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Abstract. Dynamical effects under geometrical frustration are considered in a
model for artificial spin ice on a square lattice in two dimensions. Each island
of the spin ice has a three-component Heisenberg-like dipole moment subject
to shape anisotropies that influence its direction. The model has real dynamics,
including rotation of the magnetic degrees of freedom, going beyond the Ising-
type models of spin ice. The dynamics is studied using a Langevin equation
solved via a second-order Heun algorithm. Thermodynamic properties such as
the specific heat are presented for different couplings. A peak in specific heat is
related to a type of melting-like phase transition present in the model. Hysteresis
in an applied magnetic field is calculated for model parameters where the system
is able to reach thermodynamic equilibrium.
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Figure 1. A 16 ⇥ 16 model system with d = k1 = k3 = 0.1, in a metastable state
at temperature kBT/⇥ = 0.025, from a hysteresis scan (this is a state at hext = 0).
Most of the system is locally close to the Z = +1 ground state. The upper right-
hand corner is locally near the Z = �1 ground state, and there is a bent domain
wall connecting the two regions. For interior charge sites (junction points of four
islands), there happens to be no discrete monopole charge present: all qk = 0 and
the discrete �m = 0.

leading to thermally driven slow dynamics. Alternatively, the use of materials with an ordering
temperature near room temperature seems to be another important possibility. By using such a
material, a recent experimental work on a square lattice in an external magnetic field confirms a
dynamical pre-melting of the artificial spin ice structure at a temperature well below the intrinsic
ordering temperature of the island material, creating a spin ice array that has real thermal
dynamics of its artificial spins over an extended temperature range [21]. A better understanding
of these compounds may even come from colloidal systems, which have an advantage over
the usual magnetic arrays because thermal activation of the effective spin degrees of freedom
is possible [11]. So, a more detailed analysis of the effects of thermal fluctuations and the
spin dynamics in a two-dimensional spin ice material should be of great interest for a better
understanding of these interesting frustrated systems.

Using an Ising model for the magnetic moments of the nanoislands, thermal effects in
artificial square ice were studied recently by some of us [22] with Monte Carlo simulation. The
focus was on examining the roles of elementary excitations in the thermodynamic properties
of these systems. We found that the specific heat and average separation between monopoles
with opposite charges exhibit a sharp peak and a local maximum, respectively, at the same
temperature [22], Tp ⇤ 7.2D/kB, where D is the strength of the dipolar interactions and kB is
Boltzmann’s constant. The Ising behavior of the islands seems to be realistic for the typical
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 Artificial spin-ice.  Arrays of 
elongated magnetic islands, 
dominated by anisotropy & 
dipole-dipole interactions.

Each arrow = one island. 

Island rows are alternately 
aligned along x or y-axes in 
this artificial square ice. 

This system has two 
degenerate ground states.

Mimics the behavior of 3D 
spin ices of rare earths in 
lattice of corner sharing 
tetrahedra of a pyrochlore 
structure.
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in Review article: Advances in artificial spin ice,
Sandra Skjærvø et al. Nat. Rev. Phys. 11/08/19.

Artificial spin ices are metamaterials made up of coupled 
nanomagnets arranged on different lattices that exhibit a number 
of interesting phenomena, such as emergent magnetic monopoles, 
collective dynamics and phase transitions.

The ability to create thermally active artificial spin ices with 
fluctuating moments at room temperature makes it possible to 
explore the rich phase diagrams with phases that are determined 
by the geometry, temperature and disorder.

Signatures of the magnetic configurations are given by the specific 
spin-wave resonances in artificial spin ice, which offer a platform for 
programmable spin-wave devices, in particular magnonic crystals.

The established artificial spin ices are arranged on square and kagome lattices. 
New geometries include both periodic and aperiodic, different magnet shapes 
and anisotropies, and 3D structures.

Future work involves developments in fabrication and characterization 
methods, the study of artificial spin systems with new geometries and 
combinations of materials, and the development of applications including 
computation, data storage, encryption and reconfigurable microwave circuits.
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The interesting properties of Pr2Ir2O7 are rooted in its crystal structure, 
called a pyrochlore lattice: four praseodymium (Pr) ions, each of which 
carries a magnetic ‘spin’, form a tetrahedral cage around an oxygen (O) 
ion. At low temperatures, the spins of materials with this structure often 
‘freeze’ into what is called a ‘spin ice’ (Fig. 1) because of its similarity to 
the way hydrogen ions form around oxygen in water ice. (phys.org/news/)

Example of a rare-earth
pyrochlore compound.

 Pr spins at 
corners of tetrahedrons.

https://phys.org/tags/crystal+structure/
https://phys.org/tags/water+ice/
http://phys.org/news/


 Artificial spin-ice.  Arrays of 
elongated magnetic islands, 
dominated by anisotropy & 
dipole-dipole interactions.
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A recent theoretical proposal for vanishing the string tension was made to transform the square array into a 
rectangular one17. Inspired by this modified system, here we propose to realize an experimental study based on 
magnetic atomic force (MFM) measurements of the ground state and excited states of rectangular artificial spin 
ices (RASI). Denoting the horizontal and vertical lattice spacings of the rectangular array by a and b respectively 
(but always keeping the same dimensions for all magnetic bars), and defining a parameter (the aspect ratio) that 
controls the stretching of the lattice γ ≡ a/b, then, the theory17 predicts that the ground state suffers a transition at 

3γ =  (or equivalently at 1/ 3  by interchanging x and y axes, or make γ ≥ 1 to avoid this ambiguity). Figure 1 
shows an example of a fabricated rectangular array for 2γ = . In Fig. 1a,b, we present the sample topography 
and each island magnetic dipole (with topologies), respectively. In our investigation, we basically compare arrays 
with ratios γ < 3 and γ > 3 to the array having the critical value 3cγ γ= =  (from now, dubbed γc-array). 
For this comparison, we choose systems with lattice parameters having ratios equal to γ = 2 and γ = =4 2. 
Really, we clearly observe that such a deformation can tune the ratios of the interactions between neighboring 
elements resulting in different magnetic ordering of the system.

Before starting to discuss our work, it would be useful to describe earlier results about rectangular lattices. 
Indeed, theoretical calculations indicate that, for 1 3γ< < , the ground state (denoted GSQ) has residual mag-
netic charges (but not magnetic moments) in all vertices, alternating from positive to negative in neighboring 
vertices. Such an idea of charge excess in the vertex centers is simplified (as discussed below) since this theoretical 
approach used the dumbbell model in the context of a system containing magnets that really have a length. 
Therefore, forgetting this trouble for a while, the total magnetic charge is zero. On the other hand, for 3γ > , the 
ground state (denoted GSM) exhibits alternating residual magnetic moments (but not charges) in all vertices and, 
again, in this case, the total magnetic moment is zero. Exactly at the critical value γ γ= = 3c , these two differ-

Figure 1. Artificial spin ice in a rectangular lattice. Consistent with other types of geometry (square, kagome 
etc), the ground state of a rectangular spin ice also obeys the ice rule in all vertices, which, in the present case, 
dictates that two spins must point-in and the other two must point-out. Excited states violate of the ice rule. The 
particular array shown here has the aspect ratio γ = =a b/ 2 . (a) Atomic force microscope topography of a 
typical sample for 2γ = . (b) Picture from the magnetic force microscope of single domain permalloy 
magnetic nanoislands (300 nm × 100 nm × 20 nm). Bright and dark ends of each elongated nanoisland indicate 
the opposite poles and give the direction of the magnetic moment of the islands. (c) The five possible topologies 
in this system. The circles in some vertices represent magnetic charges. We remind that the ground state GSQ is 
formed by the topology T0, while the ground state GSM is formed by topology T1.
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Realization of Rectangular Artificial 
Spin Ice and Direct Observation of 
High Energy Topology
I. R. B. Ribeiro1,6, F. S. Nascimento2, S. O. Ferreira1, W. A. Moura-Melo1, C. A. R. Costa3,  
J. Borme  4, P. P. Freitas4, G. M. Wysin5, C. I. L. de Araujo  1 & A. R. Pereira1

In this work, we have constructed and experimentally investigated frustrated arrays of dipoles forming 
two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal 
and vertical lattice spacings denoted by a and b respectively). Arrays with three different aspect ratios 
γ = a/b = 2, 3 and 4  are studied. Theoretical calculations of low-energy demagnetized configurations 
for these same parameters are also presented. Experimental data for demagnetized samples confirm 
most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does 
not emerge in our theoretical model, while they are seen in experiments for large enough γ. Our results 
also insinuate that the string tension connecting two magnetic monopoles in a pair vanishes in rectangular 
lattices with a critical ratio γ = γc = 3, supporting previous theoretical predictions.

Recently, the study of materials with frustrated interactions has received a lot of attention in an attempt to under-
stand new states of matter1–9. The main problem concerning the experimental investigation of the properties of 
these structures is to find natural materials (in two and three dimensions), which not only clearly exhibit frus-
tration but also provide reproducible results and adequate control for measurements. It is not such a simple task. 
An alternative path was provided by techniques of nanotechnology, in which artificial materials can be built with 
desirable properties and attributes in order to permit the materialization of a large variety of different sorts of 
geometrical frustration10,11. Especially, artificial spin ices in several different lattice geometries are important exam-
ples5,8,12–14. They are two-dimensional (2d) arrays of elongated magnetic nanoislands, each containing an effective 
magnetic moment or spin (see Fig. 1) that mimics natural three-dimensional (3d) spin ice materials1–3. However, 
such an artificial system in a 2d square lattice is not completely frustrated since the ice rule (in which two-spins 
must point-in and the other two must point-out in each vertex) is not degenerate (the two topologies that obey 
the ice rule have different energies5,6) and, therefore, the ice regime is not stabilized. Despite this, as in natural spin 
ices, artificial square ice (and even other kinds of artificial lattices) also supports quasiparticle excitations that are 
similar to magnetic monopoles6,14–17. Indeed, as shown by Castelnovo et al.2, excitations in natural spin ices behave 
like a magnetic monopole-antimonopole connected by a non-energetic but observable string (it is slightly different 
from the Dirac monopoles in which the string is also non-observable18). These objects and their strings were found 
by measurements from neutron-scattering experiments19–21. On the other hand, in general, monopole like excita-
tions are of different types in artificial ice materials. For instance, the 2d artificial square ice supports excitations in 
which the oppositely charged monopoles occur connected by observable and energetic strings (a kind of Nambu 
monopole-antimonopole pair16,22,23). Therefore, it would be interesting to imagine and construct 2d artificial lattices 
whose monopole pair excitations would have a string tension that tends to vanish in such a way that, opposite mag-
netic charges would be effectively interacting only by means of the usual Coulomb law. However, in two dimensions, 
there is still additional entropic effects, which may cause some difficulties for this picture as we will remark later.
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Manhattan, KS, 66506-2601, USA. 6Instituto Federal do Espírito Santo, Alegre, 36570-900, Espírito, Santo, 29520-
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Atomic force microscope topography,  
300 x 100 x 20 nm islands. Magnetic force microscope image showing 

N (bright) and S (dark) poles. 



Magnetic Nano-Islands
(elements of artificial spin-ice)

Approx. 50 nm - 5 μm wide but only 10 nm thick. 
Individual & in arrays, high-permeability soft magnetic materials.  
Grown with techniques of epitaxy & lithography on a non-magnetic substrate. 
Form arrays of particles that can interact with each other or applied fields. 

Primary physics effects - 
magnetostatics controlled by island geometry. 
discrete energy states for data storage. 
spintronics controlled by current injection. 
magnetic oscillators controlled by applied fields. 
frustration in ordered arrays of islands (artificial spin-ice). 

Several principle states of a nano-island:                                              
    (1) quasi-single domain;   (2) vortex;  (3) multi-domains & domain walls.

~ increasing size ~

6

→

→ →

→

→ →→



Topics for study in the islands:

1) Vortices. The static and dynamic properties of single vortices.  
They behave very much as particles with charges.  

2) Magnetostatic  anisotropy of the islands themselves. 
 Also known as shape anisotropy because it depends mostly  
on the surfaces. 

  isotropic                    elliptic                               Ising-like 

3) Spin-ices, frustration. Especially for elongated islands with Ising-
like states, interactions within their arrays, that lead to frustrated 
statics and dynamics.  
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62 CHAPTER 3. DEMAGNETIZATION EFFECTS IN THIN MAGNETS

which suddenly goes from some nonzero value inside the magnet to zero on the outside.

This change corresponds to an effective volume charge density that can be represented as a

delta function on the surface. Stated otherwise, Gauss’ Law used on Eq. (3.4) (the divergence

theorem applied to a pillbox at the surface) will tell us that there is a local surface charge

density, ⌅M given by
⌅M = ⇥M · n̂, (3.23)

where n̂ is the outward normal vector from the surface of the magnet. This surface charge

density is greatly responsible for generating the demagnetization field even more so that the

volume charge density, because the spatial variations in ⇥M within the volume are usually

much less drastic than the sudden change at the surface.

In a case where there is surface charge density, the element of effective charge is

dqM = ⌅MdA= ⇥M · n̂ dA (3.24)

where dA is a surface area element. The contribution to the potential only from surface

charge can be written as

ΦS
M(r) =

�

A
dA⌅ g0(r� r⌅)⌅M(r⌅) =

�

A
dA⌅

⇥M(r⌅) · n̂⌅

4⇥|r� r⌅| (3.25)

Indeed, in any real problem, if ⇥M is present, then surface charge density is present, and this

result should be combined with the fields from volume charge density, Eq. (3.10), to get the

total demagnetization field. The general solution for the potential can always be written as

ΦM(r) =
�
d3r⌅

⇤M(r⌅)
4⇥|r� r⌅| (3.26)

as long as d3r⌅⇤M(r⌅) includes both volume and surface charges in the sample.
Next the demagnetization effect is analyzed in detail for some simple geometries. A

cylinder of circular cross section is considered due to its symmetry and being a common

shape for magnets. Then a cylinder of square cross section is analyzed, because that shape

can be used as element in numerical simulations. Finally the demagnetization effects in a

thin system will be analyzed, due to the application in quasi-2D magnetic models.

3.2 The magnetic field inside a cylindrical magnet

First, consider a magnet of length L with long axis the z axis. The ends of the cylinder lie at

z = ±� , so that the length is L = 2� , and z = 0 is at the middle of the cylinder. The cross

section is initally taken to be a circle of radius R. There is no special assumption about the

size of the radius R compared to the cylinder length L. In principle, the cylinder could have

any arbitrary magnetization distribution, however, it is more practical to consider a uniform

magnetization either along its axis (longitudinal magnetization) or perpendicular to the axis

(transverse magnetization).

Magnetization M determines an 
effective surface charge density:

N pole,  
σM>0.

The poles produce 
large stray-field energy.

But ferromagnetic 
exchange energy is 

small.

+
+

+

+
+

+

+

+

S pole,  
σM<0.

-

-
-

-
-

- - - - -

M
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thin system will be analyzed, due to the application in quasi-2D magnetic models.
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z = ±� , so that the length is L = 2� , and z = 0 is at the middle of the cylinder. The cross

section is initally taken to be a circle of radius R. There is no special assumption about the

size of the radius R compared to the cylinder length L. In principle, the cylinder could have

any arbitrary magnetization distribution, however, it is more practical to consider a uniform

magnetization either along its axis (longitudinal magnetization) or perpendicular to the axis

(transverse magnetization).
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Micromagnetics.   
A technique for 

studying a  
continuous system.

a
a

substituting the atomic dipoles with these cell dipoles. Also, lengths (or positions) will be

measured in units of the cell size, a, and it is convenient to use the unit vector magnetic

moments (fictitious “spins”), m̂i = ✏µi/µ, the discrete version of m̂ = ✏M/MS. Thus we have

the dipolar terms convenient for micromagnetics calculations,

Hdd = �µ0

4⇥

µ2
cell

a3

�

i>j

[3(m̂i · r̂ij)(m̂j · r̂ij)� m̂i · m̂j]

(rij/a)3
. (13)

However, for micromagnetics, we do not evaluate the dipolar energy this way, because it gets

very slow for even moderate system size. Instead, we resort to finding the “stray field” or

demagnetization field, which then interacts with the dipoles. We do this by a FFT solution

of the e⇥ective magnetics equation, which gives the solution for magnetic potential �M when

a given magnetization distribution is provided. Based on

✏⌅ · ✏B = µ0(✏⌅ · ✏H + ✏⌅ · ✏M) = 0. (14)

We assume the magnetic field is derived from a potential, in the absence of free currents.

✏HM = �✏⌅�M , then �⌅2�M = �✏⌅ · ✏M. (15)

The RHS is an e⇥ective magnetic charge density, so we can write

�⌅2�M = ⇤M , where ⇤M = �✏⌅ · ✏M. (16)

Once the magnetic field is known, the demagnetization energy is known to be given by the

expression,

Hdd = Hdemag = �1

2
µ0

⇥
dV ✏M · ✏HM . (17)

The factor of 1/2 takes care of double counting of the field interactions. If there is also an

externally applied magnetic field, then it makes an additional energy contribution,

HB = �
�

i

✏Bext · ✏µi = �µ0MS

⇥
dV ✏Hext · m̂ (18)

B. Units for Computations

To continue, it is convenient to use some dimensionless units, from which the definition

of the magnetic exchange length emerges. Magnetization is already scaled by MS to give the

4

Each cell contains  
a magnetic dipole:

x

y

▶ Model for cylindrical islands, radii RA, RB, height L. 

▶ Divide the sample into cells of size a x a x L. 

▶ Assume that the magnetization is saturated (MS) inside 
each cell: |m|=1. Only the directions vary between cells. 

▶ The cells interact as dipoles, with exchange energy 
between neighbors & with the demagnetization field.
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Micromagnetics 
Hamiltonian:      H=Hex+Hdemag+HB

exchange:

magnetostatic 
(demagnetization):

applied field:

mjmi

I. SYSTEM AND HAMILTONIAN

The exchange hamiltonian between spins �Si is

Hex = �J
⇤

(i,j)

�Si · �Sj (1)

where (i, j) indicates summing over all nearest neighbor pairs, with i and j denoting lattice

sites. The energy associated with exchange interactions can be written in a continuum limit.

For simplicity, suppose the atomic spins occupy sites of a simple cubic lattice, with lattice

constant a0. Then expanding around a given spin (see Appendix), to get its 6 neighbors,

each a distance a0 away, leads to

Hex = �J
⇤

(i,j)

�Si · �Sj =
1

2
J

⌅
dx

a0

dy

a0

dz

a0
⌅�S ·⌅�S a2

0 (2)

Now this can be re-written in terms of the local magnetization scaled by the saturation

magnetization, i.e., use local magnetization �M = �µ/a3
0 = gµB

�S/a3
0, divided by MS within

the integrand,

Hex =
1

2
J

⌅
dx dy dz

⌅ �M ·⌅ �M

M2
Sg2µ2

B

a3
0a

2
0M

2
S (3)

which simplifies to

Hex =
1

2

JM2
Sa5

0

g2µ2
B

⌅
dx dy dz ⌅

� �M

MS

⇥
·
�
⌅

�M

MS

⇥
. (4)

This then is where the continuum exchange sti�ness is defined in terms of the atomic ex-

change constant:

A =
1

2

JM2
Sa5

0

g2µ2
B

. (5)

Exchange energy can be expressed for micromagnetics application in terms of unit mag-

netization vectors m̂,

Hex = A

⌅
dV ⌅m̂ ·⌅m̂, (6)

where the magnetization scaled by its saturation value is

m̂ = �M/MS. (7)

If the definition for MS is inserted, using the cubic unit cell volume as the volume per atom,

v1 = a3
0, then we get a direct relation between J and A:

A =
1

2

JS2(gµBS/a3
0)

2a5
0

g2µ2
BS2

=
JS2

2a0
. (8)

2
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moments (fictitious “spins”), m̂i = ✏µi/µ, the discrete version of m̂ = ✏M/MS. Thus we have

the dipolar terms convenient for micromagnetics calculations,

Hdd = �µ0

4⇥

µ2
cell

a3

�

i>j

[3(m̂i · r̂ij)(m̂j · r̂ij)� m̂i · m̂j]

(rij/a)3
. (13)

However, for micromagnetics, we do not evaluate the dipolar energy this way, because it gets

very slow for even moderate system size. Instead, we resort to finding the “stray field” or

demagnetization field, which then interacts with the dipoles. We do this by a FFT solution

of the e⇥ective magnetics equation, which gives the solution for magnetic potential �M when

a given magnetization distribution is provided. Based on
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We assume the magnetic field is derived from a potential, in the absence of free currents.
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The RHS is an e⇥ective magnetic charge density, so we can write
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The RHS is an e⇥ective magnetic charge density, so we can write
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Once the magnetic field is known, the demagnetization energy is known to be given by the

expression,

Hdd = Hdemag = �1
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µ0

⇥
dV ✏HM · ✏M (18)

The factor of 1/2 takes care of double counting of the field interactions. If there is also an

externally applied magnetic field, then it makes an additional energy contribution,
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dV ✏Hext · ✏M (19)
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✏Bext · ✏µi = �µ0MS
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4

Statics: minimize the energy  ⇒  stable configurations.

Difficulties:   
(i) Calculating the demagnetization field HM;     
(ii) Enforcing a desired initial position, X, of a vortex  ⇒  E(X).

Dynamics: equation of motion  ⇒  periodic configurations.
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“magnetic exchange length”

But it will be necessary to measure all energies in the same, units, say, in units of the

cell-to-cell exchange constant, Jcell = 2AL. So we write

UM

Jcell
= �1

2

µ0M2
SLa2

2AL
(H̃M · m̂i)

UM

Jcell
= �1

2

µ0M2
Sa2

2A
(H̃M · m̂i)

UM

Jcell
= �1

2

�
a

�ex

⇥2

(H̃M · m̂i) (30)

where the exchange length is defined from

�ex =

�
2A

µ0M2
S

(31)

Similarly, if there is an externally applied magnetic field, the interaction energy is scaled in

the same way,
UB

Jcell
= �

�
a

�ex

⇥2

(H̃ext · m̂i) (32)

where the external magnetic induction and field are related by

✏Bext = µ0
✏Hext = µ0MSH̃ext (33)

C. Dimensionless Hamiltonian and E�ective Field

Summarizing the interactions in dimensionless form, involving the unit vector “spins”

m̂i = ✏µi/µcell, we have

Exchange : Uex = �Jcell ⇤ m̂i · m̂j (34)

Demagnet : UM = �Jcell ⇤�
1

2

�
a

�ex

⇥2

(H̃M · m̂i)

External : UB = �Jcell ⇤
�

a

�ex

⇥2

(H̃ext · m̂i)

The total Hamiltonian for the micromagnetics cells is

Hmm = �Jcell

⇧
 

⌥
↵

(i,j)

m̂i · m̂j +

�
a

�ex

⇥2↵

i

�
H̃ext +

1

2
H̃M

⇥
· m̂i

⌃
⌦

� (35)

This is associated with the e�ective field on a site,

✏Fi = �⌅Hmm

⌅m̂i
= Jcell

⇤
↵

nbrs

m̂j +

�
a

�ex

⇥2�
H̃ext +

1

2
H̃M

⇥⌅
(36)

6

Of course, the derivation is for a simple cubic lattice, relating the near neighbor exchange

J with the exchange sti�ness and lattice constant.

A. Micromagnetics Viewpoint

In the alternative micromagnetic viewpoint, the system is broken up into larger cells, each

of which contains many atoms, but which are small enough that the net magnetic moment

might have nearly a constant magnitude, but varying direction. The nano-disk has a radius

R and thickness L. It is partitioned into cells of size a⇤ a⇤ L = La2. Or we take L = la.

The cell parameter a is likely many times the unit cell size a0. The volume of a working cell

being vcell = la3, contains many atoms. Then the saturated magnetic moment µcell in a cell

would be

µcell = Msvcell =
gµBS

a3
0/4

⇤ la3 = 4l

�
a

a0

⇥3

µatom. (9)

However, we really now will not use these, but rather, will use the unit vectors m̂(◆r). A cell

centered at the origin is surrounded by four other cells, at displacements of ±ax̂ and ±aŷ

(measured to their centers). Then the exchange energy of our cell at the origin interacting

with only the two neighbors to the right and above, as a lowest order finite di�erence

approximation to (6), is

Hex,cell = Avcell⇤
⇤�

m̂(ax̂)� m̂(0)

a

⇥2

+

�
m̂(aŷ)� m̂(0)

a

⇥2
⌅

. (10)

Finally, it can be expressed as the exchange energy per bond,

Hex,bond =
2Avcell

a2
[1� m̂(0) · m̂(ax̂)] . (11)

It demonstrates that the e�ective exchange coupling between the cells (i.e., cell-to-cell) is

Jcell =
2Avcell

a2
= 2AL. (12)

Jcell =
2Avcell

a2
=

2A(la3)

a2
= 2Aal = 2AL. (13)

1. Dipolar interactions

The exchange strength between cells needs to be contrasted to the strength of their e�ec-

tive dipolar interactions. We already saw that each cell has a dipole moment of magnitude

3

Scale energies by the 
exchange between cells:

The most interesting result in dimensionless units is the demagnetization energy. A chosen

magnetic dipole has that interaction expressed as

UM = �1

2
�BM · µi

UM = �1

2
µ0MS(�⌅̃�̃) · MSvcellm̂i

UM = �1

2
µ0M

2
SLa2(�⌅̃�̃) · m̂i

UM = �1

2
µ0M

2
SLa2(H̃M · m̂i) (30)

But it will be necessary to measure all energies in the same, units, say, in units of the

cell-to-cell exchange constant, Jcell = 2AL. So we write

UM

Jcell
= �1

2

µ0M2
SLa2

2AL
(H̃M · m̂i)

UM

Jcell
= �1

2

µ0M2
Sa2

2A
(H̃M · m̂i)

UM

Jcell
= �1

2

�
a

�ex

⇥2

(H̃M · m̂i) (31)

where the exchange length is defined from

�ex =

⇤
2A

µ0M2
S

(32)

Similarly, if there is an externally applied magnetic field, the interaction energy is scaled in

the same way,
UB

Jcell
= �

�
a

�ex

⇥2

(H̃ext · m̂i) (33)

where the external magnetic induction and field are related by

�Bext = µ0
�Hext = µ0MSH̃ext (34)

C. Dimensionless Hamiltonian and E�ective Field

Summarizing the interactions in dimensionless form, involving the unit vector “spins”

m̂i = �µi/µcell, we have

Exchange : Uex = �Jcell ⇤ m̂i · m̂j (35)

Demagnet : UM = �Jcell ⇤�
1

2

�
a

�ex

⇥2

(H̃M · m̂i)

External : UB = �Jcell ⇤
�

a

�ex

⇥2

(H̃ext · m̂i)
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Hamiltonian on the grid of cells:

The most interesting result in dimensionless units is the demagnetization energy. A chosen

magnetic dipole has that interaction expressed as

UM = �1

2
�BM · µi

UM = �1

2
µ0MS(�⌅̃�̃) · MSvcellm̂i

UM = �1

2
µ0M

2
SLa2(�⌅̃�̃) · m̂i

UM = �1

2
µ0M

2
SLa2(H̃M · m̂i) (30)

But it will be necessary to measure all energies in the same, units, say, in units of the

cell-to-cell exchange constant, Jcell = 2AL. So we write

UM

Jcell
= �1

2

µ0M2
SLa2

2AL
(H̃M · m̂i)

UM

Jcell
= �1

2

µ0M2
Sa2

2A
(H̃M · m̂i)

UM

Jcell
= �1

2

�
a

�ex

⇥2

(H̃M · m̂i) (31)

where the exchange length is defined from

�ex =

⇤
2A

µ0M2
S

(32)

Similarly, if there is an externally applied magnetic field, the interaction energy is scaled in

the same way,
UB

Jcell
= �

�
a

�ex

⇥2

(H̃ext · m̂i) (33)

where the external magnetic induction and field are related by

�Bext = µ0
�Hext = µ0MSH̃ext (34)

C. Dimensionless Hamiltonian and E�ective Field

Summarizing the interactions in dimensionless form, involving the unit vector “spins”

m̂i = �µi/µcell, we have

Exchange : Uex = �Jcell ⇤ m̂i · m̂j (35)

Demagnet : UM = �Jcell ⇤�
1

2

�
a

�ex

⇥2

(H̃M · m̂i)

External : UB = �Jcell ⇤
�

a

�ex

⇥2

(H̃ext · m̂i)
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Need less than 1 for reliable solutions.

B. Units for Computations

To continue, it is convenient to use some dimensionless units, from which the definition

of the magnetic exchange length emerges. Magnetization is already scaled by MS to give the

dimensionless form, m̂. The gradient operator is scaled by the cell size, to give a unit-less

gradient,

⌅̃ ⇤ a⌦⌅ (21)

This then leads to the dimensionless magnetic charge density ⇥̃,

⇥M = �⌦⌅ · ⌦M = �1

a
⌅̃ · (MSm̂) =

MS

a
⇥̃, (22)

which means the definition is

⇥̃ ⇤ �⌅̃ · m̂. (23)

Similarly there is the dimensionless magnetic potential, derived from ⇥̃,

�⌅2�M = � 1

a2
⌅̃2�M = �1

a
⌅̃ · (MSm̂) =

MS

a
⇥̃, (24)

�M = aMS�̃ (25)

Then the equation being solved computationally is

�⌅̃2�̃ = ⇥̃. (26)

The demagnetization field is

⌦HM = �⌦⌅�M = �1

a
⌅̃(aMS�̃) = �MS⌅̃�̃. (27)

Then it makes sense to define the dimensionless demag field,

H̃M = �⌅̃�̃ , ⌦HM = MSH̃M (28)

The associated magnetic induction is

⌦BM = µ0
⌦HM = �µ0MS⌅̃�̃ = µ0MSH̃M . (29)

5

(cells smaller than exchange length)

demag. field:

13
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on the particular geometry of the islands, and make some
evaluations of the dependence of the effective potential on the
island shape and height. The types of shapes we consider are
ellipses. Thin single-domain ellipses were studied by Wei et al
[9], who found that the reversal process involves close to a
uniform Stoner–Wohlfarth rotation, but with reduced energy
barriers due to some non-uniformity of the magnetization.
However, we find here that, for high aspect ratio ellipses, this
non-uniformity is minimal and a uniform rotation model could
be very useful.

Although the theory for spin ice has been developed
for Ising-like magnetic moments, their dynamics requires a
different model. In reality, the underlying magnetic moment
must evolve from much more complex dynamics. The
reversal of an individual island, in the dipolar fields of
its surrounding islands, must be a complex process, and
could involve the motion of domain walls and vortices
within the individual particles, or an impeded rotation
of the local magnetization mostly in unison. But in the
assumption of strong ferromagnetic exchange inside a
particular particle, and a uniform externally applied field, one
can investigate the reversal process using different approaches
to the micromagnetics [10], and see whether vortices or
domain walls play any significant role. Especially, one can
investigate whether there are intermediate metastable vortex
or domain-wall states as steps of the reversal. To a great
extent, for the thin elliptical particles considered here, the
reversal proceeds mostly as a nearly uniform but impeded
rotation of the magnetization of the particle [9], although the
switching fields are reduced compared to a perfectly uniform
rotation. Hence, the idea of an Ising spin for a particle can be
replaced by a three-dimensional magnetic moment ⌥µ, moving
in some anisotropy potential, but free to point in any direction,
if enough energy becomes available to it.

Obviously, by changing the aspect ratios g1 ⌅ Lx/Ly and
g3 ⌅ Lx/Lz of the particle, its effective anisotropy changes.
The deviation of the ratio Lx/Ly from 1 determines the
strength of an easy-axis anisotropy constant, call it K1, for
the net magnetic moment to rotate within the xy-plane. The
other aspect ratio of length to thickness, Lx/Lz, determines
the difficulty for the magnetic moment ⌥µ to tilt out of
the xy-plane. Thus it determines the strength of a hard-axis
anisotropy constant, call it K3. The goal here is to make some
accurate estimates for these constants and, in the process, to
justify a more generalized description of the magnetization
dynamics, not based on an Ising variable, but, rather, on
an effective three-dimensional magnetic moment, which is
allowed to make deviations from the Ising axis. For a particle
whose hard axis is along ẑ and whose easy axis is along x̂, an
effective potential that approximately represents their energies
is shown to be

E = E0 + K1[1 � (µ̂ · x̂)2] + K3(µ̂ · ẑ)2 (1)

where µ̂ is the unit vector pointing in the direction of the
particle’s net magnetic moment. E0 is the energy when the
magnetic moment µ̂ is along the easy axis. This type of
potential is continuous, in contrast to the two-state Ising
particle, having a well-defined energy barrier, along with

more realistic dynamics. Further, it will give the possibility
of controlling the thermodynamics of spin ices via changes or
variations in the nano-island structure, which can modify the
energy barrier.

The calculational approach is a modification of usual
micromagnetics [11, 12], as follows. A particle is partitioned
into cells of size a ⇤ a ⇤ Lz, under the assumption that the
local magnetization ⌥M(⌥r) is independent of the z-coordinate
(along the thin dimension). Thus, there is only a single layer of
cells in the xy-plane, with the desired shape, say, an ellipse of
major diameter Lx and minor diameter Ly < Lx. The saturated
magnetization in each cell interacts with the neighboring cells
by ferromagnetic exchange, an externally applied magnetic
field, and interacts with all cells via the demagnetization field.
The demagnetization field is calculated using an effective
Green’s function that applies for thin systems [13], see below,
with the calculation accelerated by using a 2D fast Fourier
transform (FFT). To evolve towards the nearest (possibly
meta-) stable magnetic state, we do not use integration of
the Landau–Gilbert spin dynamics equations with damping.
Instead, a faster procedure is to use a local spin-alignment
algorithm that involves no damping parameter. In one step
of this algorithm, each cell’s magnetic moment is pointed
towards the local total magnetic field that instantaneously
produces a torque on that cell. The same procedure is applied
to all cells, the demagnetization fields are recalculated, and
the process is repeated iteratively until a desired tolerance
is reached. A microscopic uniaxial anisotropy energy is also
included, although using a strength that would be typical
for Permalloy, it is almost irrelevant when compared to the
exchange and demagnetization effects. We have checked that
this procedure gives the same final states as integration of the
Landau–Gilbert equations with damping.

The internal magnetic energy Eint of the particle is
calculated. This is the total magnetic energy minus the
interaction energy with the applied magnetic field, �⌥µ · ⌥Hext.
An applied magnetic field is used in the calculations to move
the net magnetic moment around, while it also maps out the
hysteresis loop. In one set of simulations, the hysteresis loop
was calculated with the applied field axis within the xy-plane
at some angle ⇤H to the x-axis. There, the magnetization
makes an angle ⇤m to the x-axis. Then the internal energy
could be found as a function Eint(⇤m), from which the
anisotropy constant K1 is determined, by fitting to (1), in the
form

Eint(⇤m) = E0 + K1sin2⇤m. (2)

In another set of simulations, the applied field was set in the
xz-plane, at some angle �H to the x-axis. This tilts the net
magnetic moment towards the z-axis by an angle �m from
the x-axis. Thus it gives Eint(�m), which depends on both
constants K1 and K3, according to

Eint(�m) = E0 + (K1 + K3)sin2�m. (3)

This allows the anisotropy constant K3 to be determined from
the net stiffness, K13 ⌅ K1+K3. It is important to note that the
potential functions Eint(⇤m) and Eint(�m) found this way do

2

Model for magnetic anisotropy of elliptical  islands.          
Total magnetic dipole moment = μ. Single domain is 
assumed and μ has a fixed magnitude.

x

z

easy axis
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Figure 4. Magnetic configurations for a 120 nm ⇥ 60 nm ⇥ 6 nm particle with magnetic field applied at +45� above a horizontal axis
pointing to the right. The arrows are the coarse-grained averages of 3 ⇥ 3 groups of cells. In (a), the external field is h = 0.20; in
(b) h = 0.0; (c) h = �0.030, just before reversal; (d) h = �0.032, just after reversal.

Figure 5. Magnetic configurations for a 480 nm ⇥ 240 nm ⇥ 24 nm particle with magnetic field applied at +45� above a horizontal axis
pointing to the right. The arrows are the coarse-grained averages of 9 ⇥ 9 groups of cells. In (a), the external field is h = 0.20; in
(b) h = 0.0; (c) h = �0.025, just before reversal; (d) h = �0.027, just after reversal. Note the enhanced curvature of the field compared to
that in the smaller particle in figure 4.

a vortex ground state. Until the vortex state is reached,
an effective potential can be estimated; however, from the
practical point of view it may be of limited use.

4.3. Thicker particles

The particles with g3 = 20 can be too thin to hold a magnetic
moment stable against room-temperature thermal fluctuations.
Thus it is important to consider the changes when thicker
particles are used. Further calculations were carried out for

240 nm long particles to get results for g3 = 20, 15, 10, and
8, corresponding to thicknesses of 12, 16, 24 and 30 nm,
respectively. The results for K1/V and K3/V are shown in
figure 6. As could be expected, the thicker particles have
weaker out-of-plane anisotropy K3/V , while K1/V increases
due to the thicker lateral edges, but at a rate less than linear
in the thickness. We expect that these per-volume energy
constants have only very weak dependence on the particle
length, as was already seen in the results presented above for
12.0 nm thickness.

7

Island reversal & anisotropy

Hext=0.20
Hext=0.0

Hext=-0.025 Hext=-0.027
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on the particular geometry of the islands, and make some
evaluations of the dependence of the effective potential on the
island shape and height. The types of shapes we consider are
ellipses. Thin single-domain ellipses were studied by Wei et al
[9], who found that the reversal process involves close to a
uniform Stoner–Wohlfarth rotation, but with reduced energy
barriers due to some non-uniformity of the magnetization.
However, we find here that, for high aspect ratio ellipses, this
non-uniformity is minimal and a uniform rotation model could
be very useful.

Although the theory for spin ice has been developed
for Ising-like magnetic moments, their dynamics requires a
different model. In reality, the underlying magnetic moment
must evolve from much more complex dynamics. The
reversal of an individual island, in the dipolar fields of
its surrounding islands, must be a complex process, and
could involve the motion of domain walls and vortices
within the individual particles, or an impeded rotation
of the local magnetization mostly in unison. But in the
assumption of strong ferromagnetic exchange inside a
particular particle, and a uniform externally applied field, one
can investigate the reversal process using different approaches
to the micromagnetics [10], and see whether vortices or
domain walls play any significant role. Especially, one can
investigate whether there are intermediate metastable vortex
or domain-wall states as steps of the reversal. To a great
extent, for the thin elliptical particles considered here, the
reversal proceeds mostly as a nearly uniform but impeded
rotation of the magnetization of the particle [9], although the
switching fields are reduced compared to a perfectly uniform
rotation. Hence, the idea of an Ising spin for a particle can be
replaced by a three-dimensional magnetic moment ⌥µ, moving
in some anisotropy potential, but free to point in any direction,
if enough energy becomes available to it.

Obviously, by changing the aspect ratios g1 ⌅ Lx/Ly and
g3 ⌅ Lx/Lz of the particle, its effective anisotropy changes.
The deviation of the ratio Lx/Ly from 1 determines the
strength of an easy-axis anisotropy constant, call it K1, for
the net magnetic moment to rotate within the xy-plane. The
other aspect ratio of length to thickness, Lx/Lz, determines
the difficulty for the magnetic moment ⌥µ to tilt out of
the xy-plane. Thus it determines the strength of a hard-axis
anisotropy constant, call it K3. The goal here is to make some
accurate estimates for these constants and, in the process, to
justify a more generalized description of the magnetization
dynamics, not based on an Ising variable, but, rather, on
an effective three-dimensional magnetic moment, which is
allowed to make deviations from the Ising axis. For a particle
whose hard axis is along ẑ and whose easy axis is along x̂, an
effective potential that approximately represents their energies
is shown to be

E = E0 + K1[1 � (µ̂ · x̂)2] + K3(µ̂ · ẑ)2 (1)

where µ̂ is the unit vector pointing in the direction of the
particle’s net magnetic moment. E0 is the energy when the
magnetic moment µ̂ is along the easy axis. This type of
potential is continuous, in contrast to the two-state Ising
particle, having a well-defined energy barrier, along with

more realistic dynamics. Further, it will give the possibility
of controlling the thermodynamics of spin ices via changes or
variations in the nano-island structure, which can modify the
energy barrier.

The calculational approach is a modification of usual
micromagnetics [11, 12], as follows. A particle is partitioned
into cells of size a ⇤ a ⇤ Lz, under the assumption that the
local magnetization ⌥M(⌥r) is independent of the z-coordinate
(along the thin dimension). Thus, there is only a single layer of
cells in the xy-plane, with the desired shape, say, an ellipse of
major diameter Lx and minor diameter Ly < Lx. The saturated
magnetization in each cell interacts with the neighboring cells
by ferromagnetic exchange, an externally applied magnetic
field, and interacts with all cells via the demagnetization field.
The demagnetization field is calculated using an effective
Green’s function that applies for thin systems [13], see below,
with the calculation accelerated by using a 2D fast Fourier
transform (FFT). To evolve towards the nearest (possibly
meta-) stable magnetic state, we do not use integration of
the Landau–Gilbert spin dynamics equations with damping.
Instead, a faster procedure is to use a local spin-alignment
algorithm that involves no damping parameter. In one step
of this algorithm, each cell’s magnetic moment is pointed
towards the local total magnetic field that instantaneously
produces a torque on that cell. The same procedure is applied
to all cells, the demagnetization fields are recalculated, and
the process is repeated iteratively until a desired tolerance
is reached. A microscopic uniaxial anisotropy energy is also
included, although using a strength that would be typical
for Permalloy, it is almost irrelevant when compared to the
exchange and demagnetization effects. We have checked that
this procedure gives the same final states as integration of the
Landau–Gilbert equations with damping.

The internal magnetic energy Eint of the particle is
calculated. This is the total magnetic energy minus the
interaction energy with the applied magnetic field, �⌥µ · ⌥Hext.
An applied magnetic field is used in the calculations to move
the net magnetic moment around, while it also maps out the
hysteresis loop. In one set of simulations, the hysteresis loop
was calculated with the applied field axis within the xy-plane
at some angle ⇤H to the x-axis. There, the magnetization
makes an angle ⇤m to the x-axis. Then the internal energy
could be found as a function Eint(⇤m), from which the
anisotropy constant K1 is determined, by fitting to (1), in the
form

Eint(⇤m) = E0 + K1sin2⇤m. (2)

In another set of simulations, the applied field was set in the
xz-plane, at some angle �H to the x-axis. This tilts the net
magnetic moment towards the z-axis by an angle �m from
the x-axis. Thus it gives Eint(�m), which depends on both
constants K1 and K3, according to

Eint(�m) = E0 + (K1 + K3)sin2�m. (3)

This allows the anisotropy constant K3 to be determined from
the net stiffness, K13 ⌅ K1+K3. It is important to note that the
potential functions Eint(⇤m) and Eint(�m) found this way do

2
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on the particular geometry of the islands, and make some
evaluations of the dependence of the effective potential on the
island shape and height. The types of shapes we consider are
ellipses. Thin single-domain ellipses were studied by Wei et al
[9], who found that the reversal process involves close to a
uniform Stoner–Wohlfarth rotation, but with reduced energy
barriers due to some non-uniformity of the magnetization.
However, we find here that, for high aspect ratio ellipses, this
non-uniformity is minimal and a uniform rotation model could
be very useful.

Although the theory for spin ice has been developed
for Ising-like magnetic moments, their dynamics requires a
different model. In reality, the underlying magnetic moment
must evolve from much more complex dynamics. The
reversal of an individual island, in the dipolar fields of
its surrounding islands, must be a complex process, and
could involve the motion of domain walls and vortices
within the individual particles, or an impeded rotation
of the local magnetization mostly in unison. But in the
assumption of strong ferromagnetic exchange inside a
particular particle, and a uniform externally applied field, one
can investigate the reversal process using different approaches
to the micromagnetics [10], and see whether vortices or
domain walls play any significant role. Especially, one can
investigate whether there are intermediate metastable vortex
or domain-wall states as steps of the reversal. To a great
extent, for the thin elliptical particles considered here, the
reversal proceeds mostly as a nearly uniform but impeded
rotation of the magnetization of the particle [9], although the
switching fields are reduced compared to a perfectly uniform
rotation. Hence, the idea of an Ising spin for a particle can be
replaced by a three-dimensional magnetic moment ⌥µ, moving
in some anisotropy potential, but free to point in any direction,
if enough energy becomes available to it.

Obviously, by changing the aspect ratios g1 ⌅ Lx/Ly and
g3 ⌅ Lx/Lz of the particle, its effective anisotropy changes.
The deviation of the ratio Lx/Ly from 1 determines the
strength of an easy-axis anisotropy constant, call it K1, for
the net magnetic moment to rotate within the xy-plane. The
other aspect ratio of length to thickness, Lx/Lz, determines
the difficulty for the magnetic moment ⌥µ to tilt out of
the xy-plane. Thus it determines the strength of a hard-axis
anisotropy constant, call it K3. The goal here is to make some
accurate estimates for these constants and, in the process, to
justify a more generalized description of the magnetization
dynamics, not based on an Ising variable, but, rather, on
an effective three-dimensional magnetic moment, which is
allowed to make deviations from the Ising axis. For a particle
whose hard axis is along ẑ and whose easy axis is along x̂, an
effective potential that approximately represents their energies
is shown to be

E = E0 + K1[1 � (µ̂ · x̂)2] + K3(µ̂ · ẑ)2 (1)

where µ̂ is the unit vector pointing in the direction of the
particle’s net magnetic moment. E0 is the energy when the
magnetic moment µ̂ is along the easy axis. This type of
potential is continuous, in contrast to the two-state Ising
particle, having a well-defined energy barrier, along with

more realistic dynamics. Further, it will give the possibility
of controlling the thermodynamics of spin ices via changes or
variations in the nano-island structure, which can modify the
energy barrier.

The calculational approach is a modification of usual
micromagnetics [11, 12], as follows. A particle is partitioned
into cells of size a ⇤ a ⇤ Lz, under the assumption that the
local magnetization ⌥M(⌥r) is independent of the z-coordinate
(along the thin dimension). Thus, there is only a single layer of
cells in the xy-plane, with the desired shape, say, an ellipse of
major diameter Lx and minor diameter Ly < Lx. The saturated
magnetization in each cell interacts with the neighboring cells
by ferromagnetic exchange, an externally applied magnetic
field, and interacts with all cells via the demagnetization field.
The demagnetization field is calculated using an effective
Green’s function that applies for thin systems [13], see below,
with the calculation accelerated by using a 2D fast Fourier
transform (FFT). To evolve towards the nearest (possibly
meta-) stable magnetic state, we do not use integration of
the Landau–Gilbert spin dynamics equations with damping.
Instead, a faster procedure is to use a local spin-alignment
algorithm that involves no damping parameter. In one step
of this algorithm, each cell’s magnetic moment is pointed
towards the local total magnetic field that instantaneously
produces a torque on that cell. The same procedure is applied
to all cells, the demagnetization fields are recalculated, and
the process is repeated iteratively until a desired tolerance
is reached. A microscopic uniaxial anisotropy energy is also
included, although using a strength that would be typical
for Permalloy, it is almost irrelevant when compared to the
exchange and demagnetization effects. We have checked that
this procedure gives the same final states as integration of the
Landau–Gilbert equations with damping.

The internal magnetic energy Eint of the particle is
calculated. This is the total magnetic energy minus the
interaction energy with the applied magnetic field, �⌥µ · ⌥Hext.
An applied magnetic field is used in the calculations to move
the net magnetic moment around, while it also maps out the
hysteresis loop. In one set of simulations, the hysteresis loop
was calculated with the applied field axis within the xy-plane
at some angle ⇤H to the x-axis. There, the magnetization
makes an angle ⇤m to the x-axis. Then the internal energy
could be found as a function Eint(⇤m), from which the
anisotropy constant K1 is determined, by fitting to (1), in the
form

Eint(⇤m) = E0 + K1sin2⇤m. (2)

In another set of simulations, the applied field was set in the
xz-plane, at some angle �H to the x-axis. This tilts the net
magnetic moment towards the z-axis by an angle �m from
the x-axis. Thus it gives Eint(�m), which depends on both
constants K1 and K3, according to

Eint(�m) = E0 + (K1 + K3)sin2�m. (3)

This allows the anisotropy constant K3 to be determined from
the net stiffness, K13 ⌅ K1+K3. It is important to note that the
potential functions Eint(⇤m) and Eint(�m) found this way do

2
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on the particular geometry of the islands, and make some
evaluations of the dependence of the effective potential on the
island shape and height. The types of shapes we consider are
ellipses. Thin single-domain ellipses were studied by Wei et al
[9], who found that the reversal process involves close to a
uniform Stoner–Wohlfarth rotation, but with reduced energy
barriers due to some non-uniformity of the magnetization.
However, we find here that, for high aspect ratio ellipses, this
non-uniformity is minimal and a uniform rotation model could
be very useful.

Although the theory for spin ice has been developed
for Ising-like magnetic moments, their dynamics requires a
different model. In reality, the underlying magnetic moment
must evolve from much more complex dynamics. The
reversal of an individual island, in the dipolar fields of
its surrounding islands, must be a complex process, and
could involve the motion of domain walls and vortices
within the individual particles, or an impeded rotation
of the local magnetization mostly in unison. But in the
assumption of strong ferromagnetic exchange inside a
particular particle, and a uniform externally applied field, one
can investigate the reversal process using different approaches
to the micromagnetics [10], and see whether vortices or
domain walls play any significant role. Especially, one can
investigate whether there are intermediate metastable vortex
or domain-wall states as steps of the reversal. To a great
extent, for the thin elliptical particles considered here, the
reversal proceeds mostly as a nearly uniform but impeded
rotation of the magnetization of the particle [9], although the
switching fields are reduced compared to a perfectly uniform
rotation. Hence, the idea of an Ising spin for a particle can be
replaced by a three-dimensional magnetic moment ⌥µ, moving
in some anisotropy potential, but free to point in any direction,
if enough energy becomes available to it.

Obviously, by changing the aspect ratios g1 ⌅ Lx/Ly and
g3 ⌅ Lx/Lz of the particle, its effective anisotropy changes.
The deviation of the ratio Lx/Ly from 1 determines the
strength of an easy-axis anisotropy constant, call it K1, for
the net magnetic moment to rotate within the xy-plane. The
other aspect ratio of length to thickness, Lx/Lz, determines
the difficulty for the magnetic moment ⌥µ to tilt out of
the xy-plane. Thus it determines the strength of a hard-axis
anisotropy constant, call it K3. The goal here is to make some
accurate estimates for these constants and, in the process, to
justify a more generalized description of the magnetization
dynamics, not based on an Ising variable, but, rather, on
an effective three-dimensional magnetic moment, which is
allowed to make deviations from the Ising axis. For a particle
whose hard axis is along ẑ and whose easy axis is along x̂, an
effective potential that approximately represents their energies
is shown to be

E = E0 + K1[1 � (µ̂ · x̂)2] + K3(µ̂ · ẑ)2 (1)

where µ̂ is the unit vector pointing in the direction of the
particle’s net magnetic moment. E0 is the energy when the
magnetic moment µ̂ is along the easy axis. This type of
potential is continuous, in contrast to the two-state Ising
particle, having a well-defined energy barrier, along with

more realistic dynamics. Further, it will give the possibility
of controlling the thermodynamics of spin ices via changes or
variations in the nano-island structure, which can modify the
energy barrier.

The calculational approach is a modification of usual
micromagnetics [11, 12], as follows. A particle is partitioned
into cells of size a ⇤ a ⇤ Lz, under the assumption that the
local magnetization ⌥M(⌥r) is independent of the z-coordinate
(along the thin dimension). Thus, there is only a single layer of
cells in the xy-plane, with the desired shape, say, an ellipse of
major diameter Lx and minor diameter Ly < Lx. The saturated
magnetization in each cell interacts with the neighboring cells
by ferromagnetic exchange, an externally applied magnetic
field, and interacts with all cells via the demagnetization field.
The demagnetization field is calculated using an effective
Green’s function that applies for thin systems [13], see below,
with the calculation accelerated by using a 2D fast Fourier
transform (FFT). To evolve towards the nearest (possibly
meta-) stable magnetic state, we do not use integration of
the Landau–Gilbert spin dynamics equations with damping.
Instead, a faster procedure is to use a local spin-alignment
algorithm that involves no damping parameter. In one step
of this algorithm, each cell’s magnetic moment is pointed
towards the local total magnetic field that instantaneously
produces a torque on that cell. The same procedure is applied
to all cells, the demagnetization fields are recalculated, and
the process is repeated iteratively until a desired tolerance
is reached. A microscopic uniaxial anisotropy energy is also
included, although using a strength that would be typical
for Permalloy, it is almost irrelevant when compared to the
exchange and demagnetization effects. We have checked that
this procedure gives the same final states as integration of the
Landau–Gilbert equations with damping.

The internal magnetic energy Eint of the particle is
calculated. This is the total magnetic energy minus the
interaction energy with the applied magnetic field, �⌥µ · ⌥Hext.
An applied magnetic field is used in the calculations to move
the net magnetic moment around, while it also maps out the
hysteresis loop. In one set of simulations, the hysteresis loop
was calculated with the applied field axis within the xy-plane
at some angle ⇤H to the x-axis. There, the magnetization
makes an angle ⇤m to the x-axis. Then the internal energy
could be found as a function Eint(⇤m), from which the
anisotropy constant K1 is determined, by fitting to (1), in the
form

Eint(⇤m) = E0 + K1sin2⇤m. (2)

In another set of simulations, the applied field was set in the
xz-plane, at some angle �H to the x-axis. This tilts the net
magnetic moment towards the z-axis by an angle �m from
the x-axis. Thus it gives Eint(�m), which depends on both
constants K1 and K3, according to

Eint(�m) = E0 + (K1 + K3)sin2�m. (3)

This allows the anisotropy constant K3 to be determined from
the net stiffness, K13 ⌅ K1+K3. It is important to note that the
potential functions Eint(⇤m) and Eint(�m) found this way do
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Table 1. Values of the in-plane anisotropy constant K1 and
out-of-plane anisotropy constant K3 in units of J = 2ALz for
different particle sizes and aspect ratios g1 = Lx/Ly. All of the
particles calculated have g3 = Lx/Lz = 20.

Lx

g1

120 nm 240 nm 480 nm

K1 K3 K1 K3 K1 K3

2 6.35J 72.7J 27.3J 287J 111J 1140J
3 7.32J 43.4J 31.9J 169J 134J 670J
5 6.96J 21.1J 31.5J 79.9J 133J 311J
8 7.39J 8.30J 29.5J 33.1J 118J 132J

is consistently stronger than the easy-axis constant K1, as to
be expected from the greater surface area of the lower and
upper faces at z = 0, Lz, compared to the very limited surface
area of the edge of the ellipse. The energy unit J itself varies
according to the thickness. Thus it makes sense to also look at
results for the constants in joules.

Generally, K3/J increases proportional to the area of the
ellipse, 1

4�LxLy, multiplied by the thickness Lz, so that in fact
K3 (in joules) is linearly proportional to the volume of the
particles. Also, one sees that K3 decreases with increasing
aspect ratio for particles of the same length; this is because
the particle volume is decreasing. On the other hand, K1/J
depends very weakly on the aspect ratio for the particle
sizes tested. In addition, the calculations suggest that K1
increases somewhat faster than the particle volume. The weak
dependence of K1 on the shape of the ellipse (at these larger
values of g1) is surprising.

To clarify the results we also show the constants
converted to energy densities, both K1/V and K3/V in J nm�3,
in figure 3. The actual units are the exchange stiffness A (units
of joules/nanometer) divided by square nanometers. One
finds very little dependence of either energy density constant,
K/V , on the particle size, however, again it is clear that K3 is
always larger than K1. Furthermore, the easy-axis anisotropy
constant K1/V does increase rapidly with the in-plane aspect
ratio g1, and the relation could be close to a linear relationship.
Although the values of K3/V are always greater than the
corresponding K1/V , these hard-axis energy densities K3/V
decrease slightly with increasing aspect ratio g1. At large
aspect ratio, the two constants become nearly the same, which
would have to be the case for a needle-shaped magnet.

4.1. The magnetization structure

In the high aspect ratio particles, the magnetization states are
very close to uniform, even when undergoing reversal. The
elongated particle has such a strong anisotropic effect that the
magnetization cells move almost in a synchronized motion.
For particles with smaller aspect ratio, one starts to see some
weak variations in the magnetization inside the particle.

To get an idea of the size of this effect, some
configurations are presented for ellipses with g1 = 2, which
has the strongest effect of all the particle shapes presented
earlier. In figure 4 some configurations are shown for a
120 nm ⇥ 60 nm ⇥ 6 nm particle, at different applied field

Figure 3. The anisotropy constants K1 (solid curves) and K3
(dashed curves) scaled by elliptical particle volume, versus particle
lengths, for the indicated g1 aspect ratios. All data has g3 = 20. The
values of K/V are given in units of A nm�2, where A is the
exchange stiffness. K1/V increases with aspect ratio while K3/V
decreases, and they become equal at high aspect ratio.

strengths 45⇤ to the particle’s long (+x)-axis. The points
shown are at (a) close to saturation, (b) zero applied field,
(c) a negative field close to reversal, and (d) a negative field
just after reversal. For the most part, the magnetization stays
nearly uniform for this relatively small particle.

Another example is presented in figure 5, like the first
example, but 2⇥ larger in all three dimensions. The four
configurations shown correspond to the same four types
of states as presented for the smaller particle. The main
difference here is that a non-uniform magnetic structure
develops. At zero field, the structure points inward/outward
towards the poles on the long axis. For the configurations
just before and after reversal, a wave-like structure is present.
These spatial variations are due to the dipolar interactions; in
even lower aspect ratio particles (g1 < 2), they lead to C-states
and even vortices entering the particle.

4.2. Particles with lower aspect ratio g1 < 2

When g1 ⇧ 1, the ellipse becomes circular and the easy-axis
anisotropy must vanish. Using smaller g1 is a way to produce
particles with weaker easy-axis anisotropy constant. However,
as the system becomes closer to circular, the lowest energy
configuration, especially near zero applied magnetic field,
tends to be non-uniform. The ground state can tend towards
a C-state or a vortex state if the particle is of sufficient size.
The above results do not apply to that situation, especially
because the non-uniform magnetization cannot be mapped
into the model of an individual magnetic moment moving in
an effective potential.

To verify this, some particles were also calculated at
small ellipticity, where K1 ⌅ 0, using g1 = 1.25 and 1.11.
Generally, at these ratios, if there was a stable single-domain
ground state (for smaller particles only), the tendency is for
the moments to try to follow the border, and point inwards or
outwards from the poles at the long ends. At larger particle
size this tilting eventually moves the system irreversibly to
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Table 1. Values of the in-plane anisotropy constant K1 and
out-of-plane anisotropy constant K3 in units of J = 2ALz for
different particle sizes and aspect ratios g1 = Lx/Ly. All of the
particles calculated have g3 = Lx/Lz = 20.
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5 6.96J 21.1J 31.5J 79.9J 133J 311J
8 7.39J 8.30J 29.5J 33.1J 118J 132J

is consistently stronger than the easy-axis constant K1, as to
be expected from the greater surface area of the lower and
upper faces at z = 0, Lz, compared to the very limited surface
area of the edge of the ellipse. The energy unit J itself varies
according to the thickness. Thus it makes sense to also look at
results for the constants in joules.

Generally, K3/J increases proportional to the area of the
ellipse, 1

4�LxLy, multiplied by the thickness Lz, so that in fact
K3 (in joules) is linearly proportional to the volume of the
particles. Also, one sees that K3 decreases with increasing
aspect ratio for particles of the same length; this is because
the particle volume is decreasing. On the other hand, K1/J
depends very weakly on the aspect ratio for the particle
sizes tested. In addition, the calculations suggest that K1
increases somewhat faster than the particle volume. The weak
dependence of K1 on the shape of the ellipse (at these larger
values of g1) is surprising.

To clarify the results we also show the constants
converted to energy densities, both K1/V and K3/V in J nm�3,
in figure 3. The actual units are the exchange stiffness A (units
of joules/nanometer) divided by square nanometers. One
finds very little dependence of either energy density constant,
K/V , on the particle size, however, again it is clear that K3 is
always larger than K1. Furthermore, the easy-axis anisotropy
constant K1/V does increase rapidly with the in-plane aspect
ratio g1, and the relation could be close to a linear relationship.
Although the values of K3/V are always greater than the
corresponding K1/V , these hard-axis energy densities K3/V
decrease slightly with increasing aspect ratio g1. At large
aspect ratio, the two constants become nearly the same, which
would have to be the case for a needle-shaped magnet.

4.1. The magnetization structure

In the high aspect ratio particles, the magnetization states are
very close to uniform, even when undergoing reversal. The
elongated particle has such a strong anisotropic effect that the
magnetization cells move almost in a synchronized motion.
For particles with smaller aspect ratio, one starts to see some
weak variations in the magnetization inside the particle.

To get an idea of the size of this effect, some
configurations are presented for ellipses with g1 = 2, which
has the strongest effect of all the particle shapes presented
earlier. In figure 4 some configurations are shown for a
120 nm ⇥ 60 nm ⇥ 6 nm particle, at different applied field

Figure 3. The anisotropy constants K1 (solid curves) and K3
(dashed curves) scaled by elliptical particle volume, versus particle
lengths, for the indicated g1 aspect ratios. All data has g3 = 20. The
values of K/V are given in units of A nm�2, where A is the
exchange stiffness. K1/V increases with aspect ratio while K3/V
decreases, and they become equal at high aspect ratio.

strengths 45⇤ to the particle’s long (+x)-axis. The points
shown are at (a) close to saturation, (b) zero applied field,
(c) a negative field close to reversal, and (d) a negative field
just after reversal. For the most part, the magnetization stays
nearly uniform for this relatively small particle.

Another example is presented in figure 5, like the first
example, but 2⇥ larger in all three dimensions. The four
configurations shown correspond to the same four types
of states as presented for the smaller particle. The main
difference here is that a non-uniform magnetic structure
develops. At zero field, the structure points inward/outward
towards the poles on the long axis. For the configurations
just before and after reversal, a wave-like structure is present.
These spatial variations are due to the dipolar interactions; in
even lower aspect ratio particles (g1 < 2), they lead to C-states
and even vortices entering the particle.

4.2. Particles with lower aspect ratio g1 < 2

When g1 ⇧ 1, the ellipse becomes circular and the easy-axis
anisotropy must vanish. Using smaller g1 is a way to produce
particles with weaker easy-axis anisotropy constant. However,
as the system becomes closer to circular, the lowest energy
configuration, especially near zero applied magnetic field,
tends to be non-uniform. The ground state can tend towards
a C-state or a vortex state if the particle is of sufficient size.
The above results do not apply to that situation, especially
because the non-uniform magnetization cannot be mapped
into the model of an individual magnetic moment moving in
an effective potential.

To verify this, some particles were also calculated at
small ellipticity, where K1 ⌅ 0, using g1 = 1.25 and 1.11.
Generally, at these ratios, if there was a stable single-domain
ground state (for smaller particles only), the tendency is for
the moments to try to follow the border, and point inwards or
outwards from the poles at the long ends. At larger particle
size this tilting eventually moves the system irreversibly to
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Table 1. Values of the in-plane anisotropy constant K1 and
out-of-plane anisotropy constant K3 in units of J = 2ALz for
different particle sizes and aspect ratios g1 = Lx/Ly. All of the
particles calculated have g3 = Lx/Lz = 20.
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is consistently stronger than the easy-axis constant K1, as to
be expected from the greater surface area of the lower and
upper faces at z = 0, Lz, compared to the very limited surface
area of the edge of the ellipse. The energy unit J itself varies
according to the thickness. Thus it makes sense to also look at
results for the constants in joules.

Generally, K3/J increases proportional to the area of the
ellipse, 1

4�LxLy, multiplied by the thickness Lz, so that in fact
K3 (in joules) is linearly proportional to the volume of the
particles. Also, one sees that K3 decreases with increasing
aspect ratio for particles of the same length; this is because
the particle volume is decreasing. On the other hand, K1/J
depends very weakly on the aspect ratio for the particle
sizes tested. In addition, the calculations suggest that K1
increases somewhat faster than the particle volume. The weak
dependence of K1 on the shape of the ellipse (at these larger
values of g1) is surprising.

To clarify the results we also show the constants
converted to energy densities, both K1/V and K3/V in J nm�3,
in figure 3. The actual units are the exchange stiffness A (units
of joules/nanometer) divided by square nanometers. One
finds very little dependence of either energy density constant,
K/V , on the particle size, however, again it is clear that K3 is
always larger than K1. Furthermore, the easy-axis anisotropy
constant K1/V does increase rapidly with the in-plane aspect
ratio g1, and the relation could be close to a linear relationship.
Although the values of K3/V are always greater than the
corresponding K1/V , these hard-axis energy densities K3/V
decrease slightly with increasing aspect ratio g1. At large
aspect ratio, the two constants become nearly the same, which
would have to be the case for a needle-shaped magnet.

4.1. The magnetization structure

In the high aspect ratio particles, the magnetization states are
very close to uniform, even when undergoing reversal. The
elongated particle has such a strong anisotropic effect that the
magnetization cells move almost in a synchronized motion.
For particles with smaller aspect ratio, one starts to see some
weak variations in the magnetization inside the particle.

To get an idea of the size of this effect, some
configurations are presented for ellipses with g1 = 2, which
has the strongest effect of all the particle shapes presented
earlier. In figure 4 some configurations are shown for a
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Figure 3. The anisotropy constants K1 (solid curves) and K3
(dashed curves) scaled by elliptical particle volume, versus particle
lengths, for the indicated g1 aspect ratios. All data has g3 = 20. The
values of K/V are given in units of A nm�2, where A is the
exchange stiffness. K1/V increases with aspect ratio while K3/V
decreases, and they become equal at high aspect ratio.

strengths 45⇤ to the particle’s long (+x)-axis. The points
shown are at (a) close to saturation, (b) zero applied field,
(c) a negative field close to reversal, and (d) a negative field
just after reversal. For the most part, the magnetization stays
nearly uniform for this relatively small particle.

Another example is presented in figure 5, like the first
example, but 2⇥ larger in all three dimensions. The four
configurations shown correspond to the same four types
of states as presented for the smaller particle. The main
difference here is that a non-uniform magnetic structure
develops. At zero field, the structure points inward/outward
towards the poles on the long axis. For the configurations
just before and after reversal, a wave-like structure is present.
These spatial variations are due to the dipolar interactions; in
even lower aspect ratio particles (g1 < 2), they lead to C-states
and even vortices entering the particle.

4.2. Particles with lower aspect ratio g1 < 2

When g1 ⇧ 1, the ellipse becomes circular and the easy-axis
anisotropy must vanish. Using smaller g1 is a way to produce
particles with weaker easy-axis anisotropy constant. However,
as the system becomes closer to circular, the lowest energy
configuration, especially near zero applied magnetic field,
tends to be non-uniform. The ground state can tend towards
a C-state or a vortex state if the particle is of sufficient size.
The above results do not apply to that situation, especially
because the non-uniform magnetization cannot be mapped
into the model of an individual magnetic moment moving in
an effective potential.

To verify this, some particles were also calculated at
small ellipticity, where K1 ⌅ 0, using g1 = 1.25 and 1.11.
Generally, at these ratios, if there was a stable single-domain
ground state (for smaller particles only), the tendency is for
the moments to try to follow the border, and point inwards or
outwards from the poles at the long ends. At larger particle
size this tilting eventually moves the system irreversibly to

6

(length)

19



20

What is frustration?
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Anti-FM - 2 ground states
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Anti-FM - multi ground states
with frustration.

Not all bond energies can
acquire their minima.

AFM on triangular lattice

Eij = +JSi Sj

FM on square lattice

Eij = -JSi Sj

Anti-FM on square lattice

Eij = +JSi Sj
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not depend on the particular angle chosen between the applied
field and the x-axis.

In the following sections the Hamiltonian and algorithm
is further specified. Some details about the demagnetization
field calculation are given, especially concerning the Green’s
function. Finally the results for elliptic particles are discussed.

2. The particle model and its energetics

We consider thin elliptical particles with dimensions Lx⇥Ly⇥

Lz, where Lx and Ly refer to the major and minor diameters
for the elliptical particles. The approach for a thin system
has been presented in [14]; some of the main points towards
finding the spatial structure of magnetization EM(Er) and the
particle’s internal energy are summarized here.

The system is partitioned into cells of size a ⇥ a ⇥

Lz on a square lattice grid, where there is a saturation
magnetization Ms within each cell. Thus a selected cell i

has a magnetic moment, mi = Msa
2
Lzm̂i, that points in the

direction of the unit vector m̂i and has magnitude µcell =

Msa
2
Lz. There is only a single layer of cells used, under

the assumption that the perpendicular demagnetization effect
leads to magnetization nearly independent of z, for the thin
systems under consideration.

The exchange interaction in continuum theory is taken in
terms of the exchange stiffness A (about 13 pJ m�1 for Py) as
a volume integral,

Hex = A

Z
dV rm̂ · rm̂. (4)

where m̂ = EM/Ms is the local reduced magnetization. When
expanded on the square lattice of cells, this is equivalent to a
nearest neighbor exchange term for the cells,

Hex = �J

X

(i,j)

m̂i · m̂j, J = 2ALz. (5)

A uniaxial anisotropy energy K (about 100 J m�3 for Py) is
included as another volume integral

Huni = �K

Z
dV (m̂ · û)2

! �Ka
2
Lz

X

i

(m̂i · û)2, (6)

where the anisotropy axis here is taken as û = x̂. The
externally applied magnetic field involves an energy of �EB · Eµ

for any dipole, so

HB = �

Z
dV µ0 EHext · EM ! �µ0Msa

2
Lz

X

i

EHext · m̂i. (7)

Finally, the most important part of the interactions is the
demagnetization field or dipolar interaction. Once the cells
are defined on the grid with lattice spacing a, their dipole
interaction could be described by a Hamiltonian,

Hdd = �
µ0

4⇡
µ2

cell

X

i>j

[3(m̂i · r̂ij)(m̂j · r̂ij) � m̂i · m̂j]

|Eri � Erj|
3 . (8)

However, this does not take into account the fact that
the system is very thin. The demagnetization field can be

found very accurately for thin systems using a Green’s
function approach [13]. To do this, instead, we start from the
continuum dipolar energy,

Hdd = �
1
2µ0

Z
dV EHM · EM, (9)

where EHM = �Er8M is the demagnetization field at some
point, and 8M is its corresponding scalar magnetic potential.
That field is produced by all the dipoles, according to a
Poisson equation for magneto-statics:

� r
28M = ⇢M, where ⇢M = �Er · EM. (10)

Further, the discontinuity at the surfaces of the particle can be
modeled as a magnetic surface charge density, �M = EM · n̂,
where n̂ is the outward normal. In particular, this gives charge
densities of opposite signs, �M = ±Mz on the upper and
lower faces at z = 0, Lz, respectively, under the assumption
of uniform magnetization not depending on z within the cells.
The field of those surface charges is responsible for keeping
the magnetization close to the xy-plane. There are also surface
magnetic charges at the edges of the island, but these can be
included into a localized volume charge for the cells there.
But whether the magnetic charges are surface charges or
volume charges makes no physical difference, however, and
the solution of the Poisson equation is formally

8(Er) =

Z
d3

r
0

⇢(Er0)

4⇡ |Er � Er0|
. (11)

This can be used to find the demagnetization field at the
point Er = (x, y, z), and then averaging that result over z from
z = 0 to Lz. The resulting demagnetization field at a cell
centered at (x, y) has a vertical component HM,z and some
in-plane component EHM,xy. These are given by convolutions
with appropriate 2D Green’s functions, involving only the
in-plane position, denoted here as r̃ = (x, y). For the vertical
demagnetization component, one gets

HM,z(r̃) =

Z
d2

r̃
0
Gz(r̃ � r̃

0)Mz(r̃
0), r̃ ⌘ (x, y) (12)

Gz(r̃) =
1

2⇡Lz

2

4 1
q

r̃2 + L2
z

�
1
|r̃|

3

5 , r̃
2

⌘ x
2
+ y

2.

(13)

For the in-plane components, there is

EHM,xy(r̃) =

Z
d2

r̃
0 EGxy(r̃ � r̃

0)⇢(r̃0). (14)

EGxy(r̃) =
êr̃

2⇡Lz

2

64

vuut1 +

 
Lz

|r̃|

!2

� 1

3

75 . (15)

When applied, the unit vector êr̃�r̃0 points from source point
r̃
0 towards observation point r̃. There is a singularity in Gz(r̃)

as r̃ ! 0, which is handled by averaging Gz over a region
with the same area as the cells being used, see [14] for further
details on this averaging of the Green’s functions.
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affected by two forms of local shape anisotropy. Firstly, there is a uniaxial anisotropy that
impedes free rotation in the xy-plane, associated with some energy constant K1, and oriented
along x for the first sublattice and along y for the second sublattice. Depending on its sublattice,
each moment has an axis ûi (equal to x̂ or ŷ) for this anisotropy, see figure 1. Secondly, because
the nanoislands are thin in the z-direction, the z-direction is a hard axis, and there is a hard-axis
anisotropy whose energy scale is determined by a constant K3, the same for all the islands. The
Hamiltonian is then

H= � µ0

4⇥

µ2

a3

�

i> j

[3(µ̂i · r̂i j)(µ̂ j · r̂i j) � µ̂i · µ̂ j ]
(ri j/a)3

+
�

i

{K1[1�(µ̂i · ûi)
2]+K3(µ̂i · ẑ)2 � ⇧µi · ⇧Bext}.

(2)
Here µ0 is the magnetic permeability of space and r̂i j is the unit vector pointing from the position
of ⇧µ j toward the position of ⇧µi . The first sum is the dipole–dipole interactions, the second sum
contains the anisotropy energies and an applied external magnetic induction ⇧Bext = µ0 ⇧H ext. A
constant is included in the K1 anisotropy energy so that that energy is zero when a dipole points
along its local anisotropy axis ûi . Note that if a dipole moves in the xy-plane, it only pays the
cost of the K1 anisotropy term, but motion up out of the xy-plane (say, in the xz-plane) involves
an energy proportional to the sum of both anisotropies, K1 + K3.

The motion out of the xy-plane is also impeded by the dipolar interactions. With the dipole
pair distances scaled by the lattice constant, the effective strength of nearest-neighbor dipolar
interactions is determined by the dipole energy factor

D = µ0

4⇥

µ2

a3
. (3)

Depending on the island geometry, which is discussed further below, the anisotropy constants
K1 and K3 would typically be of a similar order of magnitude. Thus, there are three important
energy scales: dipolar energy, anisotropy energy and the thermal energy kBT . The anisotropy
constants are proportional to the volume V of the islands, as is µ = MsV , where Ms is the
saturation magnetization of the magnetic material. But then, this dipolar constant D increases
as the squared island volume. Thus, changing the island size and spacing a can be done to
adjust these energy scales in relation to each other. Typically, the interesting case must have the
thermal energy less than both the effective dipolar energy (per site) and anisotropy energy. But
note that, the effective dipolar energy can be much larger than that indicated by D, which only
measures the energy in a nearest-neighbor pair. When the dipolar interactions are summed, the
net dipolar energy per island could be much larger than D.

2.1. Spin-ice ground state and order parameters

For the square lattice spin ice, the ground state is twofold degenerate, and involves alternating
dipoles on each of the two sublattices. The ground state fully satisfies the two-in/two-out rule
in each monopole charge cell (a junction of four islands at the site ⇧rk of each unit cell). The unit
cell positions are expressed ⇧rk = (mk, nk)a, where a is the lattice constant and mk and nk are
integers. Then one of the ground states can be constructed by setting the dipole directions as

µ̂GS
k1 ⇤ µ̂GS

1 (⇧rk) = +(�1)mk+nk x̂,

µ̂GS
k2 ⇤ µ̂GS

2 (⇧rk) = �(�1)mk+nk ŷ.
(4)
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FIG. 2: (a) Configuration of the ground-state obtained for
L = 6a, in exact agreement with that experimentally ob-
served. Note that the ice rules are manifested at each vertex.
This is the case in which the topology demands the minimum
energy (see Fig. ( 3)). (b) Another configuration also respect-
ing the ice rule, but displaying a topology which costs more
energy.

is energetically favorable when the moments of a pair of
islands are align so that one is pointing into the center
of the vertex and the other is pointing out (red islands
in Fig. 1) while it is energetically unfavorable when both
moments are pointing inward or both are pointing out-
ward (blue islands in Fig. 1). This artificial system ex-
hibits short-range order and ice-like correlations on the
lattice, which is precisely analogous to the behavior of
the spin ice materials. Here, we consider an arrangement
alike that experimentally investigated in Ref. [5]. In our
scheme the magnetic moment (“spin”) of the island is
replaced by a point dipole at its center. To do this, in
each site (xi, yi) of a square lattice two spin variables are
defined: ✏Sh(i) with components Sx = ±1, Sy = 0 located
at ✏rh = (xi +1/2, yi), and ✏Sv(i) with components Sx = 0,
Sy = ±1 at ✏rv = (xi, yi + 1/2). Therefore, in a lattice
of volume L2 one gets 2 ⇤ L2 spins (see Fig. 2). Repre-
senting the spins of the islands by ✏Si, which can assume
either ✏Sh(i) or ✏Sv(i), then the 2d spin ice is described by
the following Hamiltonian

HSI = Da3
⇤

i �=j

�
✏Si · ✏Sj

r3
ij

� 3(✏Si · ✏rij)(✏Sj · ✏rij)
r5
ij

⇥
, (1)

where D = µ0µ2/4⇥a3 is the coupling constant of the
dipolar interaction and a is the lattice spacing. The sum
is either over all 2 ⇤ L2 � 1 pairs of spins in the lattice
for the case with open boundary conditions (OBC) or
over all spins and their images for the case with periodic
boundary conditions (PBC). We study these two possi-
bilities; the first one is more related to the artificial spin
ice fabricated in Ref.[5], while using PBC we minimize
the border e�ects. In the system with PBC the Ewald
summation [8,9] is used.

We consider first the ground states obtained from
Hamiltonian (1) describing the 2d spin ice. To do this we
use a process known as simulated annealing [10], which
is a Monte Carlo calculation where the temperature is

FIG. 3: The 4 distinct topologies and the 16 possible mag-
netic moment configurations on a vertex of 4 islands. Al-
though configurations (a) and (b) obey the ice rule, the
topology of (a) is more energetically favorable than that of
(b). Hamiltonian (1) correctly yields to the true ground-state
based on topology (a), without further assumptions. Topolo-
gies (c) and (d) does not obey the ice rule. Particularly, (c)
implies in a monopole with charge QM .

FIG. 4: (Color online) The two basic shortest strings used in
the separation process of the magnetic charges: pictures (1)
and (2) exhibit strings 1 and 2 respectively. The left circle
(red) is the positive charge (north pole) while the right circle
(black) is the negative (south pole).

slightly reduced in each step of the process in order to
drive the system to the global minimum. Several tests for
systems with di�erent sizes L (6a ⇧ L ⇧ 80a) were stud-
ied. The final configuration (ground state) was found
to be twofold degenerate (see part (a) of Fig. 2 for
a lattice with L = 6a). If we consider the vorticity in
each plaquette, assigning a variable ⇤ = +1 and �1 to
clockwise and anticlockwise vorticities respectively, the
ground state looks like a checkerboard, with an antifer-
romagnetic arrangement of the ⇤ variable. Note that
the ground state clearly obeys the ice rule. We remark
that it is impossible to minimize all dipole-dipole inter-
actions. On each vertex there are six pairs of dipoles and
only four of them can simultaneously minimize the en-
ergy. It is important to mention that, although there are
other possible configurations that also obey the ice rule,
these are not the ground state. Indeed, the state shown
on the right side of Fig. 2 has energy about four times
larger than that of the ground state. The di�erence be-
tween these two states is related to the distinct topologies
for the configurations of the four moments (see Fig. 3).
It was experimentally shown in Ref. [5] that, while the
topologies of types (a) and (b) obey the ice rule, the case
(a) has smaller energy than case (b). Our theoretical cal-
culations confirm this fact. The same ground state was
also reported in Refs.[6,7]

The system is, therefore, naturally frustrated. In

Ice-rule: 

For lowest energy, equal 
numbers of inward and 
outward pointing dipoles 
at each vertex.

(Mol et al 2008.)
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456 CHAPTER 11. SPIN ICES AND GEOMETRIC FRUSTRATION

Type I  (2)
EI = -13.0D

Type II  (4)
EII = -4.0D

Type III  (8)
EIII = 0

Type IV  (2)
EIV = 21.0D

Figure 11.2: Sketches of the possible configurations of a vertex formed at the junction
of four neighboring islands in square lattice artificial spin ice. The magnetic islands here
are of race-track shape, with dipole moment aligned on the long axis. Multiplicities of
the states are given in parenthesis. Blue indicates ground-state-like; yellow shows the
changes away from ground state configuration. Types I and II obey the two-in two-out
ice rule, but type I is of lower energy. Types II and III have a nonzero magnetic
moment, shown as a gray arrow. Types III and IV have single and double monopole
charges, indicated by normal and bold plus signs, respectively.

minimize all of their dipolar interactions. This makes it easy for the system become
stuck in a state far from a ground state.

At finite temperature, the system as a whole becomes dynamically frustrated, mean-
ing that thermodynamically, the it cannot easily access all of its phase space, that would
otherwise be available. The dominance of a uniaxial anisotropy means that dipoles can-
not reverse direction without going over strong enery barriers, that are typically higher
than room temperature thermal energies. This exaggerates the effects of frustration.
It means that even if the system is somehow close to its ground state, as viewed in the
abstract phase space, it may have great difficulty in relaxing in thermal equilibrium
into the ground state. The natural sampling of all accessible states that is usually as-
sumed in statistical mechanics may not hold in any strong sense. As a consequence, a
low-temperature configuration could be quite far from what is expected for the ground
state. As a further consequence, it could have considerable frozen-in entropy, giving a
measure of the disorder in the system caused by the frustration.

It should be noticed, in artificial spin ice, the ground state could be degenerate,
provided the sytem has been built with a perfect symmetry (and no external applied
magnetic field). The degeneracy should be at least two-fold, because a second ground
state can always be obtained from a first one by reversing all the dipoles, which will not
change any of the energies. That is apparent in Fig. 11.1 for square lattice artificial
spin ice. This is also related to the fact that the square lattice ground state has a
perfect antiferromagnetic ordering. Moving along any horizontal or vertical straight
path through the lattice, the dipole directions alternate up/down relative to an axis
perpendicular to that path. As a result, an imaginary operation of translation of the
entire system through one lattice constant a along x̂ or ŷ also is equivalent to reversing
all dipoles. This again confirms the antiferromagnetic type of ordering; the state would

energies of  Ising-like states of a vertex

11.3. SQUARE LATTICE SPIN ICE ENERGETICS AND ORDER PARAMETERS463

The sum in the dipole-dipole term is over i > j to avoid double counting of those
interactions. A unit vector in the direction of Bext has also been introduced, so that
all energy terms can be compared, according to the sizes of the factors in front of the
sums. Then, the total system Hamiltonian is taken to be the sum of the anisotropy
and interaction terms:

H = HA + Hint. (11.10)

The dipolar terms are scaled overall by a dipolar energy factor,

D ≡
µ0

4π

µ2

a3
. (11.11)

This is controlled, to a certain extent, by the size and separation a of the islands; their
magnetic moments are proportional to their volumes, i.e., µ = MsV . Then of course
the external field interaction scale is determined by the product µBext. Each energy
term has its particular scale, which should be compared with the thermal energy scale,
kBT . The anisotropy energy scale is by far, the largest of all of these scales. Although
the dipolar interaction D can be adjusted somewhat by design of the islands and choice
of materials, etc., it may remain similar to or larger than kBT . The thermal energies
for ordinary room temperature tend to be the weakest energy scale in this problem.
Note also that D enters in front of a sum, whose long-range structure can become
rather large, thereby enhancing the contribution of dipolar interactions.

It should be kept in mind that this model determines the physics of point dipoles
with dipole moments of fixed magnitude. The magnetic islands are extended objects,
and if placed very close together, they can be expected to have an internal magnetiza-
tion dynamics that will not preserve the dipole strength µ.

11.3.1 Reduction to an Ising limit

Although a Heisenberg-like model is being considered here so that the system has
magnetic dynamics following LLG equations, much of the theoretical work on spin ice
models uses the limiting case of an Ising model for the dipoles. As the anisotropy
constants K1 and K3 are the dominating energies, this makes good sense for some
calculations, such as determination of ground states and determination of frozen-in
entropy in a state. It is accomplished by introducing Ising variables σi = ±1 at the
sites, related to the the original magnetic dipoles by

µi = σiµûi, (11.12)

The mapping to Ising variables is aided by the (arbitrary) choice of unit direction
vectors ûi for the islands as displayed in Fig. 11.6. It is assumed that any vertex is
associated to one lattice cell, and each lattice cell contains two dipoles (the a and b
basis dipoles at lower and left edges of a cell). The vertex at the lower left corner of
a cell is identified with that cell, see Fig. 11.5. Then the configuration of Fig. 11.6 is
a diagram of the directions of the ûi. At the lower left corner of A cells, all ûi point
outward. At the lower left corner of B cells, all ûi point inward. While this state is
being used to define the ûi, it can’t be lost that it is the state of maximum energy,
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FIG. 2: (a) Configuration of the ground-state obtained for
L = 6a, in exact agreement with that experimentally ob-
served. Note that the ice rules are manifested at each vertex.
This is the case in which the topology demands the minimum
energy (see Fig. ( 3)). (b) Another configuration also respect-
ing the ice rule, but displaying a topology which costs more
energy.

is energetically favorable when the moments of a pair of
islands are align so that one is pointing into the center
of the vertex and the other is pointing out (red islands
in Fig. 1) while it is energetically unfavorable when both
moments are pointing inward or both are pointing out-
ward (blue islands in Fig. 1). This artificial system ex-
hibits short-range order and ice-like correlations on the
lattice, which is precisely analogous to the behavior of
the spin ice materials. Here, we consider an arrangement
alike that experimentally investigated in Ref. [5]. In our
scheme the magnetic moment (“spin”) of the island is
replaced by a point dipole at its center. To do this, in
each site (xi, yi) of a square lattice two spin variables are
defined: ✏Sh(i) with components Sx = ±1, Sy = 0 located
at ✏rh = (xi +1/2, yi), and ✏Sv(i) with components Sx = 0,
Sy = ±1 at ✏rv = (xi, yi + 1/2). Therefore, in a lattice
of volume L2 one gets 2 ⇤ L2 spins (see Fig. 2). Repre-
senting the spins of the islands by ✏Si, which can assume
either ✏Sh(i) or ✏Sv(i), then the 2d spin ice is described by
the following Hamiltonian

HSI = Da3
⇤

i �=j

�
✏Si · ✏Sj

r3
ij

� 3(✏Si · ✏rij)(✏Sj · ✏rij)
r5
ij

⇥
, (1)

where D = µ0µ2/4⇥a3 is the coupling constant of the
dipolar interaction and a is the lattice spacing. The sum
is either over all 2 ⇤ L2 � 1 pairs of spins in the lattice
for the case with open boundary conditions (OBC) or
over all spins and their images for the case with periodic
boundary conditions (PBC). We study these two possi-
bilities; the first one is more related to the artificial spin
ice fabricated in Ref.[5], while using PBC we minimize
the border e�ects. In the system with PBC the Ewald
summation [8,9] is used.

We consider first the ground states obtained from
Hamiltonian (1) describing the 2d spin ice. To do this we
use a process known as simulated annealing [10], which
is a Monte Carlo calculation where the temperature is

FIG. 3: The 4 distinct topologies and the 16 possible mag-
netic moment configurations on a vertex of 4 islands. Al-
though configurations (a) and (b) obey the ice rule, the
topology of (a) is more energetically favorable than that of
(b). Hamiltonian (1) correctly yields to the true ground-state
based on topology (a), without further assumptions. Topolo-
gies (c) and (d) does not obey the ice rule. Particularly, (c)
implies in a monopole with charge QM .

FIG. 4: (Color online) The two basic shortest strings used in
the separation process of the magnetic charges: pictures (1)
and (2) exhibit strings 1 and 2 respectively. The left circle
(red) is the positive charge (north pole) while the right circle
(black) is the negative (south pole).

slightly reduced in each step of the process in order to
drive the system to the global minimum. Several tests for
systems with di�erent sizes L (6a ⇧ L ⇧ 80a) were stud-
ied. The final configuration (ground state) was found
to be twofold degenerate (see part (a) of Fig. 2 for
a lattice with L = 6a). If we consider the vorticity in
each plaquette, assigning a variable ⇤ = +1 and �1 to
clockwise and anticlockwise vorticities respectively, the
ground state looks like a checkerboard, with an antifer-
romagnetic arrangement of the ⇤ variable. Note that
the ground state clearly obeys the ice rule. We remark
that it is impossible to minimize all dipole-dipole inter-
actions. On each vertex there are six pairs of dipoles and
only four of them can simultaneously minimize the en-
ergy. It is important to mention that, although there are
other possible configurations that also obey the ice rule,
these are not the ground state. Indeed, the state shown
on the right side of Fig. 2 has energy about four times
larger than that of the ground state. The di�erence be-
tween these two states is related to the distinct topologies
for the configurations of the four moments (see Fig. 3).
It was experimentally shown in Ref. [5] that, while the
topologies of types (a) and (b) obey the ice rule, the case
(a) has smaller energy than case (b). Our theoretical cal-
culations confirm this fact. The same ground state was
also reported in Refs.[6,7]

The system is, therefore, naturally frustrated. In

deviations from the ice rule   
⇒  higher energy and monopole “charges”

ice-rule ice-rule single charges double charges

How do the 
excitations behave 
as particles, interact 
with each other, and 
contribute to 
thermodynamics?
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With temperature T>0.   For the movement in one cell:

4

in wave vector space. Of course, the simplest FFT ap-
proach requires a grid with a size like 2p1 ×2p2 , where p1

and p2 are integers. Our system of interest is an ellipse
with major radius Ra = N1a along x and minor radius
Rb = N2a along y (N1 and N2 are the size in integer grid
units). For the FFT approach to work, so that the system
being simulated is a single copy of this ellipse, with no
periodic interactions with the images, one can choose the
smallest p1 such that 2p1 ≥ 2N1, and the smallest p2 such
that 2p2 ≥ 2N2. By making the FFT grid at least twice
as large as the ellipse to be studied, the wrap-around
problem, due to the periodicity of Fourier transforms, is
avoided in the evaluation of the convolution. The FFT
of the Green’s matrix, which is static, is done only once
at the start of the calculation. During every time step of
the integrations, however, the FFT of the magnetization
field components must be carried out, for every stage at
which the demagnetization field is required. Of course,
the inverse FFTs to come back to H⃗M are needed as well
in every stage of the time integrator.

C. The dynamics: zero temperature

The zero-temperature undamped dynamics of the sys-
tem is determined by a torque equation, for each cell of
the micromagnetics system,

dµ⃗i

dt
= γµ⃗i × B⃗i. (27)

Here B⃗i is the local magnetic induction acting on the
ith cell, γ is the electronic gyromagnetic ratio, and the
dipole moment of the cell is µ⃗i = La2Msm̂i. The local
magnetic induction can be defined supposing an energy
−µ⃗i · B⃗i for each dipole, with

B⃗i = −
δH
δµ⃗i

= −
1

µ

δH
δµ̂i

=
J

La2Ms
b⃗i,

b⃗i ≡
∑

nbrs

m̂j +
a2

λ2
ex

(

H̃ext + H̃M
)

. (28)

This dimensionless induction b⃗i used in the simulations is
converted to real units by the following unit of magnetic
induction,

B0 ≡
J

La2Ms
=

2A

a2Ms
=

λ2
ex

a2
µ0Ms. (29)

For computations, the dynamics is written in terms of the
dimensionless fields, also scaling the time appropriately:

dm̂i

dτ
= m̂i × b⃗i, τ = γB0t. (30)

This means that the unit of time in the simulations is
t0 = (γB0)−1. For example, for Permalloy with A = 13
pJ/m, Ms = 860 kA/m, one has λex ≈ 5.3 nm. In the
typical simulations we put the transverse edge of the cells

as a = 2.0 nm. Then using the gyromagnetic ratio, γ =
e/2me ≈ 8.79× 1010 T−1 s−1, the computation units are
B0 ≈ 7.56 T, t0 ≈ 1.505 ps. This large value for B0 is the
effective size of the local magnetic induction due to the
exchange interaction between cells with a = 2.0 nm. The
time unit implies a frequency unit f0 = 1/t0 = 664 GHz.
For the disk sizes used here, typical periods of the vortex
gryotropic motion are times around τG ∼ 2000, which
then corresponds to dimensionless frequency ν = 1/τG ∼
5 × 10−4, and hence, physical frequency f = νf0 ∼ 0.3
GHz.

In some cases we also need to include Landau-Gilbert
damping, with some dimensionless strength α. Then this
is included into the dynamics with the usual modifica-
tion,

dm̂i

dτ
= m̂ × b⃗i − αm̂ ×

(

m̂ × b⃗i

)

. (31)

The zero temperature dynamics was integrated numer-
ically for this equation, using a standard fourth-order
Runge-Kutta (RK4) scheme. Typically, a time step of
∆τ = 0.04 was found sufficient to insure the correct en-
ergy conserving dynamics (when α = 0) and result in
total energy conserved to better than 12 digits of preci-
sion over 5.0×105 time steps in a system with as many as
4000 cells. To get this high precision, however, it is nec-
essary to always evaluate the full demagnetization field
at all four intermediate stages of the individual Runge-
Kutta time steps.

III. LANGEVIN DYNAMICS: FINITE
TEMPERATURE

For non-zero temperature, the dynamics is investigated
here using a Langevin approach. This requires including
both a damping term and a stochastic torque in the dy-
namics; together they represent the interaction with a
heat bath. The size of the stochastic torques is related
to the temperature and the damping constant, such that
the system reaches thermal equilibrium.

It is reasonable to think of the dynamics depending on
stochastic magnetic inductions b⃗s, in addition to the de-
terministic fields b⃗i from the Hamiltonian dynamics. For
the discussion here, suppose we consider the dynamics
of one computation cell, and suppress the i index. The
dynamical equation for that cell’s m̂, including both the
deterministic and random fields, is

dm̂

dτ
= m̂ ×

(

b⃗ + b⃗s

)

− αm̂ ×
[

m̂ ×
(

b⃗ + b⃗s

)]

. (32)

The first term is the free motion and the second term is
the damping. Alternatively, the dynamics can be viewed
as that due to the superposition of the deterministic ef-
fects (due to b⃗) and stochastic effects (due to b⃗s).

For a given temperature T , the stochastic fields estab-
lish thermal equilibrium, provided the time correlations

stochastic fields
5

satisfy the fluctuation-dissipation (FD) theorem,

⟨bα
s (τ) bβ

s (τ ′)⟩ = 2αT δαβ δ(τ − τ ′). (33)

The indices α, β refer to any of the Cartesian coordinates,
and the dimensionless temperature T is the thermal en-
ergy scaled by the energy unit J ,

T ≡
kT

J
=

kT

2AL
, (34)

where k is Boltzmann’s constant. The fluctuation-
dissipation theorem expresses how the power in the ther-
mal fluctuations is carried in the random magnetic fields.
In terms of the physical units, the relation is

γµ⟨Bα
s (t)Bβ

s (t′)⟩ = 2α kT δαβ δ(t − t′). (35)

where µ = La2Ms is the magnetic dipole moment per
computation cell.

A. Time evolution with second order Heun (H2)
method

The Langevin equation (32) is a first-order differential
equation that is linear in multiplicative noise. If y =
y(τ) represents the full state of the system (a vector of
dimension 3N , where N is the number of cells), then the
dynamics follows an equation of the form

dy

dτ
= f [τ, y(τ)] + fs[τ, y(τ)] · bs(τ). (36)

The vector function f is the deterministic time deriva-
tive and the vector function fs determines the stochastic
dynamics; bs represents the whole stochastic field of the
system. An efficient method for integrating this type
of equation forward in time is the second order Heun
(H2) method. That is in the family of predictor-corrector
schemes and is rather stable. It involves an Euler step as
the predictor stage, and a corrector stage that is equiv-
alent to the trapezoid rule. Some details of the method
are summarized here, to indicate how the stochastic fields
are included, and to show why it is used rather than the
fourth order Runge-Kutta method (the latter seems dif-
ficult to adapt to the stochastic fields).

We use the notation yn ≡ y(τn) to show the values
at times τn = n∆τ , according to the choice of some
integration time step ∆τ . Integrating Equation (36)
over one time step gives the Euler predictor estimate for
y(τn + ∆τ):

ỹn+1 = yn + f(τn, yn)∆τ + fs(τn, yn) · (σswn). (37)

The last factor, σswn, is introduced to represent the time-
integral of the stochastic magnetic inductions. σs is a
variance and wn represents a vector of 3N random num-
bers, one for each Cartesian component at each site of the

grid. Consider, say, the result of integrating the equation
of motion for just one component for one site:

∫ τn+∆τ

τn

dτ bx
s(τ) −→ σsw

x
n. (38)

The physical variance σs needed for this to work cor-
rectly, must be determined by the FD theorem. For this
individual component at one site, the squared variance is

σ2
s =

〈(

∫ τn+∆τ

τn

dτ bx
s (τ)

)2〉

=

∫ τn+∆τ

τn

dτ

∫ τn+∆τ

τn

dτ ′ ⟨bx
s(τ)bx

s (τ ′)⟩ (39)

Now applying the FD theorem to this gives the required
variance of the random fields, that depends on the time
step being used:

σs =
√

2αT ∆τ . (40)

This means that individual stochastic field components
bα
s (τ), integrated over one time step, are replaced by ran-

dom numbers of zero mean with variance σs, as used
above.

For the corrector stage, the points yn and ỹn+1 are used
to get better estimates of the slope of the solution. Then
their average is used in the trapezoid corrector stage:

yn+1 = yn +
1

2
[f(τn, yn) + f(τn+1, ỹn+1)]∆τ (41)

+
1

2
[fs(τn, yn) + fs(τn+1, ỹn+1)] · (σswn).

The error is of order O((∆τ)3), hence it is a second or-
der scheme. Note that the same vector of 3N random
numbers wn used in the predictor stage are re-used in
the corrector stage, because it is the evolution over the
same time interval.

In the coding for computations, one does not use the
explicit form of the functions f and fs. Rather, at each
cell, first one can calculate the deterministic effective field
b⃗i based on the present state of the system. Its effect in
the dynamics will be actually proportional to its product
with the time step, i.e., it gives a contribution ∆m̂i ∝
b⃗i∆τ . Of course, the stochastic change in this same site
will be proportional to the stochastic effective field, which
is some σsw⃗i for that site, where w⃗i = (wx

i , wy
i , wz

i ). So
the total change at this site is linearly determined by a
combination,

∆m̂i ∝ g⃗i, g⃗i ≡ b⃗i∆τ + σsw⃗i. (42)

An effective field combination g⃗i acts in this way both
during the predictor and the corrector stages. In either
stage, a dynamic change in a site is given by a simple
relation,

∆m̂i = m̂i × [⃗gi − α(m̂i × g⃗i)] . (43)

5

satisfy the fluctuation-dissipation (FD) theorem,

⟨bα
s (τ) bβ

s (τ ′)⟩ = 2αT δαβ δ(τ − τ ′). (33)

The indices α, β refer to any of the Cartesian coordinates,
and the dimensionless temperature T is the thermal en-
ergy scaled by the energy unit J ,

T ≡
kT

J
=

kT

2AL
, (34)

where k is Boltzmann’s constant. The fluctuation-
dissipation theorem expresses how the power in the ther-
mal fluctuations is carried in the random magnetic fields.
In terms of the physical units, the relation is

γµ⟨Bα
s (t)Bβ

s (t′)⟩ = 2α kT δαβ δ(t − t′). (35)

where µ = La2Ms is the magnetic dipole moment per
computation cell.

A. Time evolution with second order Heun (H2)
method

The Langevin equation (32) is a first-order differential
equation that is linear in multiplicative noise. If y =
y(τ) represents the full state of the system (a vector of
dimension 3N , where N is the number of cells), then the
dynamics follows an equation of the form

dy

dτ
= f [τ, y(τ)] + fs[τ, y(τ)] · bs(τ). (36)

The vector function f is the deterministic time deriva-
tive and the vector function fs determines the stochastic
dynamics; bs represents the whole stochastic field of the
system. An efficient method for integrating this type
of equation forward in time is the second order Heun
(H2) method. That is in the family of predictor-corrector
schemes and is rather stable. It involves an Euler step as
the predictor stage, and a corrector stage that is equiv-
alent to the trapezoid rule. Some details of the method
are summarized here, to indicate how the stochastic fields
are included, and to show why it is used rather than the
fourth order Runge-Kutta method (the latter seems dif-
ficult to adapt to the stochastic fields).

We use the notation yn ≡ y(τn) to show the values
at times τn = n∆τ , according to the choice of some
integration time step ∆τ . Integrating Equation (36)
over one time step gives the Euler predictor estimate for
y(τn + ∆τ):

ỹn+1 = yn + f(τn, yn)∆τ + fs(τn, yn) · (σswn). (37)

The last factor, σswn, is introduced to represent the time-
integral of the stochastic magnetic inductions. σs is a
variance and wn represents a vector of 3N random num-
bers, one for each Cartesian component at each site of the

grid. Consider, say, the result of integrating the equation
of motion for just one component for one site:

∫ τn+∆τ

τn

dτ bx
s(τ) −→ σsw

x
n. (38)

The physical variance σs needed for this to work cor-
rectly, must be determined by the FD theorem. For this
individual component at one site, the squared variance is

σ2
s =

〈(

∫ τn+∆τ

τn

dτ bx
s (τ)

)2〉

=

∫ τn+∆τ

τn

dτ

∫ τn+∆τ

τn

dτ ′ ⟨bx
s(τ)bx

s (τ ′)⟩ (39)

Now applying the FD theorem to this gives the required
variance of the random fields, that depends on the time
step being used:

σs =
√

2αT ∆τ . (40)

This means that individual stochastic field components
bα
s (τ), integrated over one time step, are replaced by ran-

dom numbers of zero mean with variance σs, as used
above.

For the corrector stage, the points yn and ỹn+1 are used
to get better estimates of the slope of the solution. Then
their average is used in the trapezoid corrector stage:

yn+1 = yn +
1

2
[f(τn, yn) + f(τn+1, ỹn+1)]∆τ (41)

+
1

2
[fs(τn, yn) + fs(τn+1, ỹn+1)] · (σswn).

The error is of order O((∆τ)3), hence it is a second or-
der scheme. Note that the same vector of 3N random
numbers wn used in the predictor stage are re-used in
the corrector stage, because it is the evolution over the
same time interval.

In the coding for computations, one does not use the
explicit form of the functions f and fs. Rather, at each
cell, first one can calculate the deterministic effective field
b⃗i based on the present state of the system. Its effect in
the dynamics will be actually proportional to its product
with the time step, i.e., it gives a contribution ∆m̂i ∝
b⃗i∆τ . Of course, the stochastic change in this same site
will be proportional to the stochastic effective field, which
is some σsw⃗i for that site, where w⃗i = (wx

i , wy
i , wz

i ). So
the total change at this site is linearly determined by a
combination,

∆m̂i ∝ g⃗i, g⃗i ≡ b⃗i∆τ + σsw⃗i. (42)

An effective field combination g⃗i acts in this way both
during the predictor and the corrector stages. In either
stage, a dynamic change in a site is given by a simple
relation,

∆m̂i = m̂i × [⃗gi − α(m̂i × g⃗i)] . (43)

cell
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satisfy the fluctuation-dissipation (FD) theorem,

⟨bα
s (τ) bβ

s (τ ′)⟩ = 2αT δαβ δ(τ − τ ′). (33)

The indices α, β refer to any of the Cartesian coordinates,
and the dimensionless temperature T is the thermal en-
ergy scaled by the energy unit J ,

T ≡
kT

J
=

kT

2AL
, (34)

where k is Boltzmann’s constant. The fluctuation-
dissipation theorem expresses how the power in the ther-
mal fluctuations is carried in the random magnetic fields.
In terms of the physical units, the relation is

γµ⟨Bα
s (t)Bβ

s (t′)⟩ = 2α kT δαβ δ(t − t′). (35)

where µ = La2Ms is the magnetic dipole moment per
computation cell.

A. Time evolution with second order Heun (H2)
method

The Langevin equation (32) is a first-order differential
equation that is linear in multiplicative noise. If y =
y(τ) represents the full state of the system (a vector of
dimension 3N , where N is the number of cells), then the
dynamics follows an equation of the form

dy

dτ
= f [τ, y(τ)] + fs[τ, y(τ)] · bs(τ). (36)

The vector function f is the deterministic time deriva-
tive and the vector function fs determines the stochastic
dynamics; bs represents the whole stochastic field of the
system. An efficient method for integrating this type
of equation forward in time is the second order Heun
(H2) method. That is in the family of predictor-corrector
schemes and is rather stable. It involves an Euler step as
the predictor stage, and a corrector stage that is equiv-
alent to the trapezoid rule. Some details of the method
are summarized here, to indicate how the stochastic fields
are included, and to show why it is used rather than the
fourth order Runge-Kutta method (the latter seems dif-
ficult to adapt to the stochastic fields).

We use the notation yn ≡ y(τn) to show the values
at times τn = n∆τ , according to the choice of some
integration time step ∆τ . Integrating Equation (36)
over one time step gives the Euler predictor estimate for
y(τn + ∆τ):

ỹn+1 = yn + f(τn, yn)∆τ + fs(τn, yn) · (σswn). (37)

The last factor, σswn, is introduced to represent the time-
integral of the stochastic magnetic inductions. σs is a
variance and wn represents a vector of 3N random num-
bers, one for each Cartesian component at each site of the

grid. Consider, say, the result of integrating the equation
of motion for just one component for one site:

∫ τn+∆τ

τn

dτ bx
s(τ) −→ σsw

x
n. (38)

The physical variance σs needed for this to work cor-
rectly, must be determined by the FD theorem. For this
individual component at one site, the squared variance is

σ2
s =

〈(

∫ τn+∆τ

τn

dτ bx
s (τ)

)2〉

=

∫ τn+∆τ

τn

dτ

∫ τn+∆τ

τn

dτ ′ ⟨bx
s(τ)bx

s (τ ′)⟩ (39)

Now applying the FD theorem to this gives the required
variance of the random fields, that depends on the time
step being used:

σs =
√

2αT ∆τ . (40)

This means that individual stochastic field components
bα
s (τ), integrated over one time step, are replaced by ran-

dom numbers of zero mean with variance σs, as used
above.

For the corrector stage, the points yn and ỹn+1 are used
to get better estimates of the slope of the solution. Then
their average is used in the trapezoid corrector stage:

yn+1 = yn +
1

2
[f(τn, yn) + f(τn+1, ỹn+1)]∆τ (41)

+
1

2
[fs(τn, yn) + fs(τn+1, ỹn+1)] · (σswn).

The error is of order O((∆τ)3), hence it is a second or-
der scheme. Note that the same vector of 3N random
numbers wn used in the predictor stage are re-used in
the corrector stage, because it is the evolution over the
same time interval.

In the coding for computations, one does not use the
explicit form of the functions f and fs. Rather, at each
cell, first one can calculate the deterministic effective field
b⃗i based on the present state of the system. Its effect in
the dynamics will be actually proportional to its product
with the time step, i.e., it gives a contribution ∆m̂i ∝
b⃗i∆τ . Of course, the stochastic change in this same site
will be proportional to the stochastic effective field, which
is some σsw⃗i for that site, where w⃗i = (wx

i , wy
i , wz

i ). So
the total change at this site is linearly determined by a
combination,

∆m̂i ∝ g⃗i, g⃗i ≡ b⃗i∆τ + σsw⃗i. (42)

An effective field combination g⃗i acts in this way both
during the predictor and the corrector stages. In either
stage, a dynamic change in a site is given by a simple
relation,

∆m̂i = m̂i × [⃗gi − α(m̂i × g⃗i)] . (43)
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satisfy the fluctuation-dissipation (FD) theorem,

⟨bα
s (τ) bβ

s (τ ′)⟩ = 2αT δαβ δ(τ − τ ′). (33)

The indices α, β refer to any of the Cartesian coordinates,
and the dimensionless temperature T is the thermal en-
ergy scaled by the energy unit J ,

T ≡
kT

J
=

kT

2AL
, (34)

where k is Boltzmann’s constant. The fluctuation-
dissipation theorem expresses how the power in the ther-
mal fluctuations is carried in the random magnetic fields.
In terms of the physical units, the relation is

γµ⟨Bα
s (t)Bβ

s (t′)⟩ = 2α kT δαβ δ(t − t′). (35)

where µ = La2Ms is the magnetic dipole moment per
computation cell.

A. Time evolution with second order Heun (H2)
method

The Langevin equation (32) is a first-order differential
equation that is linear in multiplicative noise. If y =
y(τ) represents the full state of the system (a vector of
dimension 3N , where N is the number of cells), then the
dynamics follows an equation of the form

dy

dτ
= f [τ, y(τ)] + fs[τ, y(τ)] · bs(τ). (36)

The vector function f is the deterministic time deriva-
tive and the vector function fs determines the stochastic
dynamics; bs represents the whole stochastic field of the
system. An efficient method for integrating this type
of equation forward in time is the second order Heun
(H2) method. That is in the family of predictor-corrector
schemes and is rather stable. It involves an Euler step as
the predictor stage, and a corrector stage that is equiv-
alent to the trapezoid rule. Some details of the method
are summarized here, to indicate how the stochastic fields
are included, and to show why it is used rather than the
fourth order Runge-Kutta method (the latter seems dif-
ficult to adapt to the stochastic fields).

We use the notation yn ≡ y(τn) to show the values
at times τn = n∆τ , according to the choice of some
integration time step ∆τ . Integrating Equation (36)
over one time step gives the Euler predictor estimate for
y(τn + ∆τ):

ỹn+1 = yn + f(τn, yn)∆τ + fs(τn, yn) · (σswn). (37)

The last factor, σswn, is introduced to represent the time-
integral of the stochastic magnetic inductions. σs is a
variance and wn represents a vector of 3N random num-
bers, one for each Cartesian component at each site of the

grid. Consider, say, the result of integrating the equation
of motion for just one component for one site:

∫ τn+∆τ

τn

dτ bx
s(τ) −→ σsw

x
n. (38)

The physical variance σs needed for this to work cor-
rectly, must be determined by the FD theorem. For this
individual component at one site, the squared variance is

σ2
s =

〈(

∫ τn+∆τ

τn

dτ bx
s (τ)

)2〉

=

∫ τn+∆τ

τn

dτ

∫ τn+∆τ

τn

dτ ′ ⟨bx
s(τ)bx

s (τ ′)⟩ (39)

Now applying the FD theorem to this gives the required
variance of the random fields, that depends on the time
step being used:

σs =
√

2αT ∆τ . (40)

This means that individual stochastic field components
bα
s (τ), integrated over one time step, are replaced by ran-

dom numbers of zero mean with variance σs, as used
above.

For the corrector stage, the points yn and ỹn+1 are used
to get better estimates of the slope of the solution. Then
their average is used in the trapezoid corrector stage:

yn+1 = yn +
1

2
[f(τn, yn) + f(τn+1, ỹn+1)]∆τ (41)

+
1

2
[fs(τn, yn) + fs(τn+1, ỹn+1)] · (σswn).

The error is of order O((∆τ)3), hence it is a second or-
der scheme. Note that the same vector of 3N random
numbers wn used in the predictor stage are re-used in
the corrector stage, because it is the evolution over the
same time interval.

In the coding for computations, one does not use the
explicit form of the functions f and fs. Rather, at each
cell, first one can calculate the deterministic effective field
b⃗i based on the present state of the system. Its effect in
the dynamics will be actually proportional to its product
with the time step, i.e., it gives a contribution ∆m̂i ∝
b⃗i∆τ . Of course, the stochastic change in this same site
will be proportional to the stochastic effective field, which
is some σsw⃗i for that site, where w⃗i = (wx

i , wy
i , wz

i ). So
the total change at this site is linearly determined by a
combination,

∆m̂i ∝ g⃗i, g⃗i ≡ b⃗i∆τ + σsw⃗i. (42)

An effective field combination g⃗i acts in this way both
during the predictor and the corrector stages. In either
stage, a dynamic change in a site is given by a simple
relation,

∆m̂i = m̂i × [⃗gi − α(m̂i × g⃗i)] . (43)
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5

affected by two forms of local shape anisotropy. Firstly, there is a uniaxial anisotropy that
impedes free rotation in the xy-plane, associated with some energy constant K1, and oriented
along x for the first sublattice and along y for the second sublattice. Depending on its sublattice,
each moment has an axis ûi (equal to x̂ or ŷ) for this anisotropy, see figure 1. Secondly, because
the nanoislands are thin in the z-direction, the z-direction is a hard axis, and there is a hard-axis
anisotropy whose energy scale is determined by a constant K3, the same for all the islands. The
Hamiltonian is then

H= � µ0

4⇥

µ2

a3

�

i> j

[3(µ̂i · r̂i j)(µ̂ j · r̂i j) � µ̂i · µ̂ j ]
(ri j/a)3

+
�

i

{K1[1�(µ̂i · ûi)
2]+K3(µ̂i · ẑ)2 � ⇧µi · ⇧Bext}.

(2)
Here µ0 is the magnetic permeability of space and r̂i j is the unit vector pointing from the position
of ⇧µ j toward the position of ⇧µi . The first sum is the dipole–dipole interactions, the second sum
contains the anisotropy energies and an applied external magnetic induction ⇧Bext = µ0 ⇧H ext. A
constant is included in the K1 anisotropy energy so that that energy is zero when a dipole points
along its local anisotropy axis ûi . Note that if a dipole moves in the xy-plane, it only pays the
cost of the K1 anisotropy term, but motion up out of the xy-plane (say, in the xz-plane) involves
an energy proportional to the sum of both anisotropies, K1 + K3.

The motion out of the xy-plane is also impeded by the dipolar interactions. With the dipole
pair distances scaled by the lattice constant, the effective strength of nearest-neighbor dipolar
interactions is determined by the dipole energy factor

D = µ0

4⇥

µ2

a3
. (3)

Depending on the island geometry, which is discussed further below, the anisotropy constants
K1 and K3 would typically be of a similar order of magnitude. Thus, there are three important
energy scales: dipolar energy, anisotropy energy and the thermal energy kBT . The anisotropy
constants are proportional to the volume V of the islands, as is µ = MsV , where Ms is the
saturation magnetization of the magnetic material. But then, this dipolar constant D increases
as the squared island volume. Thus, changing the island size and spacing a can be done to
adjust these energy scales in relation to each other. Typically, the interesting case must have the
thermal energy less than both the effective dipolar energy (per site) and anisotropy energy. But
note that, the effective dipolar energy can be much larger than that indicated by D, which only
measures the energy in a nearest-neighbor pair. When the dipolar interactions are summed, the
net dipolar energy per island could be much larger than D.

2.1. Spin-ice ground state and order parameters

For the square lattice spin ice, the ground state is twofold degenerate, and involves alternating
dipoles on each of the two sublattices. The ground state fully satisfies the two-in/two-out rule
in each monopole charge cell (a junction of four islands at the site ⇧rk of each unit cell). The unit
cell positions are expressed ⇧rk = (mk, nk)a, where a is the lattice constant and mk and nk are
integers. Then one of the ground states can be constructed by setting the dipole directions as

µ̂GS
k1 ⇤ µ̂GS

1 (⇧rk) = +(�1)mk+nk x̂,

µ̂GS
k2 ⇤ µ̂GS

2 (⇧rk) = �(�1)mk+nk ŷ.
(4)
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Figure 11.16: Equilibrium properties for a 16 × 16 array of Model C islands, using
artificial dimensionless model parameters d = k1 = k3 = 0.1, versus the scaled temper-
ature. In (a) the specific heat and average energy per island are shown. C(T ) exhibits
a strong peak at a critical temperature Tc ≈ 0.22, due to a transition towards the
ground state for low temperature. In (b) components of the magnetic susceptibility
are plotted; there is a peak only for the in-plane components.

Typical thermodynamics shows a phase transition 

magnetic susceptibilities
per island.

energy and specific heat
per island.
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Figure 11.19: The various monopole charge densities for a 16 × 16 array of Model C
islands, using artificial dimensionless model parameters d = k1 = k3 = 0.1, versus the
scaled temperature. See Eqs. (11.28) and (11.29) for definitions. Note how the density
from the continuous definition, ρ∗, which measures angular deviations from island long
axes, remains nonzero at low temperature while very few discrete single (ρ1) or double
monopoles (ρ2) are present. For much higher temperatures all the densities do tend
towards their asymptotic high-T values, as listed in Fig. 11.11.

factor,

pa(za) ∝ exp(K1z
2
a/kBT ), T ≫ Tc. (11.48)

One would have to go to quite high temperatures for the distribution to appear close
to uniform. As the temperature is lowered, the distribution of za becomes quite skewed
with extra probability at the za = +1 end, and reduced probability at za = −1. The
changes take place most strongly close to the transition temperature. For very low
temperature, pa(za) becomes very strongly peaked at za = +1. The distribution of
zb also becomes concentrated near the point zb = −1 (not shown here). This is clear
evidence that the system moves into the s = +1 ground state. This is also reflected
in the derived p(z) probability distribution. At high temperature, it takes a triangular
shape, peaked at z = 0, which is to be expected when both za and zb are uniformly
distributed. At low temperature the probability becomes concentrated at z = +1,
which confirms that the system relaxes into the s = +1 ground state. Therefore,
although square lattice spin ice exhibits frustration, that does not prevent the system
from moving adequately through phase space, and the system is able to reach a ground
state in dynamic processes. In this sense the frustration could be considered a weak
form of frustration. The fact that there are only two ground states may help to alleviate
the frustration, when dynamics is considered.

The discrete monopole densities versus temperature for single charges, ρ1, and
double charges, ρ2, are shown in Fig. 11.19, along with the total discrete charge density
ρ and the continuous definition ρ∗. The continuous ρ∗ is the only one to remain above
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Figure 11.17: Equilibrium properties for a 16 × 16 array of Model C islands, using
artificial dimensionless model parameters d = k1 = k3 = 0.1, versus the scaled temper-
ature. The order parameter Z is defined in Eq. (11.22) and the rms average of dipole
moment per site is defined in (11.46). As Z tends to 1 for low temperature, it shows
a collapse of the system to a state near one of the ground states. The rms magnetic
moment per site, which has been magnified by 10×, also shows a feature, and goes
close to zero as T → 0.

a critical temperature Tc ≈ 0.22, and the corresponding peak in the in-plane suscepti-
bility components χxx ≈ χyy at a slightly higher temperature. The fluctuations of the
island dipoles out of the xy-plane are small, as testified by the much smaller values of
χzz, and the lack of any significant feature in χzz(T ).

In Fig. 11.17, the rms magnetic moment per site and the order parameter Z are
displayed. The order parameter again is close to zero at high temperature, however,
as T → 0, one sees that Z tends to a finite value close to 1. This indicates strongly
that the system is moving towards on of the ground states for very low temperature. It
was a random choice; the system could have just as well tended towards the opposite
ground state with the value Z = −1. Remember that the system was initiated at higher
temperature and relaxed towards lower temperature. The rms magnetic moment also
has a weak peak in the same region that χxx and χyy have a peak; mrms has been
amplified by 10× in the plot due to its small values. At higher temperature there is
a nonzero value. As T → 0, mrms tends towards zero, which would be expected for a
ground state where all islands alternate in direction along any row or column of the
system.

The local order distributions pa(za) and p(z) for this model are shown in Fig. 11.18,
for a sequence of different temperatures above and below the transition temperature
Tc ≈ 0.22. For high temperature, the distribution of pa(za) is close to uniform, however,
with obvious thermal fluctuations, and also a weak parabolic form. The parabolic
form can be seeen to be due to the competition of the in-plane anisotropy K1 with the
temperature. This makes the high temperature probability follow from a Boltzmann

Order parameter Z measures 
alignment to a ground state.

Densities of single, double, and 
total monopoles.
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Figure 11.20: A typical set of m(hext) curves for various temperatures in Model C with
artificial parameters. The field is applied parallel to x̂, initially at strength hext = +0.8,
then reduced to hext = −0.8 in 160 steps, followed by a return to the original value.
Only the component of m along the field is displayed. There is only minimum hysteresis
seen at the lowest temperature T = 0.1, which is where the system has fallen close to
a ground state.

zero for very low temperature, because it can measure fluctuations of the dipoles away
from the island axes, even in the absence of discrete monopole charges. Single discrete
charges are present only for T greater than about 0.1, and double charges are present
for T > 0.2. In contrast to the model for Wang et al. islands, this confirms that this
model has a thermalized dynamics, and is able to move towards a ground state at low
temperature. At higher temperatures, these density values shown are still rather far
from the high-temperature limits, but further simulations do confirm that eventually
the system tends towards the values discussed in Sec. 11.2, ρ→ 3

4 , ρ1 → 1
2 and ρ2 → 1

4 .

11.4.4 Magnetic hysteresis in Model C with artificial param-
eters

The calculations of the previous section can easily be extended to include an externally
applied magnetic field. By looking at the response while the magnetic field strength
hext is varied, for the system at a fixed temperature, hysteresis curves can be obtained.
Fig. 11.20 shows some results, having scanned the magnetic field starting from a large
positive value along the x̂-axis, bringing it to a large value in the opposite direction,
and finally returning to the original maximum strength and direction. The system is
started with the island dipoles randomly oriented. Averages are done over Ns = 103

samples at each applied field, after which the field is changed slightly. For the hysteresis
curves calculated here, a total of 160 steps in the magnetic field brought it from the
maximum value in one direction to its maximum strength in the opposite direction.

scanning through applied magnetic field.

The hysteresis curve deforms when 
the ground state is approached  

(low-T, blue curve).



ice model for Wang et al (2006) particles

(from long-time  
Langevin dynamics)

D = 0.000835 
K1=0.0897  

K3=0.2000 

kT=0.001 

≠ ground state

Note: 300 K is  
kT = 1.29x10-5

5

affected by two forms of local shape anisotropy. Firstly, there is a uniaxial anisotropy that
impedes free rotation in the xy-plane, associated with some energy constant K1, and oriented
along x for the first sublattice and along y for the second sublattice. Depending on its sublattice,
each moment has an axis ûi (equal to x̂ or ŷ) for this anisotropy, see figure 1. Secondly, because
the nanoislands are thin in the z-direction, the z-direction is a hard axis, and there is a hard-axis
anisotropy whose energy scale is determined by a constant K3, the same for all the islands. The
Hamiltonian is then

H= � µ0

4⇥

µ2

a3

�

i> j

[3(µ̂i · r̂i j)(µ̂ j · r̂i j) � µ̂i · µ̂ j ]
(ri j/a)3

+
�

i

{K1[1�(µ̂i · ûi)
2]+K3(µ̂i · ẑ)2 � ⇧µi · ⇧Bext}.

(2)
Here µ0 is the magnetic permeability of space and r̂i j is the unit vector pointing from the position
of ⇧µ j toward the position of ⇧µi . The first sum is the dipole–dipole interactions, the second sum
contains the anisotropy energies and an applied external magnetic induction ⇧Bext = µ0 ⇧H ext. A
constant is included in the K1 anisotropy energy so that that energy is zero when a dipole points
along its local anisotropy axis ûi . Note that if a dipole moves in the xy-plane, it only pays the
cost of the K1 anisotropy term, but motion up out of the xy-plane (say, in the xz-plane) involves
an energy proportional to the sum of both anisotropies, K1 + K3.

The motion out of the xy-plane is also impeded by the dipolar interactions. With the dipole
pair distances scaled by the lattice constant, the effective strength of nearest-neighbor dipolar
interactions is determined by the dipole energy factor

D = µ0

4⇥

µ2

a3
. (3)

Depending on the island geometry, which is discussed further below, the anisotropy constants
K1 and K3 would typically be of a similar order of magnitude. Thus, there are three important
energy scales: dipolar energy, anisotropy energy and the thermal energy kBT . The anisotropy
constants are proportional to the volume V of the islands, as is µ = MsV , where Ms is the
saturation magnetization of the magnetic material. But then, this dipolar constant D increases
as the squared island volume. Thus, changing the island size and spacing a can be done to
adjust these energy scales in relation to each other. Typically, the interesting case must have the
thermal energy less than both the effective dipolar energy (per site) and anisotropy energy. But
note that, the effective dipolar energy can be much larger than that indicated by D, which only
measures the energy in a nearest-neighbor pair. When the dipolar interactions are summed, the
net dipolar energy per island could be much larger than D.

2.1. Spin-ice ground state and order parameters

For the square lattice spin ice, the ground state is twofold degenerate, and involves alternating
dipoles on each of the two sublattices. The ground state fully satisfies the two-in/two-out rule
in each monopole charge cell (a junction of four islands at the site ⇧rk of each unit cell). The unit
cell positions are expressed ⇧rk = (mk, nk)a, where a is the lattice constant and mk and nk are
integers. Then one of the ground states can be constructed by setting the dipole directions as

µ̂GS
k1 ⇤ µ̂GS

1 (⇧rk) = +(�1)mk+nk x̂,

µ̂GS
k2 ⇤ µ̂GS

2 (⇧rk) = �(�1)mk+nk ŷ.
(4)
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(from long-time  
Langevin dynamics)

ice model for Wang et al (2006) particles
D = 0.000835 
K1=0.0897  

K3=0.2000 

kT=0.01 

≠ ground state
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(from long-time  
Langevin dynamics)

ice model for Wang et al (2006) particles
D = 0.000835 
K1=0.0897  

K3=0.2000 

kT=0.015 

more monopoles
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(from long-time  
Langevin dynamics)

ice model for Wang et al (2006) particles
D = 0.000835 
K1=0.0897  

K3=0.2000 

kT=0.024 

more monopoles
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(from long-time  
Langevin dynamics)

ice model for Wang et al (2006) particles
D = 0.000835 
K1=0.0897  

K3=0.2000 

kT=0.040 

highly disordered
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artificial ice model - Kagomé lattice

D = 0.1 
K1=0.1  

K3=0.5 

1 of 6  
ground states
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artificial ice model - Kagomé lattice

D = 0.1 
K1=0.1  

K3=0.5 

1 of 6  
ground states 

all vertices have a 
monopole charge.
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artificial ice model - Kagomé lattice

D = 0.1 
K1=0.1  

K3=0.5 

kT=0.01 (low T). 

Frustrated state 
does not approach 
ground state.

(from long-time  
Langevin dynamics)
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artificial ice model - Kagomé lattice

(from long-time  
Langevin dynamics)

D = 0.1 
K1=0.1  

K3=0.5 

kT=0.05 
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artificial ice model - Kagomé lattice

(from long-time  
Langevin dynamics)

D = 0.1 
K1=0.1  

K3=0.5 

kT=0.1  (moderate) 

multi-charge poles
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artificial ice model - Kagomé lattice

(from long-time  
Langevin dynamics)

D = 0.1 
K1=0.1  

K3=0.5 

kT=0.3  (high) 

many  
multi-charge poles
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What about linearized (small amplitude) oscillations 
at low temperature?  (work by Thomas Lasnier)
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FIG. 1: Square spin ice in a ground state, with the identifica-
tion of the four sublattices, for the four different directions of
the islands’ dipoles. Small dots indicate the vertices, which
follow the two-in/two-out rule and carry no monopole charge
in this state. The spacing between neighboring vertices is
the lattice constant a, while the nearest neighbor island spac-
ing along the diagonal directions is a/

√
2. For one A-site its

nearest neighbors are labeled D↑, D↓, B↑ and B↓ and the
displacements rxy and rx̄y are indicated, see Eq. (6).

in Sec. IV and the details of the modes found are given.
Some excitation spectra for different model parameters
are described in Sec. V, and results are summarized and
their importance is highlighted in Sec. VI.

II. ARTIFICIAL SQUARE LATTICE SPIN-ICE
MODEL

The islands’ dipoles are assumed to have fixed magni-
tudes µ pointing along some time dependent Heisenberg-
like unit vectors µ̂i(t), where i labels a site. The di-
rections of the µ̂i(t) are affected by magnetic shape
anisotropy and by long-range dipolar interactions. Due
to the elongated form of the islands, each island has some
uniaxial anisotropy with energy constant K1 along its
longer axis ûi, which points along either x̂ or ŷ, depend-
ing on the sublattice. A sketch of the system is shown in
Fig. 1. In addition, the islands are very thin perpendic-
ular to the substrate, which makes that direction a hard
axis, producing easy-plane (xy) anisotropy with an en-
ergy constant K3 for all the islands. Typically we expect
that the easy-plane anisotropy constant K3 dominates,
followed by the easy-axis interactionsK1, and then finally
by the much weaker dipolar interactions. Also, thermal
energy scales can be expected to be rather small com-
pared to all of these couplings, which is why the system

has a complex energy landscape with many local minima
subject to frustration, typical of spin ice. The Hamilto-
nian for this model with Heisenberg-like spins µ̂i(t) is

H = −
µ0

4π

µ2

a3

∑

i>j

[3(µ̂i · r̂ij)(µ̂j · r̂ij)− µ̂i · µ̂j ]

(rij/a)
3

+
∑

i

{

K1[1− (µ̂i · ûi)
2] +K3(µ̂i · ẑ)2

}

(1)

The first term is the dipolar pair interaction, where µ0

is the magnetic permeability of space, a is the center-to-
center spacing of the islands along the x̂ or ŷ principal
directions, and r̂ij is a unit vector pointing from site
j to site i. Note, however, that the nearest neighbor
spacing of the islands, a/

√
2, lies along the directions at

±45◦ from the standard xy coordinate system, see Fig.
1. The dipolar energy scale is affected by island spacing,
such that we define a nearest neighbor dipolar energy
constant,

D ≡
µ0

4π

µ2

(

a/
√
2
)3 . (2)

The anisotropy terms have been written so that they give
zero energy when the island dipole points along its lo-
cal easy-axis ûi. Rotation of µ̂i(t) within the xy plane
only involves the K1 energy, whereas, tilting of µ̂i(t) out
of the xy-plane is characterized by the sum of the two
anisotropy constants, K1 +K3.

A. The spin-ice ground states

In a ground state, such as in Fig. 1, the shape
anisotropy energies are totally minimized. A ground
state also does its best to minimize the nearest neighbor
dipolar interactions, but those interactons are frustrated
and not globally minimized. The magnetic moments al-
ternate in direction from site to site, regardless of the
displacement direction on the lattice. We use a notation
where there are four sublattices, named A,B,C,D, as one
moves clockwise around a vertex where the ice-rule would
be applied. The A and C sites are aligned with the +x̂
and −x̂ directions, respectively, due to having in-plane
anisotropy axes ûi = x̂. The B and D sites are aligned
with the +ŷ and −ŷ directions, respectively, due to hav-
ing in-plane anisotropy axes ûi = ŷ. In a ground state,
the unit island dipoles µ̂i on the different sublattices can
be expressed as

A0 = ( 1, 0, 0), B0 = (0, 1, 0), (3a)

C0 = (−1, 0, 0), D0 = (0,−1, 0). (3b)

This pattern repeats through the whole system, which
then adheres to the ice rule throughout. The other
ground state would be obtained from this one by invert-
ing all the moments. Obviously, there is an enormous
energy barrier preventing that transition. Instead, here

A square ice ground state.  
Notation for deviations around a site A.
Keep only near neighbor interactions.

There are four sublattices!
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FIG. 1: Square spin ice in a ground state, with the identifica-
tion of the four sublattices, for the four different directions of
the islands’ dipoles. Small dots indicate the vertices, which
follow the two-in/two-out rule and carry no monopole charge
in this state. The spacing between neighboring vertices is
the lattice constant a, while the nearest neighbor island spac-
ing along the diagonal directions is a/

√
2. For one A-site its

nearest neighbors are labeled D↑, D↓, B↑ and B↓ and the
displacements rxy and rx̄y are indicated, see Eq. (6).

in Sec. IV and the details of the modes found are given.
Some excitation spectra for different model parameters
are described in Sec. V, and results are summarized and
their importance is highlighted in Sec. VI.

II. ARTIFICIAL SQUARE LATTICE SPIN-ICE
MODEL

The islands’ dipoles are assumed to have fixed magni-
tudes µ pointing along some time dependent Heisenberg-
like unit vectors µ̂i(t), where i labels a site. The di-
rections of the µ̂i(t) are affected by magnetic shape
anisotropy and by long-range dipolar interactions. Due
to the elongated form of the islands, each island has some
uniaxial anisotropy with energy constant K1 along its
longer axis ûi, which points along either x̂ or ŷ, depend-
ing on the sublattice. A sketch of the system is shown in
Fig. 1. In addition, the islands are very thin perpendic-
ular to the substrate, which makes that direction a hard
axis, producing easy-plane (xy) anisotropy with an en-
ergy constant K3 for all the islands. Typically we expect
that the easy-plane anisotropy constant K3 dominates,
followed by the easy-axis interactionsK1, and then finally
by the much weaker dipolar interactions. Also, thermal
energy scales can be expected to be rather small com-
pared to all of these couplings, which is why the system

has a complex energy landscape with many local minima
subject to frustration, typical of spin ice. The Hamilto-
nian for this model with Heisenberg-like spins µ̂i(t) is

H = −
µ0

4π

µ2

a3

∑

i>j

[3(µ̂i · r̂ij)(µ̂j · r̂ij)− µ̂i · µ̂j ]

(rij/a)
3

+
∑

i

{

K1[1− (µ̂i · ûi)
2] +K3(µ̂i · ẑ)2

}

(1)

The first term is the dipolar pair interaction, where µ0

is the magnetic permeability of space, a is the center-to-
center spacing of the islands along the x̂ or ŷ principal
directions, and r̂ij is a unit vector pointing from site
j to site i. Note, however, that the nearest neighbor
spacing of the islands, a/

√
2, lies along the directions at

±45◦ from the standard xy coordinate system, see Fig.
1. The dipolar energy scale is affected by island spacing,
such that we define a nearest neighbor dipolar energy
constant,

D ≡
µ0

4π

µ2

(

a/
√
2
)3 . (2)

The anisotropy terms have been written so that they give
zero energy when the island dipole points along its lo-
cal easy-axis ûi. Rotation of µ̂i(t) within the xy plane
only involves the K1 energy, whereas, tilting of µ̂i(t) out
of the xy-plane is characterized by the sum of the two
anisotropy constants, K1 +K3.

A. The spin-ice ground states

In a ground state, such as in Fig. 1, the shape
anisotropy energies are totally minimized. A ground
state also does its best to minimize the nearest neighbor
dipolar interactions, but those interactons are frustrated
and not globally minimized. The magnetic moments al-
ternate in direction from site to site, regardless of the
displacement direction on the lattice. We use a notation
where there are four sublattices, named A,B,C,D, as one
moves clockwise around a vertex where the ice-rule would
be applied. The A and C sites are aligned with the +x̂
and −x̂ directions, respectively, due to having in-plane
anisotropy axes ûi = x̂. The B and D sites are aligned
with the +ŷ and −ŷ directions, respectively, due to hav-
ing in-plane anisotropy axes ûi = ŷ. In a ground state,
the unit island dipoles µ̂i on the different sublattices can
be expressed as

A0 = ( 1, 0, 0), B0 = (0, 1, 0), (3a)

C0 = (−1, 0, 0), D0 = (0,−1, 0). (3b)

This pattern repeats through the whole system, which
then adheres to the ice rule throughout. The other
ground state would be obtained from this one by invert-
ing all the moments. Obviously, there is an enormous
energy barrier preventing that transition. Instead, here

3

we consider only small spatially periodic deviations away
from this ground state configuration, characterized by
some two-dimensional wave vector q = (qx, qy).

III. THE DYNAMICS AND SYMMETRIES

The dynamic equation of motion for the magnetic mo-
ment of some island, regardless of which sublattice it
occupies, results from the Hamiltonian according to a
torque equation,

dµ̂i

dt
= γeµ̂i ×Bi. (4)

where γe is a gyromagnetic ratio. Based on the local
energies at each site, there is an effective magnetic field
that acts on the island at a site,

Bi = −
δH
δµi

= −
1

µ

δH
δµ̂i

=
D
µ

∑

j ̸=i

3(µ̂j · r̂ij)r̂ij − µ̂j

(rij/a)3

+ 2
K1

µ
(µ̂i · ûi)ûi − 2

K3

µ
(µ̂i · ẑ)ẑ. (5)

In general, the anisotropy fields are local while the dipo-
lar interations extend through the entire lattice.

A. Nearest neighbor dipolar model

In order to develop the equations for the undamped
dynamics, we consider first a site on the A-sublattice,
and its interactions with the nearest neighbors on the
B-sublattice and the D-sublattice, see Fig. 1. Although
the dipolar interactions are long-ranged, in order to make
initial progress and keep this calculation tractable, we in-
clude only the nearest neighbor dipolar couplings. Thus,
an arbitrary A-site couples to two B-sites whose unit
dipoles are labeled as B↑ and B↓, and two D-sites whose
unit dipoles are labeled as D↑ and D↓, where the arrows
(↑, ↓) indicate the y-direction of the space displacement
from the A-site. To be specific, the displacements from
the A-site to these neighbors are

rAB↑ = rxy ≡ ( a
2 ,

a
2 , 0), rAB↓ = −rxy, (6a)

rAD↑ = rx̄y ≡ (−a
2 ,

a
2 , 0), rAD↓ = −rx̄y. (6b)

These displacements are all of length a/
√
2. From (4),

the dynamic equation for the time derivative of the A-site
unit dipole µ̂i ≡ A can be expressed as

dA

dt
= A× F(A), (7)

where the effective field F(A) acting on that site includes
local anisotropy terms and only the nearest neighbor
dipolar terms,

F(A) = κ1Axx̂− κ3Azẑ (8)

+δ1
{

3
[

(B↑ +B↓) · r̂xy
]

r̂xy −B↑ −B↓

+3
[

(D↑ +D↓) · r̂x̄y
]

r̂x̄y −D↑ −D↓
}

.

The constants κ1,κ3, and δ1 have dimensions of fre-
quency and are defined as

κ1 ≡
2γeK1

µ
, κ3 ≡

2γeK3

µ
, δ1 ≡

γeD
µ

. (9)

Once the nearest neighbor displacements are substituted
into (8), the components of F(A) are found to be

Fx(A) = δ1
[

1
2

(

B↑
x + B↓

x +D↑
x +D↓

x

)

+ 3
2

(

B↑
y +B↓

y −D↑
y −D↓

y

) ]

+ κ1Ax, (10a)

Fy(A) = δ1
[

1
2

(

B↑
y + B↓

y +D↑
y +D↓

y

)

+ 3
2

(

B↑
x +B↓

x −D↑
x −D↓

x

) ]

, (10b)

Fz(A) = −δ1
(

B↑
z +B↓

z +D↑
z +D↓

z

)

− κ3Az. (10c)

By the symmetry of the lattice, a C-site follows a dy-
namic equation of the same form as in (7) and (8), with
the replacements A → C, B → D and D → B, and
relations just like (6) for the displacements:

rCD↑ = rxy ≡ ( a
2 ,

a
2 , 0), rCD↓ = −rxy, (11a)

rCB↑ = rx̄y ≡ (−a
2 ,

a
2 , 0), rCB↓ = −rx̄y. (11b)

With these substitutions, a formula for effective field
F(C) is obtained from (8), and also from (10), with sim-
ilar structure.
On the other hand, a B-site has two nearest neighbor

A-sites with dipoles A↑ and A↓, at displacements rxy
and −rxy, respectively, and two nearest neighbor C-sites
with dipoles C↑ and C↓, at displacements rx̄y and −rx̄y,
respectively. With the B-site having a long axis along ŷ,
the effective field for its dynamics is

F(B) = κ1Byŷ − κ3Bzẑ (12)

+δ1
{

3
[

(A↑ +A↓) · r̂xy
]

r̂xy −A↑ −A↓

+3
[

(C↑ +C↓) · r̂x̄y
]

r̂x̄y −C↑ −C↓
}

One can then obtain the Cartesian components, which
now have the easy-axis anisotropy term in the y-
component:

Fx(B) = δ1
[

1
2

(

A↑
x +A↓

x + C↑
x + C↓

x

)

+ 3
2

(

A↑
y +A↓

y − C↑
y − C↓

y

) ]

, (13a)

Fy(B) = δ1
[

1
2

(

A↑
y +A↓

y + C↑
y + C↓

y

)

+ 3
2

(

A↑
x +A↓

x − C↑
x − C↓

x

) ]

+ κ1By, (13b)

Fz(B) = −δ1
(

A↑
z +A↓

z + C↑
z + C↓

z

)

− κ3Bz. (13c)

Again by the symmetry of the lattice, the effective field
F(D) on a D-site is obtained from (12) or (13) with the
replacements B → D, A → C and C → A. In this
way, the general dynamics in the nearest neighbor dipolar
approximation is fully described. Obviously, there is a
great deal of symmetry in the equations.

3

we consider only small spatially periodic deviations away
from this ground state configuration, characterized by
some two-dimensional wave vector q = (qx, qy).

III. THE DYNAMICS AND SYMMETRIES

The dynamic equation of motion for the magnetic mo-
ment of some island, regardless of which sublattice it
occupies, results from the Hamiltonian according to a
torque equation,

dµ̂i

dt
= γeµ̂i ×Bi. (4)

where γe is a gyromagnetic ratio. Based on the local
energies at each site, there is an effective magnetic field
that acts on the island at a site,

Bi = −
δH
δµi

= −
1

µ

δH
δµ̂i

=
D
µ

∑

j ̸=i

3(µ̂j · r̂ij)r̂ij − µ̂j

(rij/a)3

+ 2
K1

µ
(µ̂i · ûi)ûi − 2

K3

µ
(µ̂i · ẑ)ẑ. (5)

In general, the anisotropy fields are local while the dipo-
lar interations extend through the entire lattice.

A. Nearest neighbor dipolar model

In order to develop the equations for the undamped
dynamics, we consider first a site on the A-sublattice,
and its interactions with the nearest neighbors on the
B-sublattice and the D-sublattice, see Fig. 1. Although
the dipolar interactions are long-ranged, in order to make
initial progress and keep this calculation tractable, we in-
clude only the nearest neighbor dipolar couplings. Thus,
an arbitrary A-site couples to two B-sites whose unit
dipoles are labeled as B↑ and B↓, and two D-sites whose
unit dipoles are labeled as D↑ and D↓, where the arrows
(↑, ↓) indicate the y-direction of the space displacement
from the A-site. To be specific, the displacements from
the A-site to these neighbors are

rAB↑ = rxy ≡ ( a
2 ,

a
2 , 0), rAB↓ = −rxy, (6a)

rAD↑ = rx̄y ≡ (−a
2 ,

a
2 , 0), rAD↓ = −rx̄y. (6b)

These displacements are all of length a/
√
2. From (4),

the dynamic equation for the time derivative of the A-site
unit dipole µ̂i ≡ A can be expressed as

dA

dt
= A× F(A), (7)

where the effective field F(A) acting on that site includes
local anisotropy terms and only the nearest neighbor
dipolar terms,

F(A) = κ1Axx̂− κ3Azẑ (8)

+δ1
{

3
[

(B↑ +B↓) · r̂xy
]

r̂xy −B↑ −B↓

+3
[

(D↑ +D↓) · r̂x̄y
]

r̂x̄y −D↑ −D↓
}

.

The constants κ1,κ3, and δ1 have dimensions of fre-
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By the symmetry of the lattice, a C-site follows a dy-
namic equation of the same form as in (7) and (8), with
the replacements A → C, B → D and D → B, and
relations just like (6) for the displacements:

rCD↑ = rxy ≡ ( a
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2 , 0), rCD↓ = −rxy, (11a)

rCB↑ = rx̄y ≡ (−a
2 ,

a
2 , 0), rCB↓ = −rx̄y. (11b)

With these substitutions, a formula for effective field
F(C) is obtained from (8), and also from (10), with sim-
ilar structure.
On the other hand, a B-site has two nearest neighbor

A-sites with dipoles A↑ and A↓, at displacements rxy
and −rxy, respectively, and two nearest neighbor C-sites
with dipoles C↑ and C↓, at displacements rx̄y and −rx̄y,
respectively. With the B-site having a long axis along ŷ,
the effective field for its dynamics is
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Again by the symmetry of the lattice, the effective field
F(D) on a D-site is obtained from (12) or (13) with the
replacements B → D, A → C and C → A. In this
way, the general dynamics in the nearest neighbor dipolar
approximation is fully described. Obviously, there is a
great deal of symmetry in the equations.
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some two-dimensional wave vector q = (qx, qy).
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occupies, results from the Hamiltonian according to a
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A. Nearest neighbor dipolar model

In order to develop the equations for the undamped
dynamics, we consider first a site on the A-sublattice,
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B-sublattice and the D-sublattice, see Fig. 1. Although
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way, the general dynamics in the nearest neighbor dipolar
approximation is fully described. Obviously, there is a
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2 , 0), rCD↓ = −rxy, (11a)
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Again by the symmetry of the lattice, the effective field
F(D) on a D-site is obtained from (12) or (13) with the
replacements B → D, A → C and C → A. In this
way, the general dynamics in the nearest neighbor dipolar
approximation is fully described. Obviously, there is a
great deal of symmetry in the equations.
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Again by the symmetry of the lattice, the effective field
F(D) on a D-site is obtained from (12) or (13) with the
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way, the general dynamics in the nearest neighbor dipolar
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great deal of symmetry in the equations.

Hamiltonian:

Also get eqns. for dB/dt, dC/dt, dD/dt . 

effective field: Eq. of motion:



47

Linearization:  Assume small deviations:

4

IV. LINEARIZATION AROUND A GROUND
STATE

Next we consider the small-amplitude magnetic fluc-
tuations around the ground state defined in (3). To ac-
complish that, the four sublattices are assumed to have
deviations from the ground state, denoted as a, b, c, d,
with amplitudes much smaller than unity. The net unit
dipole fields are then

A = A0 + a = (1 + ax, ay, az), (14a)

B = B0 + b = (bx, 1 + by, bz), (14b)

C = C0 + c = (−1 + cx, cy, cz), (14c)

D = D0 + d = (dx,−1 + dy, dz). (14d)

These can be used in the dynamic equations such as (7)
and its equivalent on the other sublattices. The equations
are linearized, such that any terms quadratic and higher
in these deviations are dropped. While the longitudi-
nal deviations ax, by, cx, dy are included here, one finds
after linearization that they all have zero time deriva-
tives, ȧx = ḃy = ċx = ḋy = 0, so they can be assumed
to be identically zero. Thus, the dynamic equations de-
termine the time derivatives of the eight remaining fluc-
tuation components, that correspond to small-amplitude
rotations of the islands’ dipoles away from the ground
state configuration. For example, on the A-sublattice
one obtains from using (10) in (7) the results,

ȧy = δ1
(

6az + b↑z + b↓z + d↑z + d↓z
)

+κ13az, (15a)

ȧz = δ1
[

−6ay + 3
2

(

b↑x + b↓x − d↑x − d↓x
)]

−κ1ay. (15b)

The combination of anisotropy constants appears,

κ13 ≡ κ1 + κ3. (16)

There are equations of similar structure for the other
dynamically fluctuation pairs of components, (bx, bz),
(cy, cz), and (dx, dz). On the C-sites, due to its ground
state direction being reversed compared to the A-sites,
there are sign reversals on the dipolar terms:

ċy = −δ1
(

6cz + d↑z + d↓z + b↑z + b↓z
)

+κ13cz , (17a)

ċz = −δ1
[

−6cy +
3
2

(

d↑x + d↓x − b↑x − b↓x
)]

−κ1cy. (17b)

The B-sites resemble A-sites but with opposite dipolar
sign and different easy axis:

ḃx = −δ1
(

6bz + a↑z + a↓z + c↑z + c↓z
)

−κ13bz, (18a)

ḃz = −δ1
[

−6bx +
3
2

(

a↑y + a↓y − c↑y − c↓y
)]

+κ1bx. (18b)

Finally, the D-sites have reversed ground state compared
to B-sites, but similar local anisotropy terms:

ḋx = δ1
(

6dz + c↑z + c↓z + a↑z + a↓z
)

−κ13dz , (19a)

ḋz = δ1
[

−6dx + 3
2

(

c↑y + c↓y − a↑y − a↓y
)]

+κ1dx. (19b)

A. Travelling wave dynamic modes

The linearized equations can be solved by assuming
travelling waves for the small-amplitude fields. For ex-
ample, on the B-sites, we take

bx(r, t) = bxe
i(q·r−ωt), (20)

where bx is a complex wave amplitude, q = (qx, qy) is a
wave vector and ω is the frequency for that wave vector.
The equations contain combinations of the neighbors of
a site, which have been labeled by up (↑) and down (↓)
arrows. As these are always along the displacements rxy
and rx̄y, one gets, for instance,

b↑x + b↓x = bxe
i(q·r−ωt)

(

eiq·rxy + e−iq·rxy
)

, (21a)

d↑x + d↓x = dxe
i(q·r−ωt)

(

eiq·rx̄y + e−iq·rx̄y
)

. (21b)

The last factors appear often, so they are denoted as

u ≡ eiq·rxy + e−iq·rxy = 2 cos[a2 (qx + qy)], (22a)

v ≡ eiq·rx̄y + e−iq·rx̄y = 2 cos[a2 (qx − qy)]. (22b)

This allows for a more concise representation of the lin-
earized dynamic equations, which now becomes an 8× 8
eigenvalue problem,

−iωay = δ1(6az + ubz + vdz) + κ13az, (23a)

−iωaz = δ1(−6ay + 3
2ubx − 3

2vdx)− κ1ay, (23b)

−iωbx = δ1(−6bz − uaz − vcz)− κ13bz, (23c)

−iωbz = δ1(6bx − 3
2uay +

3
2vcy) + κ1bx, (23d)

−iωcy = δ1(−6cz − udz − vbz) + κ13cz , (23e)

−iωcz = δ1(6cy − 3
2udx + 3

2vbx)− κ1cy, (23f)

−iωdx = δ1(6dz + ucz + vaz)− κ13dz , (23g)

−iωdz = δ1(−6dx + 3
2ucy −

3
2vay) + κ1dx. (23h)
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FIG. 1: Square spin ice in a ground state, with the identifica-
tion of the four sublattices, for the four different directions of
the islands’ dipoles. Small dots indicate the vertices, which
follow the two-in/two-out rule and carry no monopole charge
in this state. The spacing between neighboring vertices is
the lattice constant a, while the nearest neighbor island spac-
ing along the diagonal directions is a/

√
2. For one A-site its

nearest neighbors are labeled D↑, D↓, B↑ and B↓ and the
displacements rxy and rx̄y are indicated, see Eq. (6).

in Sec. IV and the details of the modes found are given.
Some excitation spectra for different model parameters
are described in Sec. V, and results are summarized and
their importance is highlighted in Sec. VI.

II. ARTIFICIAL SQUARE LATTICE SPIN-ICE
MODEL

The islands’ dipoles are assumed to have fixed magni-
tudes µ pointing along some time dependent Heisenberg-
like unit vectors µ̂i(t), where i labels a site. The di-
rections of the µ̂i(t) are affected by magnetic shape
anisotropy and by long-range dipolar interactions. Due
to the elongated form of the islands, each island has some
uniaxial anisotropy with energy constant K1 along its
longer axis ûi, which points along either x̂ or ŷ, depend-
ing on the sublattice. A sketch of the system is shown in
Fig. 1. In addition, the islands are very thin perpendic-
ular to the substrate, which makes that direction a hard
axis, producing easy-plane (xy) anisotropy with an en-
ergy constant K3 for all the islands. Typically we expect
that the easy-plane anisotropy constant K3 dominates,
followed by the easy-axis interactionsK1, and then finally
by the much weaker dipolar interactions. Also, thermal
energy scales can be expected to be rather small com-
pared to all of these couplings, which is why the system

has a complex energy landscape with many local minima
subject to frustration, typical of spin ice. The Hamilto-
nian for this model with Heisenberg-like spins µ̂i(t) is

H = −
µ0

4π

µ2

a3

∑

i>j

[3(µ̂i · r̂ij)(µ̂j · r̂ij)− µ̂i · µ̂j ]

(rij/a)
3

+
∑

i

{

K1[1− (µ̂i · ûi)
2] +K3(µ̂i · ẑ)2

}

(1)

The first term is the dipolar pair interaction, where µ0

is the magnetic permeability of space, a is the center-to-
center spacing of the islands along the x̂ or ŷ principal
directions, and r̂ij is a unit vector pointing from site
j to site i. Note, however, that the nearest neighbor
spacing of the islands, a/

√
2, lies along the directions at

±45◦ from the standard xy coordinate system, see Fig.
1. The dipolar energy scale is affected by island spacing,
such that we define a nearest neighbor dipolar energy
constant,

D ≡
µ0

4π

µ2

(

a/
√
2
)3 . (2)

The anisotropy terms have been written so that they give
zero energy when the island dipole points along its lo-
cal easy-axis ûi. Rotation of µ̂i(t) within the xy plane
only involves the K1 energy, whereas, tilting of µ̂i(t) out
of the xy-plane is characterized by the sum of the two
anisotropy constants, K1 +K3.

A. The spin-ice ground states

In a ground state, such as in Fig. 1, the shape
anisotropy energies are totally minimized. A ground
state also does its best to minimize the nearest neighbor
dipolar interactions, but those interactons are frustrated
and not globally minimized. The magnetic moments al-
ternate in direction from site to site, regardless of the
displacement direction on the lattice. We use a notation
where there are four sublattices, named A,B,C,D, as one
moves clockwise around a vertex where the ice-rule would
be applied. The A and C sites are aligned with the +x̂
and −x̂ directions, respectively, due to having in-plane
anisotropy axes ûi = x̂. The B and D sites are aligned
with the +ŷ and −ŷ directions, respectively, due to hav-
ing in-plane anisotropy axes ûi = ŷ. In a ground state,
the unit island dipoles µ̂i on the different sublattices can
be expressed as

A0 = ( 1, 0, 0), B0 = (0, 1, 0), (3a)

C0 = (−1, 0, 0), D0 = (0,−1, 0). (3b)

This pattern repeats through the whole system, which
then adheres to the ice rule throughout. The other
ground state would be obtained from this one by invert-
ing all the moments. Obviously, there is an enormous
energy barrier preventing that transition. Instead, here
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IV. LINEARIZATION AROUND A GROUND
STATE

Next we consider the small-amplitude magnetic fluc-
tuations around the ground state defined in (3). To ac-
complish that, the four sublattices are assumed to have
deviations from the ground state, denoted as a, b, c, d,
with amplitudes much smaller than unity. The net unit
dipole fields are then

A = A0 + a = (1 + ax, ay, az), (14a)

B = B0 + b = (bx, 1 + by, bz), (14b)

C = C0 + c = (−1 + cx, cy, cz), (14c)

D = D0 + d = (dx,−1 + dy, dz). (14d)

These can be used in the dynamic equations such as (7)
and its equivalent on the other sublattices. The equations
are linearized, such that any terms quadratic and higher
in these deviations are dropped. While the longitudi-
nal deviations ax, by, cx, dy are included here, one finds
after linearization that they all have zero time deriva-
tives, ȧx = ḃy = ċx = ḋy = 0, so they can be assumed
to be identically zero. Thus, the dynamic equations de-
termine the time derivatives of the eight remaining fluc-
tuation components, that correspond to small-amplitude
rotations of the islands’ dipoles away from the ground
state configuration. For example, on the A-sublattice
one obtains from using (10) in (7) the results,

ȧy = δ1
(

6az + b↑z + b↓z + d↑z + d↓z
)

+κ13az, (15a)

ȧz = δ1
[

−6ay + 3
2

(

b↑x + b↓x − d↑x − d↓x
)]

−κ1ay. (15b)

The combination of anisotropy constants appears,

κ13 ≡ κ1 + κ3. (16)

There are equations of similar structure for the other
dynamically fluctuation pairs of components, (bx, bz),
(cy, cz), and (dx, dz). On the C-sites, due to its ground
state direction being reversed compared to the A-sites,
there are sign reversals on the dipolar terms:

ċy = −δ1
(

6cz + d↑z + d↓z + b↑z + b↓z
)

+κ13cz , (17a)

ċz = −δ1
[

−6cy +
3
2

(

d↑x + d↓x − b↑x − b↓x
)]

−κ1cy. (17b)

The B-sites resemble A-sites but with opposite dipolar
sign and different easy axis:

ḃx = −δ1
(

6bz + a↑z + a↓z + c↑z + c↓z
)

−κ13bz, (18a)

ḃz = −δ1
[

−6bx +
3
2

(

a↑y + a↓y − c↑y − c↓y
)]

+κ1bx. (18b)

Finally, the D-sites have reversed ground state compared
to B-sites, but similar local anisotropy terms:

ḋx = δ1
(

6dz + c↑z + c↓z + a↑z + a↓z
)

−κ13dz , (19a)

ḋz = δ1
[

−6dx + 3
2

(

c↑y + c↓y − a↑y − a↓y
)]

+κ1dx. (19b)

A. Travelling wave dynamic modes

The linearized equations can be solved by assuming
travelling waves for the small-amplitude fields. For ex-
ample, on the B-sites, we take

bx(r, t) = bxe
i(q·r−ωt), (20)

where bx is a complex wave amplitude, q = (qx, qy) is a
wave vector and ω is the frequency for that wave vector.
The equations contain combinations of the neighbors of
a site, which have been labeled by up (↑) and down (↓)
arrows. As these are always along the displacements rxy
and rx̄y, one gets, for instance,

b↑x + b↓x = bxe
i(q·r−ωt)

(

eiq·rxy + e−iq·rxy
)

, (21a)

d↑x + d↓x = dxe
i(q·r−ωt)

(

eiq·rx̄y + e−iq·rx̄y
)

. (21b)

The last factors appear often, so they are denoted as

u ≡ eiq·rxy + e−iq·rxy = 2 cos[a2 (qx + qy)], (22a)

v ≡ eiq·rx̄y + e−iq·rx̄y = 2 cos[a2 (qx − qy)]. (22b)

This allows for a more concise representation of the lin-
earized dynamic equations, which now becomes an 8× 8
eigenvalue problem,

−iωay = δ1(6az + ubz + vdz) + κ13az, (23a)

−iωaz = δ1(−6ay + 3
2ubx − 3

2vdx)− κ1ay, (23b)

−iωbx = δ1(−6bz − uaz − vcz)− κ13bz, (23c)

−iωbz = δ1(6bx − 3
2uay +

3
2vcy) + κ1bx, (23d)

−iωcy = δ1(−6cz − udz − vbz) + κ13cz , (23e)

−iωcz = δ1(6cy − 3
2udx + 3

2vbx)− κ1cy, (23f)

−iωdx = δ1(6dz + ucz + vaz)− κ13dz , (23g)

−iωdz = δ1(−6dx + 3
2ucy −

3
2vay) + κ1dx. (23h)

Before eliciting a solution for the general eigenmodes for
this system, it is helpful to develop some physical analysis
of the situation that points in the direction of the lowest
frequency fluctuations.

B. Lowest energy fluctuations

We consider small angular fluctuations of the dipoles
within the xy-plane, away from the ground state configu-
ration. A long wavelength mode is assumed to be present,

and traveling waves:
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bx(r, t) = bxe
i(q·r−ωt), (20)

where bx is a complex wave amplitude, q = (qx, qy) is a
wave vector and ω is the frequency for that wave vector.
The equations contain combinations of the neighbors of
a site, which have been labeled by up (↑) and down (↓)
arrows. As these are always along the displacements rxy
and rx̄y, one gets, for instance,

b↑x + b↓x = bxe
i(q·r−ωt)

(

eiq·rxy + e−iq·rxy
)

, (21a)

d↑x + d↓x = dxe
i(q·r−ωt)

(

eiq·rx̄y + e−iq·rx̄y
)

. (21b)

The last factors appear often, so they are denoted as

u ≡ eiq·rxy + e−iq·rxy = 2 cos[a2 (qx + qy)], (22a)

v ≡ eiq·rx̄y + e−iq·rx̄y = 2 cos[a2 (qx − qy)]. (22b)

This allows for a more concise representation of the lin-
earized dynamic equations, which now becomes an 8× 8
eigenvalue problem,

−iωay = δ1(6az + ubz + vdz) + κ13az, (23a)

−iωaz = δ1(−6ay + 3
2ubx − 3

2vdx)− κ1ay, (23b)

−iωbx = δ1(−6bz − uaz − vcz)− κ13bz, (23c)

−iωbz = δ1(6bx − 3
2uay +

3
2vcy) + κ1bx, (23d)

−iωcy = δ1(−6cz − udz − vbz) + κ13cz , (23e)

−iωcz = δ1(6cy − 3
2udx + 3

2vbx)− κ1cy, (23f)

−iωdx = δ1(6dz + ucz + vaz)− κ13dz , (23g)

−iωdz = δ1(−6dx + 3
2ucy −

3
2vay) + κ1dx. (23h)

Before eliciting a solution for the general eigenmodes for
this system, it is helpful to develop some physical analysis
of the situation that points in the direction of the lowest
frequency fluctuations.

B. Lowest energy fluctuations

We consider small angular fluctuations of the dipoles
within the xy-plane, away from the ground state configu-
ration. A long wavelength mode is assumed to be present,

u =

v =

wave vector

frequency
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There are 4 kinds of modes.

2 are antisymmetric across the vertex:

Mode A- has the lowest frequency 
at long wavelength.

Mode A+ has the highest frequency 
at long wavelength.
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A=(φ,θ)

B=(−φ,−θ)

C=(φ,θ)

D=(−φ,−θ)
Mode A-

FIG. 3: Phase relationships of the dipolar angles expected
in the antisymmetric mode denoted as A−, with in-plane ro-
tations having φA = −φB = φC = −φD, and out-of-plane
components obeying az = −bz = cz = −dz. A and C rotate
in the same in-plane direction and tilt positively out of plane
together; B and D rotate together oppositely to A and C, and
tilt out of plane together oppositely to A and C. These mo-
tions minimize the nearest neighbor dipolar energy changes,
see Eq. (34). This mode becomes acoustic-like in the limit of
zero wave vector and zero anisotropy.

antisymmetric constraints from (32) and (43), summa-
rized together here:

ay = −cy, az = cz, (44a)

bx = −dx, bz = dz. (44b)

Using this in the original 8 × 8 system (23) for only the
A and B sublattices gives

−iωay = +(κ13 + 6δ1)az + δ1(u+ v)bz , (45a)

−iωaz = −(κ1 + 6δ1)ay +
3
2δ1(u+ v)bx, (45b)

−iωbx = −(κ13 + 6δ1)bz − δ1(u+ v)az , (45c)

−iωbz = +(κ1 + 6δ1)bx − 3
2δ1(u + v)ay. (45d)

Subsequent equations will be simpler if new frequency
constants are defined:

α1 ≡ κ1 + 6δ1, α2 ≡ κ13 + 6δ1, (46a)

γ+ ≡ δ1(u+ v) = 4δ1 cos(
1
2qxa) cos(

1
2qya). (46b)

Applying another time derivative d/dt = −iω to this
leads to two simplified systems where in-plane compo-
nents are separated from out-of-plane components. For
the in-plane components, the dynamics obeys

ω2ay = +(α1α2 +
3
2γ

2
+)ay − γ+(α1 +

3
2α2)bx,(47a)

ω2bx = −γ+(α1 + 3
2α2)ay + (α1α2 + 3

2γ
2
+)bx.(47b)

For the out-of-plane components, the equations are
nearly the same, except for a sign change on the off-

diagonal terms,

ω2az = (α1α2 +
3
2γ

2
+)az + γ+(α1 +

3
2α2)bz, (48a)

ω2bz = γ+(α1 +
3
2α2)az + (α1α2 +

3
2γ

2
+)bz. (48b)

It is obvious that both 2×2 systems have the same eigen-
frequencies, given by

ω2
A± = (α1α2 + 3

2γ
2
+)± γ+(α1 + 3

2α2). (49)

The two frequencies denoted ωA± correspond to two pos-
sibilities of a square root in the eigenfrequency solution
for these modes. A little consideration shows that ωA− is
the lower of the two frequencies, and it goes to zero in the
limit of small wave vector when no uniaxial anisotropy
is present (κ1 = κ3 = 0). The frequency ωA+ tends to
a large nonzero value at zero wave vector. Note that
Eq. (49) results in solutions for four of the eight possible
modes of the original 8× 8 system in Eq. (23). At a cho-
sen wave vector q, the possible frequencies are ±ωA− and
±ωA+ , where the two signs relate to oppositely directed
travelling waves that have the same absolute eigenfre-
quencies.
The modes’ frequencies can also be written as the prod-

uct of two factors:

ω2
A− =

(

α1 − 3
2γ+

)

(α2 − γ+) , (50a)

ω2
A+ =

(

α1 + 3
2γ+

)

(α2 + γ+) . (50b)

It is the factor
(

α1 − 3
2γ+

)

that tends to zero in the si-
multaneous limit of zero wave vector and zero anisotropy,
making it obvious that ωA− is an acoustic-like mode for
this limit.

1. Mode A− eigenvector and features

For the mode at frequency ωA− we can also look at
the structure of its eigenvector, in terms of the phase
relationships between the different dipolar components.
For its in-plane components, when the frequency ωA− is
used in Eq. (47), one immediately concludes that

ay = bx, cy = dx. (51)

On the other hand, when the frequency ωA− is used in
Eq. (48), it is easy to see opposite phases for the out-of-
plane components of neighboring dipoles,

az = −bz, cz = −dz. (52)

Then it is clear that this mode corresponds to the kinds
of angular deviations represented in Fig. 3. All of the
in-plane angular deviations are of the same magnitudes,
but with opposite phases between neighboring dipoles.
All of the out-of-plane deviations are also of equal mag-
nitudes, but again with opposite phases between neigh-
boring dipoles. In general for some eigenvector ψ, the
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A=(φ,θ)

B=(φ,θ)

C=(φ,θ)

D=(φ,θ)

Mode A+

FIG. 4: Phase relationships of the dipolar angles expected
in the antisymmetric mode denoted A+, with frequency ωA+

given in Eq. (50b). The in-plane rotations are equal and in-
phase: φA = φB = φC = φD, and the out-of-plane compo-
nents are also equal and in-phase: az = bz = cz = dz. These
motions tend to cause large changes in the nearest neighbor
dipolar energies, see Eq. (34).

deviations have pairs of in-plane and out-of-plane Carte-
sian components on each sublattice, which we summarize
in the following order:

ψ = (ay, az, bx, bz, cy, cz, dx, dz). (53)

For this lowest antisymmetric mode (acoustic-like in the
appropriate limit), the eigenvector of deviations in this
notation is

ψA− = (ay, az, ay,−az, −ay, az, −ay,−az). (54)

Therefore, the mode structure is determined by just two
components (or two angles).
The only other detail to consider, is how does az com-

pare in magnitude and phase to ay? That can be ob-
tained by using bz = −az in Eq. (45a), which results
in

az =
−iωA−

(α2 − γ+)
ay = −i

(

α1 − 3
2γ+

α2 − γ+

)

1
2

ay. (55)

One can see that in the acoustic-like limit of zero wave
vector and zero anisotropy, az tends towards zero, and
the motion is predominantly in-plane.

2. Mode A+ eigenvector and features

For the mode at the higher frequency, ωA+ , we expect
different relative motions of the sublattices. For in-plane
components, when frequency ωA+ is used in Eq. (47), we
arrive at opposite phases for neighboring dipoles,

ay = −bx, cy = −dx. (56)

When combined with the assumptions in Eq. (44), this
shows that all of the in-plane angles move together in-
phase (φA = φB = φC = φD). When the frequency ωA+

is used in Eq. (48), one also finds in-phase motions for
the out-of-plane components,

az = bz, cz = dz . (57)

This implies then that all of the out-of-plane components
move together in-phase, as well. In the notation of Eq.
(53), the structure of Cartesian components for this mode
is

ψA+ = (ay, az, −ay, az, −ay, az, ay, az). (58)

A sketch of this deviation structure is given in Fig. 4.
It is physically apparent that these angular deviations of
the dipoles tend to raise their nearest neighbor dipolar
energy; this is not an acoustic-like mode in the limit of
zero anisotropy and wave vector. As far as the relative
magnitudes of in-plane vs. out-of-plane components, we
can use bz = az in Eq. (45a) to arrive at the relation,

az =
−iωA+

(α2 + γ+)
ay = −i

(

α1 +
3
2γ+

α2 + γ+

)

1
2

ay. (59)

In the limit of zero wave vector and zero anisotropy, one
finds that the az and ay components have similar mag-
nitudes.

E. Finding the symmetric modes

Contrary to the assumptions made in Eq. (44) for the
antisymmetric modes, it is reasonable to assume that
there are modes whose Cartesian components are sym-
metric viewed across the center of a vertex,

ay = cy, az = −cz, (60a)

bx = dx, bz = −dz. (60b)

These would be the same phase relationships that take
place in the optic modes in a 1D antiferromagnet. Here
these are taken as an assumption, however, it is straight-
forward to show that they do indeed lead to solutions of
the original 8× 8 system in Eq. (23).
Using (60) to eliminate the C and D sublattices, there

results from (23) the reduced 4× 4 system,

−iωay = +(κ13 + 6δ1)az + δ1(u− v)bz , (61a)

−iωaz = −(κ1 + 6δ1)ay + 3
2δ1(u − v)bx, (61b)

−iωbx = −(κ13 + 6δ1)bz − δ1(u− v)az , (61c)

−iωbz = +(κ1 + 6δ1)bx − 3
2δ1(u− v)ay . (61d)

This suggest the definition of another wave vector depen-
dent factor,

γ− ≡ δ1(u− v) = −4δ1 sin(
1
2qxa) sin(

1
2qya). (62)

2 are antisymmetric across the vertex:

Mode A- has the lowest frequency 
at long wavelength.

Mode A+ has the highest frequency 
at long wavelength.
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2 are symmetric across the vertex:

There are 4 kinds of modes.

Modes S- and S+ are nearly degenerate at long wavelength.
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This factor becomes identically zero if qx = 0 or qy =
0. Thus, the only symmetric modes that will have some
wave vector dependent features will not have wave vector
aligned with one of the lattice axies.
Taking the next time derivative of Eqs. (61) leads to

separated systems for the in-plane and out-of-plane com-
ponents. For in-plane, there results:

ω2ay = +(α1α2 +
3
2γ

2
−)ay − γ−(α1 +

3
2α2)bx,(63a)

ω2bx = −γ−(α1 + 3
2α2)ay + (α1α2 + 3

2γ
2
−)bx.(63b)

For the out-of-plane components, the equations have a
sign change on the off-diagonal terms,

ω2az = (α1α2 +
3
2γ

2
−)az + γ−(α1 +

3
2α2)bz, (64a)

ω2bz = γ−(α1 + 3
2α2)az + (α1α2 + 3

2γ
2
−)bz. (64b)

These are seen to be the same form as for the antisym-
metric modes, but with the replacement γ+ → γ−. Both
2×2 systems have the same eigenvalues, given in factored
form,

ω2
S− =

(

α1 − 3
2γ−

)

(α2 − γ−) , (65a)

ω2
S+ =

(

α1 +
3
2γ−

)

(α2 + γ−) . (65b)

This represents the four remaining modes of the original
8 × 8 system. The factor γ− is nonzero only if both qx
and qy are nonzero, and in the small wave vector limit, we
have γ− ≈ −qxqya2. These eigenfrequencies do not go to
zero in the limit of zero wave length and zero anisotropy.
These modes have more of an optic-like character, with
a finite frequency at zero wave vector even in the limit of
zero anisotropy.

1. Mode S− eigenvector and features

For the mode with frequency ωS− , substitution of the
frequency into Eqs. (63) gives the relations,

ay = bx, cy = dx. (66)

Using ωS− in Eqs. (64) leads to

az = −bz, cz = −dz. (67)

These are the same nearest neighbor phase relations as
for the mode A−. Taken together with the symmetric as-
sumption (60), the eigenvector in Cartesian components
is of the form

ψS− = (ay, az, ay,−az, ay,−az, ay, az). (68)

By using az = −bz in Eq. (61a), one arrives at the phase
relation between in-plane and out-of-plane components,

az =
−iωS−

(α2 − γ−)
ay = −i

(

α1 − 3
2γ−

α2 − γ−

)

1
2

ay. (69)

A=(φ,θ)

B=(−φ,−θ)

C=(−φ,−θ)

D=(φ,θ)

Mode S-

FIG. 5: Phase relationships of the dipolar angles expected in
the symmetric mode denoted S−, with frequency ωS− given
in Eq. (65a). The in-plane angular deviations are towards
the same side for dipole pairs across the vertex center. The
out-of-plane deviations are in opposite directions across the
vertex center. The nearest neighbor relative deviations are
partly energy reducing and partly energy enhancing.

A diagram of the deviations in a vertex is shown in Fig.
5. Out of the four dipole-pair interactions, two of them
reduce their energy while two of them increase their en-
ergy. The AB and CD couplings move towards lower
energy while the BC and DA couplings have moved to-
wards higher energy.

2. Mode S+ eigenvector and features

For the mode with frequency ωS+ , substitution of the
frequency into Eqs. (63) gives the relations,

ay = −bx, cy = −dx. (70)

Using ωS+ in Eqs. (64) leads to

az = bz, cz = dz . (71)

These are the same nearest neighbor phase relations as
for the mode A+. Together with the symmetric assump-
tion (60), the eigenvector in Cartesian components is of
the form

ψS+ = (ay , az, −ay, az, ay,−az, −ay,−az). (72)

By using az = bz in Eq. (61a), one arrives at the phase
relation between in-plane and out-of-plane components,

az =
−iωS+

(α2 + γ−)
ay = −i

(

α1 +
3
2γ−

α2 + γ−

)

1
2

ay. (73)

A diagram of the deviations in a vertex is shown in Fig. 6.
In a certain sense it is very similar to the mode S−. Out of
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A=(φ,θ)

B=(φ,θ)

C=(−φ,−θ)

D=(−φ,−θ)

Mode S+

FIG. 6: Phase relationships of the dipolar angles expected in
the symmetric mode denoted S+, with frequency ωS+ given
in Eq. (65b). The in-plane angular deviations are towards
the same side for dipole pairs across the vertex center. The
out-of-plane deviations are in opposite directions across the
vertex center. The nearest neighbor relative deviations are
partly energy reducing and partly energy enhancing.

the four dipole-pair interactions, again two reduce their
energy while two increase their energy. The AB and CD
couplings move towards higher energy while the BC and
DA couplings have moved towards lower energy, opposite
to what takes place in mode S−.
Indeed, there isn’t a significant difference between

modes S+ and S−, due to the behavior of the factor γ−,
which reverses sign with a change in sign of either qx or
qy, see Eq. (62). One can see ωS− → ωS+ under a change
such as qx → −qx or qy → −qy. Thus, the two modes
map into each other with an appropriate change of wave
vector.

V. POSSIBLE EXCITATION SPECTRA

Here we calculate some spectra for the excitations in
a couple of situations. The anisotropy constants κ1, κ3,
and κ13 as well as the dipolar coupling δ1 depend on the
specific geometry of the islands. In a typical artificial spin
ice, it is likely that the anisotropy constants dominate
over the dipolar coupling. Even so, it is instructive to
consider some different choices of these parameters to
observe how they affect the mode frequencies.
For convenience here, frequencies will be measured in

units of δ1. We assume elliptical islands like those studied
by Wang et al. [6] with length Lx = 220 nm, width
Ly = 80 nm and thickness Lz = 25 nm. If the material is
permalloy with saturation magnetization Ms = 860 kA
m−1, the dipole moment per island is µ = 2.97×10−16 A
m2, see Wysin et al. [13]. We take a lattice constant a =
320 nm, then the raw dipolar coupling constant from Eq.
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qxa
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δ 1
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0 π/2 π 3π/2 2π
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1
 = κ

3
 = 0,    q=(qx,qx)
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FIG. 7: The excitation spectrum in the limit of zero
anisotropy (κ1 = κ3 = 0) for wave vectors (a) along the x-
direction of the island lattice and (b) along the diagonal di-
rection of the island lattice. In (a) modes S− and S+ acquire
the same constant frequency, and mode A− is acoustic-like
for qx → 0, while its sister-mode A+ acquires zero frequency
for qxa → 2π. In (b) modes S− and S+ split with S+ going
towards zero frequency at qa = (π,π); mode A− is acoustic-
like for q → 0, and it also comes back to zero frequency for
qa → (2π, 2π)

(2) is D ≈ 7.6×10−19 J. Using the electron gyromagnetic
ratio γe = 1.76 × 1011 T−1 s−1, Eq. (9) gives the value
of the dipolar angular frequency constant, δ1 ≈ 4.5× 108

s−1, corresponding to a frequency unit of δ1/2π ≈ 72
MHz.

A. Zero anisotropy limit

Initially, consider the extreme limit where the
anisotropy constants are zero: κ1 = κ3 = 0, and only
nearest neighbor dipolar coupling is present. The re-
sulting spectrum for the modes (with zero anisotropy)
is shown in Fig. 7, with frequencies given in units of
δ1. For wave vectors along the x-direction, q = (qx, 0),
Fig. 7a shows that the symmetric modes are degenerate
and of fixed frequency. The antisymmetric mode A− is

Modes S- and S+ are nearly degenerate at long wavelength.



52

11

0 π/2 π 3π/2 2π
qxa

0

4

8

12

ω
 / 
δ 1

A_

A+

S_

κ
1
 = 0.2δ

1
, κ

3
 = δ

1
,   q=(qx,qx)

S+

FIG. 8: The excitation spectrum for weak anisotropy, with
κ1 = 0.2δ1 and κ3 = δ1 for wave vectors along the diagonal
direction of the island lattice. Note the gaps that open up for
mode A− at q=0 and for mode S+ at q=(π,π), both of size
ωgap =

√

κ1(κ13 + 2δ1) = 0.8δ1 at this anisotropy strength.

the acoustic-like mode, going to zero frequency at zero
wave vector. The other antisymmetric mode, A+, ac-
quires a zero frequency as qa → (2π, 0). In Fig. 7b, for
wave vectors along a diagonal direction, q = (qx, qx),
the mode frequencies exhibit a richer structure. In par-
ticular, mode S+ goes to zero frequency for qa = (π,π),
while mode S− reaches a maximum frequency at the same
wave vector. But we ahve said earlier that S− and S+

map into each other, due to the symmetry in the func-
tion γ−. Note that if the frequencies were plotted along
a different diagonal direction, such as for wave vectors
q = (qx,−qx), then S− would go to zero frequency at
qa = (π,−π) while S+ would reach a maximum at that
wave vector. Thus, their behaviors need to be viewed
and compared over the whole q-space.

B. Weak island anisotropy

Next, we suppose that the islands have a weak shape
anisotropies corresponding to the energy constants K1 =
0.1D and K3 = 0.5D, but still with the same values of
dipolar moment µ = 2.97× 10−16 A m2 and dipolar fre-
quency δ1 = 5.5 × 108 s−1. Then the scaled anisotropy
factors from Eq. (9) are κ1 = 0.2δ1 and κ3 = δ1, which
also gives κ13 = 1.2δ1. In the limit of small wave vector,
a gap opens in the mode A− spectrum, given by

ωgap = ωA−(0) =
√

κ1(κ13 + 2δ1). (74)

For the chosen parameters, the gap is ωgap = 0.8δ1. The
same gap opens up for mode S+ at q=(π,π) and for
mode A− at q=(2π, 2π). For wave vectors in a diagonal
direction, q = (qx, qx), the mode spectrum that results
is shown in Fig. 8.
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FIG. 9: The excitation spectrum for realistic anisotropy in a
spin ice, with κ1 = 76δ1 and κ3 = 168δ1, for wave vectors
along the diagonal direction of the island lattice. The spec-
trum is elevated by a gap of size ωgap =

√

κ1(κ13 + 2δ1) =
136.7δ1 at this anisotropy strength.

C. Realistic anisotropy in a spin ice

Finally it is important to show a prediction from this
model for realistic parameters of typical islands in arti-
ficial square spin ice, such as that studied by Wang et
al. [6]. Assuming elliptical islands with length Lx = 220
nm, width Ly = 80 nm and thickness Lz = 25 nm, en-
ergy minimization simulations indicate that their dipoles
behave in a way described with easy-axis anisotropy pa-
rameter K1 ≈ 2.9 × 10−17 J and hard-axis anisotropy
parameter K3 = 6.4 × 10−17 J. For lattice parameter
a = 320 nm, we found above the dipolar energy constant
D ≈ 7.6 × 10−19 J. Then Eq. (9) implies the ansiotropy
frequency constants are

κ1 ≈ 76δ1, κ3 ≈ 84δ1, κ13 ≈ 244δ1. (75)

As expected, the anisotropy is very strong compared to
the dipolar interactions. This leads to a substantial gap
in the spectrum,

ωgap =
√

κ1(κ13 + 2δ1) ≈ 136.7δ1. (76)

The resulting spectrum for wave vectors in a diagonal
direction is shown in Fig. 9. One can see that the qx-
dependence of the mode frequencies resembles that for
weak anisotropy, except for the fact that the whole spec-
trum is elevated an amount equal to the gap frequency.
Thus, the variations in the mode frequencies with qx are
a rather small fraction of the total frequency, which may
make their identification in experiments difficult.

VI. DISCUSSION AND CONCLUSIONS

This work describes the calculation of approximate
spin wave modes in square lattice artificial spin ice. Both

An excitation spectrum for weak island anisotropy

A gap due to island anisotropy

A-(0,0),  S+(𝜋/a,𝜋/a) have 
lowest energy,  are most relevant
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But should plot spectrum in 1st Brillouin zone.

The islands’ unit cell is tilted at 45 degrees
and the islands’ lattice constant is a’=a/sqrt(2).

a square lattice Brillouin zone.
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square lattice Brillouin zone.

Plotting spectrum in 1st Brillouin zone.

(0,0) (𝝅,0) (𝝅,𝝅) (0,0)
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Future work & improvements

x

y

x'

y' C C

C C

C C

C C

A A

A A

A
A

A A

B B

B B

B B

B B

D D

D D

D D

D D

rx'ry'

1) Dynamics in remnant state? 2) Beyond nearest neighbors.
Include long-range dipole interactions.



Summary

Shape anisotropy of magnetic islands has a strong effect on the states. 

Anisotropy coefficients for islands used in artificial spin ice are found 
from the effective potential of the magnetic moment in an island. 

A model is developed for spin-ice with continuous dynamics, based on 
island dipoles which can point in any direction, while constrained by 
easy-plane and uniaxial anisotropies.

The linearized mode spectrum around a ground state in square ice can 
be partitioned into symmetric and antisymmetric states; the lowest 
frequency mode is antisymmetric at long wavelength.
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