$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \rightarrow \rightarrow \rightarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
 Two-Dimensional Nanomagnetics

2014

Magnetic Nano-Islands

Approx. $50 \mathrm{~nm}-5 \mu \mathrm{~m}$ wide but only 10 nm thick.
Individual \& in arrays, high-permeability soft magnetic materials.
Grown with techniques of epitaxy \& lithography on a non-magnetic substrate. Form arrays of particles that can interact with each other or applied fields.

Primary physics effects -
magnetostatics controlled by island geometry. discrete energy states for data storage. spintronics controlled by current injection. magnetic oscillators controlled by applied fields. frustration in ordered arrays of islands (spin-ice).

Several principle states of a nano-island:
(I) quasi-single domain; (2) vortex; (3) multi-domains \& domain walls.
\sim increasing size \sim

Magnetic nano-island applications

memory elements, signal processing
non-volatile data storage (magnetic ram)
use in sensors of (giant) magneto-resistance (GMR)
integration into spintronics (switching between states via spin polarized currents.)
\odot a one-vortex state with small stray magnetic field.

Three things to be studied:

I) Vortices. The static and dynamic properties of single vortices. They behave very much as particles with charges.
2) Magnetostatic anisotropy of the islands themselves. Also known as shape anisotropy because it depends mostly on the surfaces.

isotropic

elliptic

Ising-like
3) Spin-ices. Especially for elongated islands with Ising-like states, interactions within their arrays, that lead to frustrated statics and dynamics.

Magnetostatics - For $\mathrm{Lx} \times \mathrm{Ly} \times \mathrm{Lz}$ elliptical islands.
Basic theory of magnetostatic energy and demagnetization:

Maxwell eqns, for H_{M} caused by M: $\vec{\nabla} \cdot \vec{B}=0, \quad \vec{B}=\mu_{0}\left(\vec{H}_{M}+\vec{M}\right)$.
The magnetostatic energy is:

$$
E_{M}=-\frac{1}{2} \mu_{0} \int \mathrm{~d} V \vec{M} \cdot \vec{H}_{M}
$$

The demagnetization field solves:

$$
\vec{\nabla} \cdot \vec{H}_{M}=-\vec{\nabla} \cdot \vec{M} . \quad \rho_{M}=-\vec{\nabla} \cdot \vec{M}
$$

$$
\text { Put: } \quad \vec{H}_{M}=-\vec{\nabla} \Phi_{M} \Rightarrow
$$

$$
\nabla^{2} \Phi_{M}=-\rho_{M}
$$

Poisson's equation.

Magnetization M determines an effective surface charge density:

$$
\sigma_{M}=\vec{M} \cdot \hat{n}
$$

(2) Vortex state

Very little magnetic surface charge density. Stable only above a minimum radius

Elongated islands Highly anisotropic.

Ising-like interaction and behavior.
I) Quasi-single-domain. Poles greatly prefer the ends.

Micromagnetics.
A technique for studying a continuous system.

Each cell contains a magnetic dipole:
a $\quad \hat{m}=\vec{M} / M_{S}$.

- Model for a cylindrical islands, radii $\mathrm{R}_{\mathrm{A}}, \mathrm{R}_{\mathrm{B}}$, height L .
- Divide the sample into cells of size $\mathrm{a} \times \mathrm{a} \times \mathrm{L}$.
- Assume that the magnetization is saturated $\left(\mathrm{M}_{\mathrm{s}}\right)$ inside each cell: $|\mathrm{m}|=1$. Only the directions vary between cells.
- The cells interact as dipoles, with exchange energy between neighbors \& with the demagnetization field.

exchange: $\quad \mathcal{H}_{\text {ex }}=A \int d V \nabla \hat{m} \cdot \nabla \hat{m}$,
magnetostatic (demagnetization):

$$
\mathcal{H}_{\mathrm{dd}}=\mathcal{H}_{\mathrm{demag}}=-\frac{1}{2} \mu_{0} \int d V \vec{H}_{M} \cdot \vec{M}
$$

applied field: $\quad \mathcal{H}_{B}=-\mu_{0} \int d V \vec{H}_{\text {ext }} \cdot \vec{M}$
Statics: minimize the energy \Rightarrow stable configurations.
Dynamics: equation of motion \Rightarrow periodic configurations.
Difficulties:
(i) Calculating the demagnetization field H_{M};
(ii) Enforcing a desired initial position, X, of a vortex $\Rightarrow \mathrm{E}(\mathrm{X})$.

Scale energies by the exchange between cells:

$$
J_{\text {cell }}=\frac{2 A v_{\text {cell }}}{a^{2}}=2 A L
$$

"magnetic exchange length"

$$
\lambda_{\mathrm{ex}}=\sqrt{\frac{2 A}{\mu_{0} M_{S}^{2}}}
$$

Hamiltonian on the grid of cells:
$\mathcal{H}_{\mathrm{mm}}=-J_{\mathrm{cell}}\left\{\sum_{(i, j)} \hat{m}_{i} \cdot \hat{m}_{j}+\left(\frac{a}{\lambda_{\mathrm{ex}}}\right)^{2} \sum_{i}\left(\tilde{H}_{\mathrm{ext}}+\frac{1}{2} \tilde{H}_{M}\right) \cdot \hat{m}_{i}\right\}$
Need $\left(\frac{a}{\lambda_{\text {ex }}}\right)^{2}$ less than 1 for reliable solutions. (cells smaller than exchange length)

Finding the demagnetization field via Green/FFT approach.
\Rightarrow The magnetostatics problem has no free currents:

$$
-\tilde{\nabla}^{2} \tilde{\Phi}=\tilde{\rho} \quad \tilde{\rho} \equiv-\tilde{\nabla} \cdot \hat{m} \quad \tilde{H}_{M}=-\tilde{\nabla} \tilde{\Phi}
$$

use Green's function solution:

$$
\tilde{\Phi}(\vec{r})=\int d^{3} r^{\prime} G\left(\vec{r}, \vec{r}^{\prime}\right) \tilde{\rho}\left(\vec{r}^{\prime}\right) \quad G\left(\vec{r}, \vec{r}^{\prime}\right)=\frac{1}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|}
$$

specialize to a thin cylinder (2D) geometry: $\quad \tilde{r} \equiv(x, y)$

$$
\begin{aligned}
& \tilde{H}_{z}(\tilde{r})=\int d^{2} \tilde{r}^{\prime} G_{z}\left(\tilde{r}-\tilde{r}^{\prime}\right) m_{z}\left(\tilde{r}^{\prime}\right) \\
& \tilde{H}_{x y}(\tilde{r})=\int d^{2} \tilde{r}^{\prime} \vec{G}_{x y}\left(\tilde{r}-\tilde{r}^{\prime}\right) \tilde{\rho}\left(\tilde{r}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& G_{z}(\tilde{r})=\frac{1}{2 \pi L}\left[\frac{1}{\sqrt{\tilde{r}^{2}+L^{2}}}-\frac{1}{|\vec{r}|}\right] \\
& \vec{G}_{x y}(\tilde{r})=\frac{1}{2 \pi L}\left[\sqrt{1+\left(\frac{L}{\tilde{r}}\right)^{2}}-1\right] \hat{e}_{\tilde{r}}
\end{aligned}
$$

Other details.
The magnetic charge densities depend on the present magnetic configuration, such as:

$$
\begin{aligned}
& \tilde{\rho}_{0}^{\mathrm{vol}}=\frac{q_{M}^{\mathrm{vol}}}{L a^{2}}=-\frac{1}{2 a}\left[m_{1}^{x}-m_{3}^{x}+m_{2}^{y}-m_{4}^{y}\right] \\
& \tilde{\rho}_{0}^{\mathrm{sur}}=\frac{q_{M}^{\text {sur }}}{L a^{2}}=\sum_{\text {cell edges }} \frac{1}{2 a} \hat{m}_{0} \cdot \hat{n}_{\text {edge }}
\end{aligned}
$$

Convolutions are evaluated using fast fourier transforms.
Use zero padding to avoid the wrap-around problem: FFT grid is 2 X larger than original system to avoid false copies.

The solution for demagnetization field is that for an island isolated from others.

1) Vortices: Particle-like properties
"vorticity charge"

$$
=0, \pm 1
$$

$\begin{aligned} & \text { circulation or curling } \\ & -1 \leq \mathrm{C} \leq+1\end{aligned} \quad \mathrm{C}=\frac{1}{N} \sum_{\mathrm{i}} \hat{\sigma}_{\mathrm{i}} \cdot \hat{\phi}_{\mathbf{i}} \quad \hat{\sigma}_{i}=\vec{\mu}_{i} / \mu$.
polarization
"topological charge = gyrovector"
$\mathrm{G}=2 \Pi \mathrm{pq}=$ solid angle mapped out by all the spins

Vortex, $q=+1, p=+1$ $\mathrm{R}=30 \mathrm{~nm}, \mathrm{~L}=8 \mathrm{~nm}$

$t=0,00 \quad E=10,37$ ex= $8,33 \mathrm{ddx}=0,75 \mathrm{ddz}=1,29 \mathrm{eb}=-0,00$

$t=0,00 \quad \mathrm{E}=10.37$ ex= $8,33 \mathrm{ddx}=0,75 \mathrm{ddz}=1,29 \mathrm{eb}=-0,00$

Gyrotropic movement

Example. Total energy of a vortex, $\mathrm{E}\left(\mathrm{x}_{0}\right) \approx 1 / 2 \mathrm{k}_{\mathrm{F}} \mathrm{x}_{0}{ }^{2}$ $\mathrm{a}=2.0 \mathrm{~nm}, \lambda_{\mathrm{ex}}=5.3 \mathrm{~nm}, \mathrm{~L}=12 \mathrm{~nm}, \mathrm{R}=40,80,120 \mathrm{~nm}$

Example. Total energy of a vortex, $\mathrm{E}\left(\mathrm{x}_{0}\right) \approx 1 / 2 \mathrm{k}_{\mathrm{F}} \mathrm{x}_{0}{ }^{2}$ $\mathrm{a}=2.0 \mathrm{~nm}, \lambda_{\mathrm{ex}}=5.3 \mathrm{~nm}, \mathrm{~L}=4.0 \mathrm{~nm}, \mathrm{R}=40,80,120 \mathrm{~nm}$

Gyrotropic movement

$$
\begin{aligned}
& \mathrm{Mz}>0 \\
& \mathrm{Q}=+1
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{R}=30 \mathrm{~nm}, \\
\mathrm{~L}=5 \mathrm{~nm}, \\
\text { cells } \mathrm{a}=2.0 \mathrm{~nm} \\
\alpha=0.02
\end{gathered}
$$

gyrovector:

$\mathbf{G}=2 \pi Q \hat{z}$
$Q= \pm 1$

$$
\frac{\gamma}{m_{0}} \mathbf{F}+\mathbf{G} \times \mathbf{V}=0 .
$$

$$
m_{0}=\mu / a^{2}=L M_{s}
$$

With temperature $T>0$. For the movement in one cell:

$$
\frac{d \hat{m}}{d \tau}=\hat{m} \times\left(\vec{b}+\vec{b}_{s}\right)-\alpha \hat{m} \times\left[\hat{m} \times\left(\vec{b}+\vec{b}_{s}\right)\right]
$$

fluctuation-dissipation theorem:

$$
\begin{aligned}
& \left\langle b_{s}^{\alpha}(\tau) b_{s}^{\beta}\left(\tau^{\prime}\right)\right\rangle=2 \alpha \mathcal{T} \delta_{\alpha \beta} \delta\left(\tau-\tau^{\prime}\right) \quad \mathcal{T} \equiv \frac{k T}{J_{\text {cell }}}=\frac{k T}{2 A L} \\
& \text { (the stochastic fields carry thermal energy \& power) }
\end{aligned}
$$

We can integrate with Heun's $2^{\text {nd }}$ order algorithm:
A. Euler predictor step.
B. Trapezoid corrector step.

$$
\begin{gathered}
\int_{\tau_{n}}^{\tau_{n}+\Delta \tau} d \tau b_{s}^{x}(\tau) \longrightarrow \sigma_{s} w_{n}^{x} \\
\sigma_{s}=\sqrt{2 \alpha \mathcal{T} \Delta \tau}
\end{gathered}
$$

Spontaneous gyrotropic movement for $\mathrm{T}>0$ (ellipse)

$t=0+\phi \phi E=14+51 E x=5+72 d d x=3+43 d d z=1+3 \xi E b=-\phi+\phi$

initial position

$$
x_{0}=y_{0}=0
$$

time unit $=0.75 \mathrm{ps}$

Spontaneous gyrotropic movement for $\mathrm{T}>0$ (ellipse)

initial position

$$
x_{0}=y_{0}=0
$$

The large arrow $=\langle M\rangle$.
Note its faster oscillations.
time unit
$=0.75 \mathrm{ps}$

The distribution of vortex radial coordinate in a circular nanodisk. data points $=$ simulation. \quad curves $=$ Boltzman distribution.

$$
p(r)=\beta k_{F} r e^{-\frac{1}{2} \beta k_{F} r^{2}}
$$

Wysin \& Figueiredo
PHYSICAL REVIEW B 86, 104421 (2012)
2) Model for magnetic anisotropy of elliptical islands. Total magnetic moment $=\mu$. Single domain assumed.

$$
E=E_{0}+K_{1}\left[1-(\hat{\mu} \cdot \hat{x})^{2}\right]+K_{3}(\hat{\mu} \cdot \hat{z})^{2}
$$

$L_{x} \times L_{y} \times L_{z}$ island
z
hard axis

angle from $x y$-plane $\quad\left(\theta_{\mathrm{m}}, \Phi_{\mathrm{m}}\right)$

| $m=0,99989$ | $\langle x, y\rangle=(-25+67,21+81\rangle$ |
| ---: | ---: | ---: |
| $m \times 0,87257$ | $s z=0,00000$ |
| $m y=0,48826$ | phi $=31+36$ |

$M=\mu / V$

$120 \times 40 \times 6 \mathrm{~nm}$ permalloy particle. cell size $a=2.0 \mathrm{~nm}$.

$240 \times 48 \times 12 \mathrm{~nm}$ permalloy, reversal by an applied field at 10° to the axis.

Obtained by energy minimization for each $\mathrm{H}_{\text {ext }}$

$240 \times 48 \times 12 \mathrm{~nm}$ permalloy, reversal by an applied field at 10° to the axis.

Obtained by energy minimization for each $\mathrm{H}_{\text {ext }}$
$M=\mu / V$

$240 \times 48 \times 12 \mathrm{~nm}$ permalloy, reversal by an applied field at 45° to the axis.

[^0]Obtained by energy minimization for each $\mathrm{H}_{\text {ext }}$

$$
M=\mu / V
$$

applied field
$240 \times 48 \times 12 \mathrm{~nm}$ permalloy, reversal by an applied field at 80° to the axis.

[^1]Obtained by energy minimization for each $\mathrm{H}_{\text {ext }}$

$$
M=\mu / V
$$

applied field
internal energy

$$
E_{i n t}=E_{e x}+E_{d d}
$$

$$
E_{\mathrm{int}}\left(\phi_{\mathrm{m}}\right)=E_{0}+K_{1} \sin ^{2} \phi_{\mathrm{m}}
$$

$$
K_{1}=31.5 J_{\text {cell }}
$$

internal energy $E_{i n t}=E_{e x}+E_{d d}$
$E_{\text {int }}\left(\theta_{\mathrm{m}}\right)=E_{0}+\left(K_{1}+K_{3}\right) \sin ^{2} \theta_{\mathrm{m}} . \quad K_{1}+K_{3}=111 J_{\text {cell }}$

The results confirm the particle anisotropy for $L_{x} \times L_{y} \times L_{z}$ particles with high aspect ratios L_{x} / L_{y} :

$$
E=E_{0}+K_{1}\left[1-(\hat{\mu} \cdot \hat{x})^{2}\right]+K_{3}(\hat{\mu} \cdot \hat{z})^{2}
$$

J. Phys.: Condens. Matter 24 (2012) 296001

Table 1. Values of the in-plane anisotropy constant K_{1} and out-of-plane anisotropy constant K_{3} in units of $J=2 A L_{z}$ for different particle sizes and aspect ratios $g_{1}=L_{x} / L_{y}$. All of the particles calculated have $g_{3}=L_{x} / L_{z}=20$.

g_{1}	L_{x}					
	120 nm		240 nm		480 nm	
	K_{1}	K_{3}	K_{1}	K_{3}	K_{1}	K_{3}
2	6.35 J	72.7J	27.3 J	$287 J$	$111 J$	1140 J
3	7.32J	43.4 J	31.9 J	169 J	$134 J$	670 J
5	6.96 J	21.1 J	31.5 J	79.9 J	133 J	311 J
8	7.39 J	8.30 J	29.5 J	33.1 J	$118 J$	132 J

Anisotropy constants per unit volume depend mainly on aspect ratios.

Figure 3. The anisotropy constants K_{1} (solid curves) and K_{3} (dashed curves) scaled by elliptical particle volume, versus particle lengths, for the indicated g_{1} aspect ratios. All data has $g_{3}=20$. The values of K / V are given in units of $A \mathrm{~nm}^{-2}$, where A is the exchange stiffness. K_{1} / V increases with aspect ratio while K_{3} / V decreases, and they become equal at high aspect ratio.

aspect ratios

Figure 6. The anisotropy constants K_{1} (solid curves) and K_{3} (dashed curves) scaled by elliptical particle volume, versus particle thicknesses, for the indicated g_{1} aspect ratios. All the data is for particles of length $L_{x}=240 \mathrm{~nm}$. The K_{3} / V constant crosses below zero for the thickest high aspect ratio particles, which have become needle-like and no longer satisfy the assumption of a thin particle. That is the case of a particle with only uniaxial anisotropy.

Dynamics and hysteresis in square lattice artificial

 spin ice G M Wysin ${ }^{1}$, W A Moura-Melo ${ }^{2}$, LAS Mól ${ }^{2,3,4}$ and A R Pereira ${ }^{2}$New Journal of Physics 15 (2013) 045029 (24pp)

Figure 1. A 16×16 model system with $d=k_{1}=k_{3}=0.1$, in a metastable state at temperature $k_{\mathrm{B}} T / \varepsilon=0.025$, from a hysteresis scan (this is a state at $h_{\mathrm{ext}}=0$). Most of the system is locally close to the $Z=+1$ ground state. The upper righthand corner is locally near the $Z=-1$ ground state, and there is a bent domain wall connecting the two regions. For interior charge sites (junction points of four islands), there happens to be no discrete monopole charge present: all $q_{k}=0$ and the discrete $\rho_{\mathrm{m}}=0$.
3) Artificial spin-ice. Arrays of elongated magnetic islands, dominated by anisotropy \& dipole-dipole interactions.

Each arrow = one island.

Island rows are alternately aligned along x or y-axes in this artifical square ice.

This system has two degenerate ground states.

Mimics the behavior of 3D spin ices of rare earths in lattice of corner sharing tetrahedra of a pyrochlore structure.

Interactions $=$ dipolar + shape anisotropy + external field $\mathcal{H}=-\frac{\mu_{0}}{4 \pi} \frac{\mu^{2}}{a^{3}} \sum_{i>j} \frac{\left[3\left(\hat{\mu}_{i} \cdot \hat{r}_{i j}\right)\left(\hat{\mu}_{j} \cdot \hat{r}_{i j}\right)-\hat{\mu}_{i} \cdot \hat{\mu}_{j}\right]}{\left(r_{i j} / a\right)^{3}}+\sum_{i}\left\{K_{1}\left[1-\left(\hat{\mu}_{i} \cdot \hat{u}_{i}\right)^{2}\right]+K_{3}\left(\hat{\mu}_{i} \cdot \hat{z}\right)^{2}-\vec{\mu}_{i} \cdot \vec{B}_{\text {ext }}\right\}$ dipolar energy scale $=\mathrm{D}$

(a)

(b)

Ice-rule:

For lowest energy, equal numbers of inward and outward pointing dipoles at each vertex.

FIG. 2: (a) Configuration of the ground-state obtained for $L=6 a$, in exact agreement with that experimentally observed. Note that the ice rules are manifested at each vertex. This is the case in which the topology demands the minimum energy (see Fig. (3)). (b) Another configuration also respecting the ice rule, but displaying a topology which costs more energy. (Mol et al 2008.)
ice-rule ice-rule

(a)

(b)
single charges

(c)
double charges

(d)

FIG. 3: The 4 distinct topologies and the 16 possible magnetic moment configurations on a vertex of 4 islands. Although configurations (a) and (b) obey the ice rule, the topology of (a) is more energetically favorable than that of (b). Hamiltonian (1) correctly yields to the true ground-state based on topology (a), without further assumptions. Topologies (c) and (d) does not obey the ice rule. Particularly, (c) implies in a monopole with charge Q_{M}.

How do the excitations behave as particles, interact with each other, and contribute to thermodynamics?

artificial ice model

END $h=0.00000 \mathrm{kT}=0.01000 \quad \mathrm{E}=-341.680 \mathrm{n} 1=0 \mathrm{n} 2=0 \quad \mathrm{Z}=0.991 \quad \mathrm{Z} 2=0.983 \mathrm{mb}=-0.001+-0.0000$

$\mathrm{D}=0.1$
$\mathrm{K}_{1}=0.1$
$K_{3}=0.5$
$\mathrm{kT}=0.01$
\approx ground state
(from long-time
Langevin dynamics)
$D=\frac{\mu_{0}}{4 \pi} \frac{\mu^{2}}{a^{3}}$

artificial ice model

END $h=0,00000 \mathrm{kT}=0,10000 \quad \mathrm{E}=-293,231 \mathrm{n} 1=0 \mathrm{n} 2=0 \quad \mathrm{Z}=0.924 \quad \mathrm{Z} 2=0.859 \mathrm{mb}=-0.002+-0.0002$
$\mathrm{D}=0.1$

$\mathrm{K}_{1}=0.1$
$K_{3}=0.5$
$\mathrm{kT}=0.10$
$>$ ground state
(from long-time
Langevin dynamics)

artificial ice model

END $h=0,00000 \mathrm{kT}=0,14000 \quad \mathrm{E}=-270,201 \mathrm{n} 1=4 \mathrm{n} 2=0 \quad \mathrm{Z}=0,866 \quad \mathrm{Z} 2=0.783 \mathrm{mb}=-0.001+-0,0002$
$\mathrm{D}=0.1$

$\mathrm{K}_{1}=0.1$
$K_{3}=0.5$
$\mathrm{kT}=0.14$
few monopoles
(from long-time
Langevin dynamics)

artificial ice model

END $h=0,00000 \mathrm{kT}=0.22000 \quad \mathrm{E}=-198,306 \mathrm{n} 1=38 \mathrm{n} 2=0 \quad \mathrm{Z}=0.578 \quad \mathrm{Z} 2=0.594 \mathrm{mb}=-0.002$ +- 0.0004
$\mathrm{D}=0.1$
$\mathrm{K}_{1}=0.1$
$K_{3}=0.5$
$\mathrm{kT}=0.22$
\approx transition to high-T phase
(from long-time
Langevin dynamics)

artificial ice model

END $h=0,00000 \mathrm{kT}=0,30000 \quad \mathrm{E}=-115.030 \mathrm{n} 1=71 \mathrm{n} 2=4 \mathrm{Z}=-0.008 \quad \mathrm{Z} 2=0,456 \mathrm{mb}=0.001 \quad+-0,0006$
$\mathrm{D}=0.1$

$\mathrm{K}_{1}=0.1$
$K_{3}=0.5$
$\mathrm{kT}=0.30$
\approx high-T disorder
(from long-time
Langevin dynamics)
ice model for Wang et al (2006) particles

END $\mathrm{h}=0,00000 \mathrm{kT}=0,00100 \mathrm{E}=-0,539 \mathrm{n} 1=94 \mathrm{n} 2=2 \mathrm{Z}=-0,023 \mathrm{Z}=0,993 \mathrm{mb}=-0,044+-0,0000$

$\mathrm{D}=0.000835$
$\mathrm{K}_{1}=0.0897$
$K_{3}=0.2000$
$\mathrm{kT}=0.001$
\neq ground state
(from long-time
Langevin dynamics)

Note: 300 K is
$\mathrm{kT}=1.29 \times 10^{-5}$
$D=\frac{\mu_{0}}{4 \pi} \frac{\mu^{2}}{a^{3}}$
ice model for Wang et al (2006) particles

END $\mathrm{h}=0,00000 \mathrm{kT}=0,01000 \mathrm{E}=4+305 \mathrm{n} 1=91 \mathrm{n} 2=8 \quad \mathrm{Z}=0.036 \mathrm{Z}=0.924 \mathrm{mb}=-0,008+-0.0004$

$\mathrm{D}=0.000835$
$\mathrm{K}_{1}=0.0897$
$K_{3}=0.2000$
$\mathrm{kT}=0.01$
\neq ground state
(from long-time
Langevin dynamics)
ice model for Wang et al (2006) particles

END $\mathrm{h}=0,00000 \mathrm{kT}=0,01500 \mathrm{E}=8+287 \mathrm{n} 1=102 \mathrm{n} 2=10 \mathrm{Z}=-0,027 \mathrm{z} 2=0,871 \mathrm{mb}=0,011+-0,0004$

$\mathrm{D}=0.000835$
$K_{1}=0.0897$
$K_{3}=0.2000$
$\mathrm{kT}=0.015$
more monopoles
(from long-time
Langevin dynamics)
ice model for Wang et al (2006) particles

END $\mathrm{h}=0,00000 \mathrm{kT}=0,02400 \mathrm{E}=13,670 \mathrm{n} 1=107 \mathrm{n} 2=18 \mathrm{z}=-0.084 \mathrm{z}=0,793 \mathrm{mb}=0,001+-0,0005$

$\mathrm{D}=0.000835$
$\mathrm{K}_{1}=0.0897$
$K_{3}=0.2000$
$\mathrm{kT}=0.024$
more monopoles
(from long-time
Langevin dynamics)
ice model for Wang et al (2006) particles

END $\mathrm{h}=0,00000 \mathrm{kT}=0,04000 \mathrm{E}=22,642 \mathrm{n} 1=114 \mathrm{n} 2=13 \mathrm{Z}=-0,049 \mathrm{z}=0,670 \mathrm{mb}=0,004+-0,0005$

$\mathrm{D}=0.000835$
$\mathrm{K}_{1}=0.0897$
$K_{3}=0.2000$
$\mathrm{kT}=0.040$
highly disordered
(from long-time
Langevin dynamics)

artificial ice model - Kagomé lattice

START $h=0,00000 \quad k T=0,02000 \quad E=-15,692 \quad L x=13,0 \quad L y=11,3 \quad N=123 \quad n g=66$

$\mathrm{D}=0.1$
$\mathrm{K}_{1}=0.1$
$K_{3}=0.5$

1 of 6 ground states

artificial ice model - Kagomé lattice

START $h=0,00000 \quad k T=0,02000 \quad E=-15.692 \quad L x=13.0 \quad L y=11.3 \quad N=123 \quad n g=66$

$\mathrm{D}=0.1$
$\mathrm{K}_{1}=0.1$
$K_{3}=0.5$
$\mathrm{kT}=0.01$ (low T).
Frustrated state does not approach ground state.
(from long-time Langevin dynamics)

artificial ice model - Kagomé lattice

END $h=0,00000 \mathrm{kT}=0,05000 \quad \mathrm{E}=-31,279 \mathrm{n} 1=120 \mathrm{~nm}=0 \quad \mathrm{Z}=-0,061 \quad \mathrm{Z} 2=0,711 \mathrm{mb}=-0,003+-0,0007$

$\mathrm{D}=0.1$
$\mathrm{K}_{1}=0.1$
$K_{3}=0.5$
$\mathrm{kT}=0.05$
(from long-time Langevin dynamics)
$\mathrm{D}=0.1$
$\mathrm{K}_{1}=0.1$
$K_{3}=0.5$
$\mathrm{kT}=0.1$ (moderate)
multi-charge poles
(from long-time
Langevin dynamics)

$\mathrm{D}=0.1$
$\mathrm{K}_{1}=0.1$
$K_{3}=0.5$
$\mathrm{kT}=0.3$ (high)
many
multi-charge poles
(from long-time
Langevin dynamics)

Summary

Shape anisotropy of magnetic islands has a strong effect on the states.
Vortices in nanodots have frequency ω_{G} of gyrotropic movement, which is proportional to the force constant over thicknes, $\mathrm{k}_{\mathrm{F}} / \mathrm{L}$.

Even thermal fluctuations can initiate spontaneous vortex motion that satisfies equipartition of energy.

Anisotropy coefficients for islands used in artificial spin ice are found from the effective potential of the magnetic moment in an island.

A model is developed for spin-ice, based on effective island dipoles which can point in any direction, but constrained by anisotropies.
wysin@phys.ksu.edu
www.phys.ksu.edu/personal/wysin

[^0]: Sys 1/1, 605 Spins

[^1]: Sys 1/1, 605 Spins

