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An interesting problem in theoretical and
applied physics

® high index dielectric
resonator, equilateral
triangular cross
section, height h>»a.

® what are the 2D TIR
resonant modes/?

® what are their
lifetimes or Q- side=a



Motivation for studies

mode selection in micro-cavity resonators

advances in growth of semiconductor
geometries -- circles, triangles, squares,
hexagons, pyramids, etc., experimental data

challenging and fun problem in
electromagnetism, field matching conditions,
polarization dependence

relation to quantum polygonal billiards



Some previous works on ETRs

® M.G.Lame (1852). Analytic soln. for
elastic waves on a triangular drum,
Helmholtz eq. with ¥=0 on boundary

(scalar ¥, Dirichlet Boundary Conditions)

® H.C.Chang et al. (2000). Used Lame soln.
for TM modes in dielectric ETR, applying
DBC.

® Y. Z.Huang et al. (1999-2001). Approx.
soln. for TM and TE modes using Maxwell
eqs. and their boundary conditions in a
dieletric ETR. Evanescent exterior waves.




PART |. Review of
approximation (Yedge=0)
® Large index ratio = strong TIR.

® No z-dependence; independent TE and TM modes.

e | Initial approx: on ¥Y=H (TE)or ¥Y=E (TM

. = Apply Lame soln., composed from 6 plane waves

related by 120 rotations. Check TIR confinement...

® The plane waves with smallest angle of incidence can
lead to exterior evanescent waves and a lifetime.



triangle with DBC

add 3 ‘standing waves’

related by 120° rotations R

Y = Aotho + A1¢1 + Aatho.

TE,‘I’=HZ, TM, ‘I’=EZ

one ray y
produces
6
travelling
waves
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Imposing DBC on all boundaries determines the allowed

wavevector components as Constraints:

1. m<n

o 2. m,n
k2 = —V3n, n=1,2,3.. (27) both odd

Ja
: : or both even
Furthermore, the parity constraint e'™ = e'™" appears;

that is, n and m are either both odd or both even.
The resulting zy frequencies are given by

c 27
w=c*y/k+ks= vVm?2 + 3n2 (28) DBC
\/ JVEr 3a frequencies

The mode wavefunctions are described completely using
the amplitude relationships that result:

A1 = AgeiS™, Ay = AgetF™, (29)




Spectrum with approximation
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¢ Lowest Modes

2D Triangular Cavity
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Conditions for confinement by Total Internal Reflection

wave component at smallest
angle of incidence has wavevector is

sinB, =k /(k, >+ k, )% (kk,)=(21/32)(m,nv/3)

TIR confined when
dn@i > n'/n =1/N




(m,n)=(0,2)
(k,.k,)=(2T1/32)(0,2V/3)

ground state

ravework.x <-- analytic.trisys.vecs40 =] B3
Helmholtz Eqn. nx= 40 ny= 40 mode= 1 m= 0 n= 2 omega*a= 7.25520

q=quit. mn=mode+/—, lk=lam+/-, io=in/out

min. sin@.= 0
1

Modes with m=0
can never be
confined by TIR

because k1 =0 (m=0)

gives waves at
zero incident angle
on all boundaries



sin@ ., =1/(12 + 3x32)%

min.

)

k=(2T11/32)(1,3/3)
doubly degenerate

(m,n)

TIR requires N>5.29

Helmholtz Eqn.
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(m,n)=(3,5)

k=(2T1/32)(3,5+/3)
doubly degenerate

Helmholtz Egqn. nx= 40 ny= 40

min. sin@i=3/(32 + 3x52)!,
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TIR requires N>3.06

_ | x| wavework.x <-- analytic.trisys.vecs40
45

.......
Helmholtz Egn. nx= 40 ny= 40

0] %]




TIR of DBC

modes
requires:

2D Triangular Cavity

79

a/8
37

4/6
3/5
5/9

FIG. 6: TIR mode confinement limits (index ratio N =
\/ ep/e'p') for 2D triangular cavities. Modes are confined
where the m/n ratios (as indicated) lie above the solid curve,
corresponding to TIR on all boundaries [relation (37)]. Inter-
sections on the N-axis give the critical index ratios for each
mode.
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FIG. 7:  Frequency of the lowest confined mode for a 2D
triangular system surrounded by vacuum, as a function of
the refractive index. Pairs (m,n) indicate some of the modes’
quantum numbers. No modes are confined for |/ep < 2.




How good is Dirichlet BC approximation?

: i 10
Exterior field at boundary: W, oc(1+€ 7)Y,

eié Is reflection amplitude of Fresnel equations.

< Example.

DBC better for
modes with

large m/n (or 0.)

and much better
for TE than TM

M polarization.
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PART Il. “Phase shift” boundary conditions

® For TM, TE polarizations, use the correct

Fresnel reflection amplitudes r= =¢10(9,)

® (Dirichlet BC -- reflection phase shift is 0=-T1T.)
(Neumann BC -- reflection phase shift is 0=0.)

® Fields generally are not zero at the boundary. There
are outside the cavity.

® Try to get nearly correct field matching from inside
to outside the cavity.



aN€ waves




Main Objective:

Find allowed I, o1.

Assume 0.>60°




Only three reflections:
incident angles! (o 6.=60°+6
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matching waves ® and (D at lower boundary

Q& - . Ale-lky al2+/3
X2 — ol06 —
Q{‘Z’%s&C Fimes A olky 2/2V3
& 2
ky=kj, =k sin
ik, - Y 7 TR
A kg - 1 Y 7 A elkl r




wave © reflects to generate wave (D

A]_=A6 eIA6 A6 = 66—k6y a/\/3

( refl.= inc. ™ e'Aé) |<6), = -k sin &

similar for incident waves (3 and ® on lower boundary...

i
A4=A3 el : A3 = 63_k3y CYRVE

iA
A=A, e As = 85-ksy a/y3



Use symmetry on other boundaries, leads to a nice problem:




Follow sequences of internal reflections of the waves
192532455261,
ei-3(A3+A6) i

Mode condition: The exponents must be 21T * integers!




Another way to look at it.

A\
e =3,

As _ A 4e




Quantization.  ng,ng,n, = integers

3(A3+A6)=21'rn3

But! (n3+n5)=3n6

3(A5+A6)=21'rn5

As+Ac+2A,=2TINn,
63,65,66 depend on &

Apply defns. of the A’s, then,

kxa = ka cos &X = (AB_AS) = (63—65)

372 k,a = 3 kasin & = (A3 +Ac+20.)—(55+5:+25)

Can solve for & by eliminating k...
Gives nonlinear equation for «.



Fresnel phase shifts 6(6,)

TM=perpendicular polarization

stronger index dependence!
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spectrum

ka=(w/ c)(z—:u)y2

mode spectrum mode spectrum
N=32, TE N=32 TM

all modes within

DBC- TIR limits: i
(m=n) (sin@.=1/N)
(x=60°) g



larger N — more modes.

mode spectrum
N=80, T™™

25




TE almost follow

DBC theory. TM fall at
lower frequencies.

— TE modes
DBC-TIR theory

— TM modes

N=n'/n=index ratio



lowest mode at N=3.2 (doubly degenerate) TE, 4

N =32, TE,, o= 71.5207° N =3.2, TE,,
¢ = 4.9529 rad
a) phase 8=0 ka = 125628 a) phase 0 =m/2

tc'/a=0.125
Q = 158




1st excited mode at (doubly degenerate) TM3’5

N=3.2

N =32 TMjs o = 70.4167° N=3.2, TM;5
¢ = 3.7847 rad

a)phase 8=0 ka = 143406 a) phase 0 =mn/2
Tc'/a =224

Q = 322




another excited mode  (doubly degenerate) TM,,

at N=3.2

N =3.2, TMyg o = 68.6412° N =32 TM,;
¢ = 3.6384 rad

a) phase 8=0 ka = 18,5733 b) phase 8 =m/2
Tc'/a =3.64

Q = 67.7




Mode lifetime estimates--due to
escape of evanescent boundary waves
at the triangle vertices (Wiersig 2003).

Solution has three plane waves
incident on any boundary.

Wave (6 produces evanescent wave

of greatest power (min. 6.)

lifetime T~ U e

cavity ;

cavity= total cavity energy S SR e Sl S

A A AN N~

= power in (®)’s evanescent wave

~ A A~



mode quality factors vs.

index ratio N=n/n" el

a) TE  modes
m.n

T ~(ew) 2 (alc)



comparison of Q-factors vs.index ratio N=n/n'




a)N =8.0, TE,; o= 78.9295° b)N = 8.0, TM, 5
¢ = 3.3128 rad

phase 8=0 ka = 10.8199 phase 8=0
7c fa =515

Q = b5.7

o = 78.5956°

¢ = 3.8594 rad
ka = 6.5217
tc'/a =2.60

Q = 169



Errors? in Q=wT calculation ?

® ? Do the react back on the
waves inside the cavity ! How do they really
at the corners ?

® Y.Z.Huang et al. used finite-difference-time-
domain + Pade approx. technique to study
of incident waves by a triangle.
= contrary results: larger Q’s for TM modes.



Conclusions
iO

® Used Fresnel reflection coefficients r=e - to
phase match the 6 plane waves inside the ETR.

® Solved this eigenvalue problem to get ray-angle
, then I, w, ¥, for TE and TM polarizations.

® Plane wave components leak out of cavity via
evanescent boundary waves, leading to

finite lifetimes T.

® At large N, TE modes are found to have longer
lifetimes and higher Q’s than TM modes.
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The Life and Times of James Clerk Maxwell
Dr. James C. Rautio

2005 IEEE Distinguished Lecturer

Friday, 21 October 2005
3:30 p.m.

Fiedler Auditorium

In his 90-minute presentation, Dr. Rautio covers the life of Dr. James Clerk Maxwell
from the viewpoint of a microwave engineer, drawing on many sources in providing
an understanding of James Maxwell himself. In many ways, James Clerk Maxwell
stands shoulder to shoulder with Newton and Einstein, yet even those of us who
have spent decades working with Maxwell's equations are almost totally unfamiliar
with his life and times. What was Maxwell like as an infant? What was the tragedy at
eight years old that profoundly influenced his life? What unique means of
transportation did young Maxwell use to escape a cruel tutor? What memorable
event occurred on his first day of school? When did he publish his first papers, and
what were they about? What did Maxwell have to do with the rings of Saturn? Why
did he lose his job as a professor? Why did he have a hard time getting another job?
What was his wife like? What is Maxwell's legacy to us? The answers to these
questions provide insight into Maxwell the person and add an extra dimension to
those four simple equations we have studied ever since.

Dr. James C. Rautio is President and Founder of Sonnet Software, Inc., a firm
offering software for analysis and synthesis involving high-frequency
electromagnetics. A Fellow of the Institute of Electrical and Electronics Engineers
(IEEE), he was selected by the Microwave Theory and Techniques Society of the IEEE
as a 2005 Distinguished Microwave Lecturer. Dr. Rautio’s visit to our area is at the
invitation of The Consultants Network of the Kansas City Section of the IEEE, and his
presentation at K-State is part of the Department of Electrical and Computer
Engineering’s Distinguished Lecture Program.



