. x0 is the horizontal displacement of the vortex core from
the center. The potential is softer (lower force constant) but
deeper in the wider disks.

definition,

Tβ =

[∑
core

mβ
n(0)

]〈√
1 − (mz

n/m)2
〉

, (95)

where !mn(0) are from the original starting configuration,
which give some values to define the core location. The
mz

n are the continuously changing out-of-plane compo-
nents, increasing mainly near the vortex core. The square
root factor gives the dipoles’ projections into the xy-
plane, which become smaller as the iteration proceeds.
We use the average over the core region. If the vortex
is centered in a unit cell, and the core region does not
extend beyond the system edge nor into a hole, this new
constraint has Tx = Ty = 0, reproducing constraint (83).
Nonzero values of Tx or Ty only come into play when the
vortex core is near an edge or hole in the system.

C. About the simulation parameters

The size of the core region is defined somewhat arbi-
trarily, using at least four cells, or other numbers such as
Nc = 12, 16, 24, 48, 96, all of which give a symmetrical set
of cells around a vortex located in the center of a unit
cell. In most of our application, we used 24 core cells,
defined as the ones closest to the desired vortex center.
The cell size used was a = 2.0 nm, slightly smaller than
the Permalloy exchange length λex = 5.3 nm.

In some cases the constraint produces particularly
strong forces in the system. To avoid production of unde-
sired solutions such as vortex-antivortex pairs, it is im-
portant that the diameter of the constrained region be
larger than the magnetic exchange length. The Nc con-
strained cells have a total area Nca2 = πr2

c , leading to



Example A.   Vortex-in-dot constraint field, λ=(0,λy)
a=2.0 nm,  λex=5.3 nm,  L=12 nm, R=40, 80, 120 nm11
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FIG. 4: (Color online) The relaxed vortex potentials for dif-
ferent disk radii as indicated, in very thin disks of height
L = 2a = 4.0 nm. The potential is softer in these thin disks
than in the thicker disks of Fig. 3, which makes it easier to
move the vortex around by an applied external field.

a constrained radius rc =
√

Nc/π a. The process does
result in a slight deformation of the vortex near its core.
This is to be expected, because of the competition be-
tween the long-range forces acting on the vortex and the
constraining forces applied on the core region. Relax-
ations that did not preserve the desired single vortex,
usually due to very large forces, were thrown out from
the results. These included vortex-free single-domain so-
lutions at high applied fields and other configurations.

The applied and demagnetization fields in the Hamil-
tonian (36) and its extension Λ["mi] in (92) appear mul-
tiplied by the factor (a/λex)2. In order to compare them
to the position constraint field "λ it makes sense to define
the scaled external field used in the simulations,

"hext =
a2

λ2
ex

H̃ext =
a2

λ2
ex

"Hext

MS
. (96)

In the calculations we specify the values of h = |"hext|.
In this way, "λ and "hext are in the same units. A similar
transformation can also be defined for scaled demagneti-
zation field. Indeed, this relation can be used in reverse
to define a physical field strength "Hλ that corresponds
to the constraint field "λ (switch "hext to "λ on LHS and
switch "Hext to "Hλ on RHS). For the simulations here,
the ratio λ2

ex/a2 ≈ 7.02 is needed for the conversion from
hy to Hext in units of MS

VI. EFFECTIVE VORTEX-IN-DOT
POTENTIALS

The approximate shape of the potential experienced by
a vortex can be obtained through the zero-temperature
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FIG. 5: (Color online) The constraining field λy needed to
insure a desired vortex location (x0, 0), for the disks of height
L = 6a = 12.0 nm whose potentials are shown in Fig. 3. The
vortex has a positive rotation of the magnetic moments (i.e.,
counterclockwise viewed from above, φ0 = +90◦, or C = +1).
When requiring a desired position (x0, 0) the constraining
field must be in the perpendicular direction. The constraining
field increases more slowly for the larger disks.

-120 -80 -40 0 40 80 120
x

0 
(nm)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

!
y

R=40a

R=20a

R=60a

Uniform dot, 1 vortex
L=2a, a=2.0 nm

FIG. 6: (Color online) The constraining field λy needed to
insure a desired vortex location (x0, 0), for the thinner disks
of height L = 6a = 12.0 nm whose potentials are shown in Fig.
4. The vortex has a positive rotation of the magnetic moments
(counterclockwise viewed from above). The constraining field
needed is weaker than that in the thicker disks. The large
nearly vertical sections are in unstable regions.

calculation of the total system energy described above,
for a sequence of constrained vortex locations, "X =
(x0, y0). The origin (0, 0) is the center of the disk; the
vortex is “moved” along the x-axis, taking y0 = 0. The
energy minimization is carried out while artificially hold-
ing the vortex in place at position "X via the constraining
field "λ that acts only on the Nc cells closest to the vortex
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FIG. 7: (Color online) Relaxed vortex potentials for a disk
of radius R = 40a = 80.0 nm, height L = 6a = 12.0 nm, in
the presence of an externally applied field. The curves are
labeled by the dimensionless scaled field hy, that gives the
physical field in units of saturation magnetization as Hy =
Ms(λex/a)2hy . The minimum-energy position shifts almost
linearly with applied field. There is no vortex confined in the
disk for when hy surpasses ≈ 0.008 .

core. (Mostly we used Nc = 24.) The definition of core
sites is rather liberal. If the vortex position !X is some-
where inside a hole, then the Nc cells whose centers fall
closest to !X are considered the core, although they fall
along the edge of the hole, and might be well-separated
from !X and from each other.

One iteration step involves changing all N cells. Typ-
ically hundreds or even thousands of iterations are re-
quired until the energy becomes accurate to 1 part in 107.
The iteration was stopped when the average changes per
iteration in the unit vector components (!m) fell below
10−7, according to 〈|∆mx| + |∆my| + |∆mz|〉 < 10−7.
Outside the core, all dipoles are completely free to move
so as to lower their energy. Within the core, they move
only as allowed by the Lagrange field !λ. The core obtains
a slight shape deformation due to !λ.

A typical result for the system energy before and after
the Lagrange constrained relaxation is shown in Fig. 2,
for a disk of 160 nm diameter, 12 nm thick. The energy
moves downward by about 5Jcell due to the relaxation,
while maintaining a potential very close to a parabolic
shape, U(x0) = U0 + 1

2kx2
0.

A. Uniform cylindrical dots

Fig. 3 shows vortex-dot potentials for different sized
dots of thickness L = 6a = 12 nm, not containing holes.
The diameters are D = 60 nm, 120 nm, 180 nm. Fig. 4
shows the corresponding vortex-dot potentials in thinner
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FIG. 8: (Color online) For disks of height L = 6a = 12.0 nm,
the equilibrium vortex position (from Fig. 7) as a function
of the applied field in scaled dimensionless form, hy. The
physical field in units of saturation magnetization is Hy =
Ms(λex/a)2hy . The curves are labeled by the disk radius.
The upward arrows indicate the points beyond which there is
no stable vortex solution in the nanodisk.

dots, of thickness L = 2a = 4 nm. The vortex position
was scanned across a diameter of the dot, !X = (x0, 0).
The depth of the overall potential well increases with
dot diameter and with dot thickness. There is a high
relative potential near the dot’s edge that stabilizes the
vortex within the dot. If the dot is too small, the vor-
tex destabilizes to a quasi-single-domain state. This can
be attributed to the fact that the vortex potential well
becomes flatter with reduced dot diameter.

The corresponding constraining fields λy are displayed
in Figures 5 and 6 for the two different dot thicknesses.
The simulations were carried out for a vortex of positive
circulation (φ0 = +90◦ or C = +1). This requires a neg-
ative λy for a positive displacement x0. When the vortex
is near the disk center, the constraining field is propor-
tional to x0. For a vortex located far from the disk center,
λy reverses, but this occurs in the unstable region where
the vortex will not be naturally confined in the disk. One
can see that λy changes sign at the same point where the
potential has a local maximum near the disk edge. As ex-
pected from the form of the potentials, the thinner disks
require a smaller constraining field, consistent with their
smaller force constants.

For x0 < R/2, the vortex potentials are very accurately
fit by a parabolic form, U(x0) = U0 + 1

2kx2
0. The effec-

tive force constants for the two different disks thicknesses
of 4.0 nm and 12.0 nm are displayed in Table I. The
force constant decreases with increasing diameter, and
increases with disk thickness. Typical values of this force
constant for the disks studied, range from k ∼ 0.02A/a
to k ∼ 0.4A/a or about 0.1 – 2.6 pN/nm in Py.
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FIG. 7: (Color online) Relaxed vortex potentials for a disk
of radius R = 40a = 80.0 nm, height L = 6a = 12.0 nm, in
the presence of an externally applied field. The curves are
labeled by the dimensionless scaled field hy, that gives the
physical field in units of saturation magnetization as Hy =
Ms(λex/a)2hy . The minimum-energy position shifts almost
linearly with applied field. There is no vortex confined in the
disk for when hy surpasses ≈ 0.008 .

core. (Mostly we used Nc = 24.) The definition of core
sites is rather liberal. If the vortex position !X is some-
where inside a hole, then the Nc cells whose centers fall
closest to !X are considered the core, although they fall
along the edge of the hole, and might be well-separated
from !X and from each other.

One iteration step involves changing all N cells. Typ-
ically hundreds or even thousands of iterations are re-
quired until the energy becomes accurate to 1 part in 107.
The iteration was stopped when the average changes per
iteration in the unit vector components (!m) fell below
10−7, according to 〈|∆mx| + |∆my| + |∆mz|〉 < 10−7.
Outside the core, all dipoles are completely free to move
so as to lower their energy. Within the core, they move
only as allowed by the Lagrange field !λ. The core obtains
a slight shape deformation due to !λ.

A typical result for the system energy before and after
the Lagrange constrained relaxation is shown in Fig. 2,
for a disk of 160 nm diameter, 12 nm thick. The energy
moves downward by about 5Jcell due to the relaxation,
while maintaining a potential very close to a parabolic
shape, U(x0) = U0 + 1

2kx2
0.

A. Uniform cylindrical dots

Fig. 3 shows vortex-dot potentials for different sized
dots of thickness L = 6a = 12 nm, not containing holes.
The diameters are D = 60 nm, 120 nm, 180 nm. Fig. 4
shows the corresponding vortex-dot potentials in thinner
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FIG. 8: (Color online) For disks of height L = 6a = 12.0 nm,
the equilibrium vortex position (from Fig. 7) as a function
of the applied field in scaled dimensionless form, hy. The
physical field in units of saturation magnetization is Hy =
Ms(λex/a)2hy . The curves are labeled by the disk radius.
The upward arrows indicate the points beyond which there is
no stable vortex solution in the nanodisk.

dots, of thickness L = 2a = 4 nm. The vortex position
was scanned across a diameter of the dot, !X = (x0, 0).
The depth of the overall potential well increases with
dot diameter and with dot thickness. There is a high
relative potential near the dot’s edge that stabilizes the
vortex within the dot. If the dot is too small, the vor-
tex destabilizes to a quasi-single-domain state. This can
be attributed to the fact that the vortex potential well
becomes flatter with reduced dot diameter.

The corresponding constraining fields λy are displayed
in Figures 5 and 6 for the two different dot thicknesses.
The simulations were carried out for a vortex of positive
circulation (φ0 = +90◦ or C = +1). This requires a neg-
ative λy for a positive displacement x0. When the vortex
is near the disk center, the constraining field is propor-
tional to x0. For a vortex located far from the disk center,
λy reverses, but this occurs in the unstable region where
the vortex will not be naturally confined in the disk. One
can see that λy changes sign at the same point where the
potential has a local maximum near the disk edge. As ex-
pected from the form of the potentials, the thinner disks
require a smaller constraining field, consistent with their
smaller force constants.

For x0 < R/2, the vortex potentials are very accurately
fit by a parabolic form, U(x0) = U0 + 1

2kx2
0. The effec-

tive force constants for the two different disks thicknesses
of 4.0 nm and 12.0 nm are displayed in Table I. The
force constant decreases with increasing diameter, and
increases with disk thickness. Typical values of this force
constant for the disks studied, range from k ∼ 0.02A/a
to k ∼ 0.4A/a or about 0.1 – 2.6 pN/nm in Py.
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FIG. 4: (Color online) The relaxed vortex potentials for dif-
ferent disk radii as indicated, in very thin disks of height
L = 2a = 4.0 nm. The potential is softer in these thin disks
than in the thicker disks of Fig. 3, which makes it easier to
move the vortex around by an applied external field.

a constrained radius rc =
√

Nc/π a. The process does
result in a slight deformation of the vortex near its core.
This is to be expected, because of the competition be-
tween the long-range forces acting on the vortex and the
constraining forces applied on the core region. Relax-
ations that did not preserve the desired single vortex,
usually due to very large forces, were thrown out from
the results. These included vortex-free single-domain so-
lutions at high applied fields and other configurations.

The applied and demagnetization fields in the Hamil-
tonian (36) and its extension Λ["mi] in (92) appear mul-
tiplied by the factor (a/λex)2. In order to compare them
to the position constraint field "λ it makes sense to define
the scaled external field used in the simulations,

"hext =
a2

λ2
ex

H̃ext =
a2

λ2
ex

"Hext

MS
. (96)

In the calculations we specify the values of h = |"hext|.
In this way, "λ and "hext are in the same units. A similar
transformation can also be defined for scaled demagneti-
zation field. Indeed, this relation can be used in reverse
to define a physical field strength "Hλ that corresponds
to the constraint field "λ (switch "hext to "λ on LHS and
switch "Hext to "Hλ on RHS). For the simulations here,
the ratio λ2

ex/a2 ≈ 7.02 is needed for the conversion from
hy to Hext in units of MS

VI. EFFECTIVE VORTEX-IN-DOT
POTENTIALS

The approximate shape of the potential experienced by
a vortex can be obtained through the zero-temperature
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FIG. 5: (Color online) The constraining field λy needed to
insure a desired vortex location (x0, 0), for the disks of height
L = 6a = 12.0 nm whose potentials are shown in Fig. 3. The
vortex has a positive rotation of the magnetic moments (i.e.,
counterclockwise viewed from above, φ0 = +90◦, or C = +1).
When requiring a desired position (x0, 0) the constraining
field must be in the perpendicular direction. The constraining
field increases more slowly for the larger disks.
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FIG. 6: (Color online) The constraining field λy needed to
insure a desired vortex location (x0, 0), for the thinner disks
of height L = 6a = 12.0 nm whose potentials are shown in Fig.
4. The vortex has a positive rotation of the magnetic moments
(counterclockwise viewed from above). The constraining field
needed is weaker than that in the thicker disks. The large
nearly vertical sections are in unstable regions.

calculation of the total system energy described above,
for a sequence of constrained vortex locations, "X =
(x0, y0). The origin (0, 0) is the center of the disk; the
vortex is “moved” along the x-axis, taking y0 = 0. The
energy minimization is carried out while artificially hold-
ing the vortex in place at position "X via the constraining
field "λ that acts only on the Nc cells closest to the vortex

Example B.  Effect of an 
applied magnetic field, Hy
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FIG. 1: Behavior of cell dipoles around a vortex core, with
cell size a = 2.0 nm. The arrows’ lengths in this view are
proportional to each cell’s out-of-plane magnetization com-
ponent, mz. Spatial variations in mz occur over an exchange
length λex = 5.3 nm.

When combined with the length constraint we get

!m2
i =

1

4α2
i

[(F x
i )2 + (F y

i )2 + (F z
i )2] = m2,

αi =
1

2m

∣∣∣!Fi

∣∣∣ . (81)

Then the iteration algorithm to minimize the energy,
while satisfying the length constraint, would be

mβ
i = m

F β
i

|!Fi|
. (82)

This is the usual “local field relaxation” algorithm for en-
ergy minimization, scaling to unit lengths, m = 1. Each
dipole is placed along the direction of the effective field
acting on it, and the process is repeated iteratively until
a desired precision is achieved. It was used in Ref. 43,
although not developed there by the Lagrange technique.

B. Constrained vortex core position

The vortex core position can be controlled by including
an additional constraint. As a first approximation, with
Nc = 4 core cells symmetrically located around the core
position (Fig. 1), the core dipoles are assumed to satisfy
a constraint

Nc∑
i=1

mx
i =

Nc∑
i=1

my
i = 0 (83)

This would hold if a vortex is centered at the common
corner of the four grid cells, see Figure 1. This term is
included to make a new functional, applied when using
Nc core sites (where Nc may be greater than four):

Λ[!mi] = E[!mi] +
∑

i

αi(!m
2
i − m2) − !λ ·

Nc∑
n=1

!mn (84)

The new Lagrange multiplier !λ is a vector with only x
and y components. Now the minimization equations (in
the core region) are

∂Λ

∂mx
n

=
∂E

∂mx
n

+ 2αnmx
n − λx = 0

∂Λ

∂my
n

=
∂E

∂my
n

+ 2αnmy
n − λy = 0

∂Λ

∂mz
n

=
∂E

∂mz
n

+ 2αnmz
n = 0 (85)

The results inside the core are

−F x
n + 2αnmx

n − λx = 0 −→ mx
n =

1

2αn
(F x

n + λx)

−F y
n + 2αnmy

n − λy = 0 −→ my
n =

1

2αn
(F y

n + λy)

−F x
n + 2αnmz

n = 0 −→ mz
n =

1

2αn
F z

i (86)

The constraint is just an extra magnetic field, applied
only in the core cells. To complete the solution, one
needs to determine that field. That comes from using
the spin length constraint,

!m2
n =

1

4α2
n

[
(F x

n + λx)2 + (F y
n + λy)2 + (F z

n )2
]

= m2,

(87)
which gives

1

αn
=

2m√
(F x

n + λx)2 + (F y
n + λy)2 + (F z

n)2
. (88)

The constraint (83) also has to be applied to make the
solution complete. Doing the sums in the core,

∑
core

mβ
n =

∑
core

1

2αn
(F β

n + λβ) = 0, (89)

this leads to (for β = x, y only)

λβ = −
∑

core F β
n /αn∑

core 1/αn
. (90)

Now we can see the algorithm for spin update is fairly
simple. Initially, !λ is set to zero. On each iteration step
the new value of !λ is found from expressions (88) and
(90). Then do

!mn = m
(F x

n + λx)x̂ + (F y
n + λy)ŷ + F z

n ẑ√
(F x

n + λx)2 + (F y
n + λy)2 + (F z

n )2
. (91)
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hy = 0.002. The background potential, without the hole,
is shallower than that for the thicker dots. Stated dif-
ferently, the local potential due to the hole is empha-
sized compared to the background, as already seen in
Fig. 12. Even so, there are two minima present, for both
hole sizes, although the outer minimum is close to being
unstable. The outer minimum will destabilize around
hy ≈ 0.0024 (see Fig. 9), reaching a field that will expel
the vortex from the hole. Thus, the threshold field, which
is greater than 0.0024, will simply remove the vortex en-
tirely from the dot, without bistable switching between
internal vortex states.

Still, the above results are useful because they describe
the typical field strengths needed for these transitions.
For the cell size a = 2.0 nm and Permalloy exchange
length, the physical field strength relative to saturation
magnetization is Hy/MS ≈ 7hy. These switching events
take place at very modest field strengths, which are even
lower in the thinner disks.

VII. DISCUSSION AND CONCLUSIONS

A modification of the usual micromagnetics approach
is developed here, constraining a desired vortex location
so the the vortex-in-nanodot effective potential energy
could be mapped out. For thin enough disks, the 3D
demagnetization problem is replaced by a 2D problem,
with special Green’s functions !Gxy and Gz to give the
in-plane and out-of-plane components of the demagne-
tization field. An averaging procedure on Gz near the
origin is used to remove its divergence. The micromag-
netics is carried out on a grid with cells of size a× a×L.

The Lagrange underdetermined field !λ is included to
enforce the vortex core position; it is applied over a se-
lected core region of 24 cells in most of the calculations.
Without !λ present, the vortex would simply move to its
lowest energy position. The coupling of the vortex circu-
lation with !λ leads to the result that a vortex displace-
ment along one axis requires !λ along a perpendicular
axis. We can define a circulation vector of the vortex
as !C = Cẑ, where C = ±1 is the sense of its rotation in
the xy-plane. Then it can be seen that the force on the
vortex, due to the constraint field !λ acts in the direction
of !Fλ ∝ !C×!λ. If the constraint is removed, we can expect
that the instantaneous dynamic force on a vortex should
act oppositely to this result. However, the coupling of the
force with the vortex gyrovector leads to dynamics that
involves a Magnus type interaction, hence, the vortex ac-
celeration could be perpendicular to the directon of that
force.

For small displacements x0 from the disk center, the
constraint field component λy is roughly proportional to
the displacement, and reverses sign with the circulation.
It is helpful to write this in the form x0 ≈ −αCλy , where
α is a proportionality constant that depends on the disk
radius, thickness, and core area used. α can be obtained

as the reciprocal of the slope near the origin of the curves
in Figs. 5 and 6. Transforming λy into its equivalent
magnetic field intensity Hλ, via relation (96), leads to a
relation,

x0 = −αC
a2

λ2
ex

Hλ

MS
(97)

The relation suggests the constraining field needed, as
a fraction of the saturation field, necessary acting on
the core to hold the vortex at x0. For instance, for a
disk with R = 40a, L = 6a, the inverse slope in Fig. 5
gives α ≈ −650 nm, while the ratio a2/λ2

ex ≈ 1/7. Then
x0 ≈ −(90 nm) (Hλ/MS); a constraint field at 10% of
saturation would secure the vortex about 9 nm from the
disk center. On the other hand, to secure the vortex
near x0 = 70 nm requires Hλ approaching saturation.
In fact, the curves in Fig. 5 turn over close to satura-
tion, whereas, for the thinner disks of Fig. 6, values of α
are larger and the core constraint field does not get close
to saturation. This shows how in fact the calculational
procedure is more reliable for thinner disks, as expected.
The constraint field, however, is just a calculational de-
vice, and the values estimated here are not expected to
have a real existence in experiments.

The effective potentials found with an applied field
have minima at the unforced equilibrium vortex location.
When the vortex is there, the constraint field !λ required
is zero. A relation for the vortex equilibrium location
in terms of applied field holds approximately, similar to
(97), but with a different proportionality constant, β:

x0 = −βC
a2

λ2
ex

Hy

MS
(98)

This results from a basic definition, x0 = −βChy. Values
of β can be estimated from the slopes near the origin in
Figs. 8 and 10. For instance, again for R = 40a, L = 6a,
one gets β ≈ 8500 nm, whereas, for R = 40a, L = 2a,
the value is much larger: β ≈ 24000 nm. This quanti-
fies the much greater ease with which the vortex position
can be shifted in the thinner disks. For the thicker disks
with L = 6a, we get x0 ≈ −(1200 nm) CHy/MS, and
the vortex is pushed out of the disk at Hy/MS ≈ 0.056.
For the thinner disks with L = 2a, the relation is
x0 ≈ −(3400 nm) CHy/MS, and the vortex is pushed
out at Hy/MS ≈ 0.016. Control of vortex position in
these examples, then, requires very modest applied fields,
that increase with disk thickness and decrease with disk
radius, see Figs. 8 and 10.

Our calculations with a central nonmagnetic “hole re-
gion” confirm earlier works that show their pinning ef-
fects. In addition, the depth of the pinning potential is
seen to increase quickly with the hole size. When an ex-
ternal magnetic field is applied, for appropriate parame-
ters it is possible to create an effective potential with two
minima for the vortex position. It should be possible to
switch the vortex reversibly between these states, with-
out expelling it entirely from the nanodot. Really, the

equilibrium 
position  
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FIG. 11: (Color online) Relaxed vortex potentials for dots of
radius R = 30a = 60.0 nm, height L = 6a = 12 nm, both
without and with a central hole of radius Rh as indicated.
The central hole provides a very strong confining potential.
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FIG. 12: (Color online) Relaxed vortex potentials for thin
dots of radius R = 30a = 60.0 nm, height L = 2a = 4.0
nm, both without and with a central hole of radius Rh as
indicated.

exerts a strong attractive force on the vortex, as seen by
the steeper potential there. Far from the hole, however,
there is little influence on the vortex and the potential
follows the potential for the uniform dot.

D. Cylindrical dot with a central hole in applied
field

For various reasons, it would be useful to estimate
the applied field needed to pull a vortex out of a hole
(threshold field). If the hole is a designed feature of the
dot, then this can predict vortex stability with respect to
field variations, or, give an estimate of the field required
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FIG. 13: (Color online) Relaxed vortex potentials for disks
of radius R = 30a = 60.0 nm, height L = 6a = 12 nm, with
applied field hy = 0.004, both without and with a central
hole of radius Rh as indicated. Note the two minima for the
system with the smaller hole.
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FIG. 14: (Color online) Relaxed vortex potentials for disks
of radius R = 30a = 60.0 nm, height L = 6a = 12 nm, with
applied field hy = 0.006, both without and with a central hole
of radius Rh as indicated. The minimum at the smaller hole
has destabilized.

to liberate the vortex in a controlled way. Further, the
threshold field could be important for vortex switching
between pairs of holes.

For dots with R = 30a = 60 nm, L = 6a = 12 nm,
some vortex-dot potentials with applied field hy = 0.004
are shown in Fig. 13, at the two holes sizes used above.
For the smaller hole size, Rh = 1.5a = 3.0 nm, one
sees that the vortex will be confined either in the hole
or at a position x0 ≈ −22 nm, with only a very low
potential barrier between the two states. Clearly this
situation offers an opportunity for bistable operation be-
tween these two vortex states. For the larger sized hole,
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-60 -40 -20 0 20 40 60
x

0
 (nm)

6

8

10

12

14

16

E
/(

2
A

L
)

no hole
R

h
=1.5a

R
h
=3.0aL=2a,     h=0

R=30a,  a=2.0 nm

Dot with vortex

FIG. 12: (Color online) Relaxed vortex potentials for thin
dots of radius R = 30a = 60.0 nm, height L = 2a = 4.0
nm, both without and with a central hole of radius Rh as
indicated.

exerts a strong attractive force on the vortex, as seen by
the steeper potential there. Far from the hole, however,
there is little influence on the vortex and the potential
follows the potential for the uniform dot.

D. Cylindrical dot with a central hole in applied
field

For various reasons, it would be useful to estimate
the applied field needed to pull a vortex out of a hole
(threshold field). If the hole is a designed feature of the
dot, then this can predict vortex stability with respect to
field variations, or, give an estimate of the field required
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FIG. 14: (Color online) Relaxed vortex potentials for disks
of radius R = 30a = 60.0 nm, height L = 6a = 12 nm, with
applied field hy = 0.006, both without and with a central hole
of radius Rh as indicated. The minimum at the smaller hole
has destabilized.

to liberate the vortex in a controlled way. Further, the
threshold field could be important for vortex switching
between pairs of holes.

For dots with R = 30a = 60 nm, L = 6a = 12 nm,
some vortex-dot potentials with applied field hy = 0.004
are shown in Fig. 13, at the two holes sizes used above.
For the smaller hole size, Rh = 1.5a = 3.0 nm, one
sees that the vortex will be confined either in the hole
or at a position x0 ≈ −22 nm, with only a very low
potential barrier between the two states. Clearly this
situation offers an opportunity for bistable operation be-
tween these two vortex states. For the larger sized hole,
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• Used a modified micromagnetics description, 
demagnetization field found via FFT evaluation  
with Green’s functions for a thin disk.

• A constraining (magnetic) field (λx,λy) in the 
vortex core was found using Lagrange’s 
undetermined multipliers.

• Can find the effective potential for vortex motion 
within a dot, which could be useful for analysis of 
vortex dynamics.

Summary
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