$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \to \to \to \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

Two-Dimensional Nanomagnetics

2014

Gary Wysin Kansas State University Manhattan, Kansas, U.S.A.

wysin@phys.ksu.edu www.phys.ksu.edu/personal/wysin

Magnetic Nano-Islands

Approx. 50 nm - 5 µm wide but only 10 nm thick. Individual & in arrays, high-permeability soft magnetic materials. Grown with techniques of epitaxy & lithography on a non-magnetic substrate. Form arrays of particles that can interact with each other or applied fields.

Primary physics effects -

magnetostatics controlled by island geometry. discrete energy states for data storage. spintronics controlled by current injection. magnetic oscillators controlled by applied fields. frustration in ordered arrays of islands (spin-ice).

Several principle states of a nano-island:

(1) quasi-single domain; (2) vortex; (3) multi-domains & domain walls.

~ increasing size ~

Magnetic nano-island applications

- remory elements, signal processing
- ren non-volatile data storage (magnetic ram)
- use in sensors of (giant) magneto-resistance (GMR)
- integration into spintronics (switching between states via spin polarized currents.)
- a one-vortex state with small stray magnetic field.

Three things to be studied:

I) Vortices. The static and dynamic properties of single vortices. They behave very much as particles with charges.

2) Magnetostatic anisotropy of the islands themselves. Also known as shape anisotropy because it depends mostly on the surfaces.

3) Spin-ices. Especially for elongated islands with Ising-like states, interactions within their arrays, that lead to frustrated statics and dynamics.

Magnetostatics - For $L_X \times L_Y \times L_Z$ elliptical islands.

Basic theory of magnetostatic energy and demagnetization:

Maxwell eqns, for H_M caused by M: $\vec{\nabla} \cdot \vec{B} = 0$, $\vec{B} = \mu_0 (\vec{H}_M + \vec{M})$. The magnetostatic energy is: $E_M = -\frac{1}{2}\mu_0 \int dV \ \vec{M} \cdot \vec{H}_M$. The demagnetization field solves: $\vec{\nabla} \cdot \vec{H}_M = -\vec{\nabla} \cdot \vec{M}$. $\rho_M = -\vec{\nabla} \cdot \vec{M}$.

Put:
$$\vec{H}_M = -\vec{\nabla} \Phi_M \Rightarrow$$

$$\nabla^2 \Phi_M = -\rho_M.$$

Poisson's equation.

(2) Vortex state

Very little magnetic surface charge density. Stable only above a minimum radius

$$\sigma_M = \vec{M} \cdot \hat{n},$$

Has poles $(\sigma_M = \pm M_z)$ only in the core. Their energy is small.

Now the energy of FM exchange is greater.

Model for a cylindrical islands, radii R_A, R_B, height L.

 \blacktriangleright Divide the sample into cells of size a x a x L.

Assume that the magnetization is saturated (M_s) inside each cell: |m|=1. Only the directions vary between cells.

The cells interact as dipoles, with exchange energy between neighbors & with the demagnetization field.

Micromagnetics _

Hamiltonian:

$$\mathcal{H}=\mathcal{H}_{ex}+\mathcal{H}_{demag}+\mathcal{H}_{B}$$

1

exchange:
$$\mathcal{H}_{ex} = A \int dV \, \nabla \hat{m} \cdot \nabla \hat{m},$$

magnetostatic \mathcal{H}_{c} (demagnetization):

$$_{\rm dd} = \mathcal{H}_{\rm demag} = -\frac{1}{2}\mu_0 \int dV \ \vec{H}_M \cdot \vec{M}$$

applied field:
$$\mathcal{H}_B = -\mu_0 \int dV \ \vec{H}_{\text{ext}} \cdot \vec{M}$$

Statics: minimize the energy \Rightarrow stable configurations. Dynamics: equation of motion \Rightarrow periodic configurations.

Difficulties:

- (i) Calculating the demagnetization field H_M ;
- (ii) Enforcing a desired initial position, X, of a vortex \Rightarrow E(X).

Scale energies by the exchange between cells:

$$J_{\rm cell} = \frac{2Av_{\rm cell}}{a^2} = 2AL.$$

"magnetic exchange length"

$$\lambda_{\rm ex} = \sqrt{\frac{2A}{\mu_0 M_S^2}}$$

demag. field:

 $\vec{H}_M = M_S \tilde{H}_M$

Hamiltonian on the grid of cells:

$$\mathcal{H}_{\rm mm} = -J_{\rm cell} \left\{ \sum_{(i,j)} \hat{m}_i \cdot \hat{m}_j + \left(\frac{a}{\lambda_{\rm ex}}\right)^2 \sum_i \left(\tilde{H}_{\rm ext} + \frac{1}{2}\tilde{H}_M\right) \cdot \hat{m}_i \right\}$$

Need
$$\left(\frac{a}{\lambda_{ex}}\right)^2$$
 less than 1 for reliable solutions.
(cells smaller than exchange length)

Finding the demagnetization field via Green/FFT approach.

The magnetostatics problem has no free currents:

$$-\tilde{\nabla}^2\tilde{\Phi}=\tilde{\rho} \qquad \qquad \tilde{\rho}\equiv-\tilde{\nabla}\cdot\hat{m} \qquad \qquad \tilde{H}_M=-\tilde{\nabla}\tilde{\Phi}$$

use Green's function solution:

$$\tilde{\Phi}(\vec{r}) = \int d^3r' \ G(\vec{r}, \vec{r}') \ \tilde{\rho}(\vec{r}') \qquad \qquad G(\vec{r}, \vec{r}') = \frac{1}{4\pi |\vec{r} - \vec{r}'|}$$

specialize to a thin cylinder (2D) geometry: $\tilde{r} \equiv (x, y)$

$$\tilde{H}_{z}(\tilde{r}) = \int d^{2}\tilde{r}' \ G_{z}(\tilde{r} - \tilde{r}') \ m_{z}(\tilde{r}') \qquad G_{z}(\tilde{r}) = \frac{1}{2\pi L} \left[\frac{1}{\sqrt{\tilde{r}^{2} + L^{2}}} - \frac{1}{|\tilde{r}|} \right]$$
$$\tilde{H}_{xy}(\tilde{r}) = \int d^{2}\tilde{r}' \ \vec{G}_{xy}(\tilde{r} - \tilde{r}') \ \tilde{\rho}(\tilde{r}') \qquad \vec{G}_{xy}(\tilde{r}) = \frac{1}{2\pi L} \left[\sqrt{1 + \left(\frac{L}{\tilde{r}}\right)^{2}} - 1 \right] \hat{e}_{\tilde{r}}$$

Other details.

The magnetic charge densities depend on the present magnetic configuration, such as:

Convolutions are evaluated using fast fourier transforms.

Use zero padding to avoid the wrap-around problem: FFT grid is 2X larger than original system to avoid false copies.

The solution for demagnetization field is that for an island isolated from others.

1) Vortices: Particle-like properties

"vorticity charge"

$$q = \frac{1}{2\pi} \oint \vec{\nabla} \phi \cdot d\vec{r} = 0, \pm 1$$

circulation or curling $C = \frac{1}{N} \sum_{i} \hat{\sigma}_{i} \cdot \hat{\phi}_{i} \quad \hat{\sigma}_{i} = \vec{\mu}_{i}/\mu.$ -1 ≤ C ≤ +1

polarization $P = m_z = \pm 1$ in the nucleus

"topological charge = gyrovector"

G=2πpq= solid angle mapped out by all the spins

Vortex, q=+1, p=+1 R=30nm, L=8nm

t= 0.00 E=10.37 ex= 8.33 ddx= 0.75 ddz= 1.29 eb=-0.00

t= 0.00 E=10.37 ex= 8.33 ddx= 0.75 ddz= 1.29 eb=-0.00

Sys 1/1, 716 Spins

State 6/7

Gyrotropic movement

t= 0.00 E=11.27 ex= 7.46 ddx= 2.25 ddz= 1.56 eb=-0.00

R=30 nm, L=10 nm, cells a=2.0 nm

Vortex, q=+1, p=+1

The arrows are proportional to Mz, out of the plane.

time unit = 0.75 ps

Example. Total energy of a vortex, $E(x_0) \approx \frac{1}{2} k_F x_0^2$ a=2.0 nm, $\lambda_{ex} = 5.3$ nm, L=12 nm, R=40, 80, 120 nm

Example. Total energy of a vortex, $E(x_0) \approx \frac{1}{2} k_F x_0^2$ a=2.0 nm, $\lambda_{ex} = 5.3$ nm, L=4.0 nm, R=40, 80, 120 nm

Gyrotropic movement

t= 0.00 E=11.19 ex= 7.59 ddx= 2.02 ddz= <u>1.58 eb=-0.00</u>

R=30 nm, L=5 nm, cells a=2.0 nm α=0.02

gyrovector: $\mathbf{G} = 2\pi Q \hat{z}$ $Q = \pm 1$

$$\frac{\gamma}{m_0}\mathbf{F} + \mathbf{G} \times \mathbf{V} = 0.$$

$$m_0 = \mu/a^2 = LM_s$$

With temperature T>0. For the movement in one cell:

$$\frac{d\hat{m}}{d\tau} = \hat{m} \times \left(\vec{b} + \vec{b}_s\right) - \alpha \hat{m} \times \left[\hat{m} \times \left(\vec{b} + \vec{b}_s\right)\right]$$

stochastic fields

fluctuation-dissipation theorem:

$$\langle b_s^{\alpha}(\tau) \, b_s^{\beta}(\tau') \rangle = 2\alpha \, \mathcal{T} \, \delta_{\alpha\beta} \, \delta(\tau - \tau') \qquad \qquad \mathcal{T} \equiv \frac{kT}{J_{\text{cell}}} = \frac{kT}{2AL}$$

(the stochastic fields carry thermal energy & power)

We can integrate with Heun's 2nd order algorithm:

- A. Euler predictor step.
- B. Trapezoid corrector step.

Spontaneous gyrotropic movement for T>0 (ellipse)

initial position x₀=y₀=0

> time unit = 0.75 ps

Spontaneous gyrotropic movement for T>0 (ellipse)

initial position $x_0 = y_0 = 0$

The large arrow = <M>. Note its faster oscillations.

> time unit = 0.75 ps

The distribution of vortex radial coordinate in a circular nanodisk. data points = simulation. curves = Boltzman distribution.

$$p(r) = \beta k_F r \, e^{-\frac{1}{2}\beta k_F r^2}$$

PHYSICAL REVIEW B 86, 104421 (2012)

2) Model for magnetic anisotropy of elliptical islands. Total magnetic moment = μ . Single domain assumed.

Sys 1/1, 948 Spins

240 x 48 x 12 nm permalloy, reversal by an applied field at 10° to the axis.

240 x 48 x 12 nm permalloy, reversal by an applied field at 10° to the axis.

Obtained by energy minimization for each H_{ext}

M=µ/V

240 x 48 x 12 nm permalloy, reversal by an applied field at 45° to the axis.

Obtained by energy minimization for each H_{ext}

M=µ/V

240 x 48 x 12 nm permalloy, reversal by an applied field at 80° to the axis.

Obtained by energy minimization for each H_{ext}

M=µ/V

The results confirm the particle anisotropy for $L_X \times L_Y \times L_Z$ particles with high aspect ratios L_X/L_Y :

$$E = E_0 + K_1 [1 - (\hat{\mu} \cdot \hat{x})^2] + K_3 (\hat{\mu} \cdot \hat{z})^2$$

J. Phys.: Condens. Matter 24 (2012) 296001

Table 1. Values of the in-plane anisotropy constant K_1 and out-of-plane anisotropy constant K_3 in units of $J = 2AL_z$ for different particle sizes and aspect ratios $g_1 = L_x/L_y$. All of the particles calculated have $g_3 = L_x/L_z = 20$.

	L_x								
	120 nm		240) nm	480 nm				
g 1	K_1	<i>K</i> ₃	K_1	<i>K</i> ₃	K_1	<i>K</i> ₃			
2	6.35J	72.7J	27.3J	287J	111 <i>J</i>	1140 <i>J</i>			
3	7.32J	43.4J	31.9 <i>J</i>	169 <i>J</i>	134 <i>J</i>	670J			
5	6.96J	21.1 <i>J</i>	31.5J	79.9J	133J	311 <i>J</i>			
8	7.39J	8.30J	29.5J	33.1 <i>J</i>	118 <i>J</i>	132J			

Anisotropy constants per unit volume depend mainly on aspect ratios.

aspect ratios

Figure 3. The anisotropy constants K_1 (solid curves) and K_3 (dashed curves) scaled by elliptical particle volume, versus particle lengths, for the indicated g_1 aspect ratios. All data has $g_3 = 20$. The values of K/V are given in units of $A \text{ nm}^{-2}$, where A is the exchange stiffness. K_1/V increases with aspect ratio while K_3/V decreases, and they become equal at high aspect ratio.

aspect ratios

$$g_1 = L_x/L_y$$

 $g_3 = L_x/L_z$

Figure 6. The anisotropy constants K_1 (solid curves) and K_3 (dashed curves) scaled by elliptical particle volume, versus particle thicknesses, for the indicated g_1 aspect ratios. All the data is for particles of length $L_x = 240$ nm. The K_3/V constant crosses below zero for the thickest high aspect ratio particles, which have become needle-like and no longer satisfy the assumption of a thin particle. That is the case of a particle with only uniaxial anisotropy.

Dynamics and hysteresis in square lattice artificial

Spin ice G M Wysin¹, W A Moura-Melo², L A S Mól^{2,3,4} and A R Pereira²

New Journal of Physics 15 (2013) 045029 (24pp)

4 1 1 \mathcal{V} 1 R ${}^{\mathcal{N}}$ К R \rightarrow $\neg \triangleright$ $\checkmark \land \land \leftarrow \rightarrow$ $\neg \triangleright$ K ∇ 4 4 $\neg \triangleright$ \leftarrow 7 \leftarrow A \neg $\land \rightarrow \land$ $\neg \triangleright$ K \swarrow $\neg D$ ← \rightarrow -D A \neg Δ ⊸⊳ \checkmark \rightarrow $\neg D$ $\neg \triangleright$ 4 R \mathcal{A} $\mathcal{A}^{}$ $\nabla ~ \kappa$ \neg \rightarrow \leftarrow ∇ $\neg \triangleright$ \checkmark \rightarrow -D \mathcal{A} \mathcal{A} \leftarrow 4 4 4 R Ł Ζ र्भ -D \rightarrow R - $\mathcal{A} \ll$ \rightarrow \leftarrow $\neg \triangleright$ \rightarrow 9 4 ষ \rightarrow \checkmark \rightarrow \checkmark \rightarrow ∇ \rightarrow $\neg \triangleright$ \leftarrow Δ Ą $\neg D$ \rightarrow - D = - - ∇ \checkmark \triangleleft \neg \mathcal{A} <- Δ 4 \triangleleft Δ $\nabla \Phi$ \rightarrow \mathcal{A} \mathcal{I} \rightarrow \rightarrow \triangleleft \rightarrow \leftarrow \rightarrow V Δ A $\neg \triangleright$ \triangleleft $\neg \triangleright$ $\neg \triangleright$ -D \leftarrow < $\neg D$ -D \rightarrow \leftarrow \neg Δ $\neg \triangleright$ \checkmark \rightarrow $\neg \triangleright$ \leftarrow \rightarrow Δ Ą $\rightarrow \leftarrow \rightarrow$ $\neg \triangleright$ ∇ \mathcal{A} \checkmark \rightarrow \triangleleft Δ 4 4 -DA K $\neg \triangleright$ 1 $\neg \triangleright$ \leftarrow Ą $\leftarrow \rightarrow \leftarrow \rightarrow$ R \rightarrow $\neg \triangleright$ \neg $\neg \triangleright$ \leftarrow

Figure 1. A 16 × 16 model system with $d = k_1 = k_3 = 0.1$, in a metastable state at temperature $k_B T/\varepsilon = 0.025$, from a hysteresis scan (this is a state at $h_{ext} = 0$). Most of the system is locally close to the Z = +1 ground state. The upper righthand corner is locally near the Z = -1 ground state, and there is a bent domain wall connecting the two regions. For interior charge sites (junction points of four islands), there happens to be no discrete monopole charge present: all $q_k = 0$ and the discrete $\rho_m = 0$.

3) Artificial spin-ice. Arrays
of elongated magnetic islands,
dominated by anisotropy &
dipole-dipole interactions.

Each arrow = one island.

Island rows are alternately aligned along x or y-axes in this artifical square ice.

This system has two degenerate ground states.

Mimics the behavior of 3D spin ices of rare earths in lattice of corner sharing tetrahedra of a pyrochlore structure.

FIG. 2: (a) Configuration of the ground-state obtained for L = 6a, in exact agreement with that experimentally observed. Note that the ice rules are manifested at each vertex. This is the case in which the topology demands the minimum energy (see Fig. (3)). (b) Another configuration also respecting the ice rule, but displaying a topology which costs more energy. (Mol et al 2008.)

deviations from the ice rule

 \Rightarrow higher energy and monopole "charges"

FIG. 3: The 4 distinct topologies and the 16 possible magnetic moment configurations on a vertex of 4 islands. Although configurations (a) and (b) obey the ice rule, the topology of (a) is more energetically favorable than that of (b). Hamiltonian (1) correctly yields to the true ground-state based on topology (a), without further assumptions. Topologies (c) and (d) does not obey the ice rule. Particularly, (c) implies in a monopole with charge Q_M .

How do the excitations behave as particles, interact with each other, and contribute to thermodynamics?

$$D = 0.1$$

 $K_1 = 0.1$
 $K_3 = 0.5$

kT=0.01

 \approx ground state

$$D = \frac{\mu_0}{4\pi} \frac{\mu^2}{a^3}$$

$$D = 0.1$$

 $K_1 = 0.1$
 $K_3 = 0.5$

kT=0.10

> ground state

$$D = 0.1$$

 $K_1 = 0.1$
 $K_3 = 0.5$

kT=0.14 few monopoles

۹D'	h=0,00000 kT:	=0,22000	E=-198.	306 n1=	38 n2=0	Z=0,578	Z2=0,594	1 mb=-0.	.002 +-	0,000
	A V K	≪		-7 ¢	× ×	$ \overrightarrow{P} \rightarrow \mathbf{v} $	X 1	K N	* * \$	1
	¥	X	RK	A K	7-7	Å ४ ← -		AK	↓ A	4
		\$-⊕ \$ €	36⊕→	4 4 \^⊕	K X			≪⊕¥	A K	$\mathbf{\Sigma}$
	1 B R	>⊖& >⊖	A X	A ←	~ ¥ ~ ```			-₽⊖ <i>€</i>	-Θ× Φ×	•
		× ×	× 1	$\Theta \lor \checkmark$	->_& &	יא לי קייייייייייייייייייייייייייייייייייי		∠ × → ⊼	\tilde{A}	K
	N A A	>`#` ∀ 4	/ <i>7</i> ′ ∠	7	× -0 A	⊕ ∲ _ ¥	V « V 1	A X	123	4
	K Z K		K 7	A K	``∆` ⊭	ر کھ م)⊕1⊕ 10-13	≥⊖ <i>⊅</i> ↑	¥ 4	4
	4 ↓ 4			1	AF X	+ 7	⊳⊖¢ , ∽ _↑	→ ↓ ↓ ↓	, ^ ⊕ ,	4
	\downarrow		9 K ⊕ 4 	< _^ ^	~ ^ ~ ^	4 ↓	A K	AR	Å Å	4
	X D D	V V V K	L X	1 4	4⊕⊽	↓ ↑	A A	¢ ¢ ⊅	^ ↓	Ą
	6⊕≂⊝	×⊖↓ V ⊖ ×	1 5	$\langle \rightarrow \rangle$	4 7	ARK,		7 4	১ ২ ২ ৩	7
		¥⊕≯ ∦⊕≯	< ~ ~ 	R ∲ 	→⊖ Q →			R &		K
	AFA		`} ` ☆	~`∖∆⊕ 4 ->	1 2	E A	ר אי א ע	4 4 7	_ ∀ ₹	2
	R P >	R - D R Z	к'я 1 —>	⊂ R ⊖ R k	K 🕀 K	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14	4' A A	Θ.» 7 R	7
	× +>		4	R	1 1	< -	> X	-> 7	<i></i>	K 1407

$$D = 0.1$$

 $K_1 = 0.1$
 $K_3 = 0.5$

kT=0.22

 \approx transition to high-T phase

ID_h=0.00000 kT=0.30000 E=-115.030 n1=71 n2=4 Z=-0.008 Z2=0.456 mb=0.001 +- 0.0006
$\begin{array}{c} R & \Phi & A & A & R & \downarrow & A & \downarrow & \downarrow & \downarrow & \downarrow & A & \downarrow & \downarrow & \uparrow \\ K & R & R & K \oplus \bullet & \rightarrow & K \oplus R & \downarrow & \downarrow \oplus A \oplus$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
A A A A DA A AOAOA AOAOA A AOA A A A A A A A A A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
A K A A A A A K A X X A A A A K A B A K B K B K A K B K B K B K B K B K
$\mathbb{K} \twoheadrightarrow \mathbb{A} \twoheadrightarrow \mathbb{A} \twoheadrightarrow \mathbb{A} \cong \mathbb{K} \twoheadrightarrow \mathbb{K} \times $

$$D = 0.1$$

 $K_1 = 0.1$
 $K_3 = 0.5$

kT=0.30

 \approx high-T disorder

D = 0.000835K₁=0.0897K₃=0.2000

kT=0.001

 \neq ground state

(from long-time Langevin dynamics)

Note: 300 K is $kT = 1.29 \times 10^{-5}$ $D = \frac{\mu_0}{4\pi} \frac{\mu^2}{a^3}$

D = 0.000835K₁=0.0897K₃=0.2000

kT=0.01

 \neq ground state

D = 0.000835 $K_1 = 0.0897$ $K_3 = 0.2000$

kT=0.015

more monopoles

END h=0.00000 kT=0.02400 E=13.670 n1=107 n2=18 Z=-0.084 Z2=0.793 mb=0.001 +- 0.0005 .⊕<-(+)≿ -(∓)≮ $\varkappa \Theta$ \oplus \checkmark \ominus \checkmark ⊻⊕⊿⊖⊻⊕∖y⊝ ⊝ᡧ⊕ᢆᡧ᠊⊕ **∕∼**⊕. ⊝≮⊶⊕ .(+) ⊕⋊⊝∿⊝∽⊕ æ Θ ⊕∿⊕∆ æ 4~⊕ \$-⊕\$^⊕ $\square \Theta \bowtie$ 54 Ľ ≁⊕<u>≁</u>⊝,⊿ ۥ⊝ሩ⊢⊝ݘ⊕→⊕⋪ 4 $\oplus \lhd$ $\boldsymbol{\mathcal{U}}(\boldsymbol{\Theta})$ 4-⊕. Θ ⊝൷⊕൷ Ð Sys 1/1, 512 Spins qm=143, np=125, sgl=107, multi=18 State 80/103 D = 0.000835K₁=0.0897K₃=0.2000

kT=0.024

more monopoles

END h=0.00000 kT=0.04000 E=22.642 n1=114 n2=13 Z=-0.049 Z2=0.670 mb=0.004 +- 0.0005 ≪⊕, $\mathcal{A} \ominus$ ⊕ 2⊖. े ⇔ -⊕ $\square \nabla$ (ŦŦ) . Æ) 4 Σ Θ >⊝∿⊷⊝ $\Theta \Delta$ ∞⊝≁⊕ ·⊕' \oplus Δx (H) 🖰 (H) 🏹 (H) æ. \$⊝\$ $\Theta \leq \Theta \leq$ (+)(4-) ⊲⊢ 家 (日) $4 - \oplus + (+)$ $R \Theta \Phi$ $\neg \nabla$ 1 <-⊖∆ Sys 1/1, 512 Spins qm=140, np=127, sgl=114, multi=13 State 64/103 D = 0.000835K₁=0.0897K₃=0.2000

kT=0.040

highly disordered

START h=0.00000 kT=0.02000 E=-15.692 Lx=13.0 Ly=11.3 N=123 nq=66 E E E A A A E E E A A1 \wedge $\sqrt{}$ 个 \wedge 个 V $\mathbb{K} \not \subseteq \mathbb{N} / \mathbb{N}$ A 1 K \wedge \mathbf{V} \mathbf{V} 4 RENZNEREN A 1 K \wedge \wedge Λ \wedge \checkmark \mathbf{V} K M N K K K K M N M K K \wedge \wedge 个 \mathbf{V} $\sqrt{}$ REJZJEREJZ 1 K \wedge Λ \checkmark \wedge \wedge \mathbf{V} $E \supset Z \supset E \subseteq E \supset Z \supset E$ K \wedge \checkmark \vee 个 REN7NERE K ーオ Sys 1/1, 123 Spins State 1/4

D = 0.1 $K_1 = 0.1$ $K_3 = 0.5$

1 of 6 ground states

D = 0.1 $K_1 = 0.1$ $K_3 = 0.5$

1 of 6 ground states

all vertices have a monopole charge.

D = 0.1 $K_1 = 0.1$ $K_3 = 0.5$

kT=0.01 (low T).

Frustrated state does not approach ground state.

$$D = 0.1$$

 $K_1 = 0.1$
 $K_3 = 0.5$

kT=0.05

$$D = 0.1$$

 $K_1 = 0.1$
 $K_3 = 0.5$

kT=0.1 (moderate) multi-charge poles

D = 0.1 $K_1 = 0.1$ $K_3 = 0.5$

kT=0.3 (high)

many multi-charge poles

Summary

Shape anisotropy of magnetic islands has a strong effect on the states.

Vortices in nanodots have frequency ω_{G} of gyrotropic movement, which is proportional to the force constant over thicknes, k_{F}/L .

Even thermal fluctuations can initiate spontaneous vortex motion that satisfies equipartition of energy.

Anisotropy coefficients for islands used in artificial spin ice are found from the effective potential of the magnetic moment in an island.

A model is developed for spin-ice, based on effective island dipoles which can point in any direction, but constrained by anisotropies.

wysin@phys.ksu.edu www.phys.ksu.edu/personal/wysin