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Figure 1. A 16 x 16 model system with d = k; = k3 = 0.1, in a metastable state lattice of corner Sharing
at temperature kg7 /¢ = 0.025, from a hysteresis scan (this is a state at . = 0).
Most of the system is locally close to the Z = +1 ground state. The upper right- tetrahed ra Of a PerCh Iore
hand corner %s locally near Fhe Z = —.1 groound state,.and Fhere.is a bént domain structure.

wall connecting the two regions. For interior charge sites (junction points of four

islands), there happens to be no discrete monopole charge present: all g, = 0 and

the discrete p,, = 0.
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In Review article: Advances in artificial spin ice,
Sandra Skjeervg et al. Nat. Rev. Phys. 11/08/19.

Artificial spin ices are metamaterials made up of coupled
nanomagnets arranged on different lattices that exhibit a number
of interesting phenomena, such as emergent magnetic monopoles,
collective dynamics and phase transitions.

The ability to create thermally active artificial spin ices with
fluctuating moments at room temperature makes it possible to
explore the rich phase diagrams with phases that are determined
by the geometry, temperature and disorder.

Signatures of the magnetic configurations are given by the specific
spin-wave resonances in artificial spin ice, which offer a platform for
programmable spin-wave devices, in particular magnonic crystals.

The established artificial spin ices are arranged on square and kagome lattices.
New geometries include both periodic and aperiodic, different magnet shapes
and anisotropies, and 3D structures.

Future work involves developments in fabrication and characterization
methods, the study of artificial spin systems with new geometries and
combinations of materials, and the development of applications including
computation, data storage, encryption and reconfigurable microwave circuits.



Example of a rare-earth
pyrochlore compound.

Pr spins at
corners of tetrahedrons.

The interesting properties of Pr2lroO7 are rooted in its crystal structure,
called a pyrochlore lattice: four praseodymium (Pr) ions, each of which
carries a magnetic ‘spin’, form a tetrahedral cage around an oxygen (O)
lon. At low temperatures, the spins of materials with this structure often
‘freeze’ into what is called a ‘spin ice’ (Fig. 1) because of its similarity to
the way hydrogen ions form around oxygen in water ice. (phys.org/news/)



https://phys.org/tags/crystal+structure/
https://phys.org/tags/water+ice/
http://phys.org/news/

Realization of Rectangular Artificial
Spin Ice and Direct Observation of
High Energy Topology

I. R. B. Ribeiro™5, F. S. Nascimento?, S. O. Ferreiral, W. A. Moura-Melo?, C. A. R. Costa?,
J. Borme(®*, P. P. Freitas*, G. M. Wysin®, C. I. L. de Araujo(®* & A. R. Pereira’
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Atomic force microscope topography,
300 x 100 x 20 nm islands.

Artificial spin-ice. Arrays of
elongated magnetic islands,
dominated by anisotropy &
dipole-dipole interactions.
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Magnetic force microscope image showing
N (bright) and S (dark) poles.



Magnetic Nano-Islands
(elements of artificial spin-ice) @ @ @

Approx. 50 nm - 5 ym wide but only 10 nm thick.

Individual & in arrays, high-permeability soft magnetic materials.
Grown with techniques of epitaxy & lithography on a non-magnetic substrate.
Form arrays of particles that can interact with each other or applied fields.

Primary physics effects - O
magnetostatics controlled by island geometry.
discrete energy states for data storage. | —_ | —
spintronics controlled by current injection.
magnetic oscillators controlled by applied fields. O

frustration in ordered arrays of islands (artificial spin-ice).

Several principle states of a nano-island:
(1) quasi-single domain; (2) vortex; (3) multi-domains & domain walls.

~ Increasing size ~



Topics for study in the islands:

|) Vortices. The static and dynamic properties of single vortices.
They behave very much as particles with charges.

2) Magnetostatic anisotropy of the islands themselves.

Also known as shape anisotropy because it depends mostly
on the surfaces.

isotropic elliptic Ising-like

3) Spin-ices, frustration. Especially for elongated islands with Ising-
like states, interactions within their arrays, that lead to frustrated
statics and dynamics.



Quasi-single-domain Magnetization M determines an

state. effective surface charge density:

N pole, =
o)\, >0. Oy =M -7,

The poles produce
large stray-field energy.

4+ But ferromagnetic
exchange energy is
small.




Very little magnetic surface charge density.

Vortex state Stable only above a minimum radius

—

/M %\ om =M -1,
{/{/fﬁf Q\i\k e
e — in the core.
% /<: K [ﬁ ﬁ ﬁ The stray-field

energy is small.
But the ferromagnetic
/ exchange energy is

/ large.




Elongated islands -
Highly anisotropic.

Ising-like interaction
and behavior.

|0

=)

Quasi-single domain.
Poles greatly prefer the ends.

FM exchange dominates.

A vortex state is less likely.



Micromagnetics. Y Each cell contains
A technique for a magnetic dipole:
.studylng a L = N /M.
continuous S)’Stem.

; - B

P Model for cylindrical islands, radi RA, RB’ height L.

P Divide the sample into cells of size a x a x L.

P Assume that the magnetization is saturated (M,) inside
each cell: Im|=1. Only the directions vary between cells.

P The cells interact as dipoles, with exchange energy
between neighbors & with the demagnetization field.



Micromagnetics
Hamiltonian:  |H=Hex+Hdemag+Hps m. m

exchange: 7/ = A / dV Vin - Vin,

. 1 - >
magnetostatic Haq = Hdemag — ——,LL()/ dV Hy - M

(demagnetization): 2

—

applied field: Hp = —,uo/ dV F]ext - M

Statics: minimize the energy = stable configurations.
Dynamics: equation of motion = periodic configurations.

Difficulties:
(i) Calculating the demagnetization field H;

(i) Enforcing a desired initial position, X, of a vortex = E(X).
12



Scale energies by the 2A0ce

Jeell = = 2AL.
exchange between cells: ! a?
(¥4 o 9 214
magnetic exchange length Aoy = S
/LOMS
demag field:
Hy = MgH,y

Hamiltonian on the grid of cells:

2
— cell{zmz m] <)\ex> Z (ﬁext_i_%ﬁM) mz}

(4,9)

2
Need (}\a ) less than 1 for reliable solutions.

(cells smaller than exchange length)
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Model for magnetic anisotropy of elliptical islands.

Total magnetic dipole moment = U. Single domain is

assumed and ﬁhas a fixed magnitude.

Include also applied

E=Ey+ K[l - (i 3%)2] + K3(11 - 2)2 field energy: -P*Hex

= A

u Z

hard axis

Lx* Lyx Lz island

X

>

easy axis

u direction = (Gm,cb

)

_— SN

angle from Xy-plane angle from X-axis

| 4



Island reversal & anisotropy

Hex=0.20
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Use Hex: to map out the energy space of an island.

(micromagnetics in one island)

Hex=0.0

R e e s
B e e e e
FF T > S>> > > > > > >SS S
T > > S>> > > > > > > 5> 5> 5 S s s
P S>> > S>> S>> S>> 5> 5 5 5 5 5 s s s s s
b -
R S e e e
IR S-S S S S S s s S S S S5555 5555 5
CRRSSSS S S S S S S S S5 55 5.5 5 5
S = S>> > > > > 5 5
eSS S S S S S 555
(b)

-S> D> S>> > > -

x> > > > > > s

R P e

Hext=-0.027 c e cc e cccccccc

o ) o o
o 2 o D o o o )
R o 2 e
o o ) o o e
O R g o o o) o o o e oy o Yo e
sttt Yl -
<<ttt gttt
s << -
eSS << <Lttt
B g £]

+ e e e e e e e -

Figure 5. Magnetic configurations for a 480 nm x 240 nm x 24 nm particle with magnetic field applied at +45° above a horizontal axis
pointing to the right. The arrows are the coarse-grained averages of 9 x 9 groups of cells. In (a), the external field is 2 = 0.20; in

(b) h = 0.0; (c) h = —0.025, just before reversal; (d) h = —0.027, just after reversal. Note the enhanced curvature of the field compared to
that in the smaller particle in figure 4.
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internal energy
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internal energy
Eint = Eex T Edd

Eint(0m) = Eg + (K1 + K3)sin?0y,.

K, +K,=111J
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The results confirm the particle anisotropy for
| x* Lyx Lz particles with high aspect ratios Lx/Ly:

E=Ey+Ki[l—(i-21+K3(-2)?

J. Phys.: Condens. Matter 24 (2012) 296001

Table 1. Values of the in-plane anisotropy constant K; and
out-of-plane anisotropy constant K3 in units of J = 2AL, for
different particle sizes and aspect ratios g1 = L,/L,. All of the
particles calculated have g3 = L, /L, = 20.

120 nm 240 nm 480 nm
g1 K K3 K K3 K, K3
2 6.35J 72,777 27.3J 287J 111J 1140J
3 7.32J 43.4] 31.9J 169J 134J 670J
5 6.96J 21.1J 31.5J 79.9J 133J 311J
8 7.39J 8.30J 29.5J 33.1J 1187 1327

|18



Anisotropy constants per unit volume
depend mainly on aspect ratios.
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Figure 3. The anisotropy constants K; (solid curves) and K3
(dashed curves) scaled by elliptical particle volume, versus particle
lengths, for the indicated g; aspect ratios. All data has g3 = 20. The

values of K/V are given in units of A nm~2, where A is the

exchange stiffness. Ki/V increases with aspect ratio while K3 /V

decreases, and they become equal at high aspect ratio.
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aspect ratios
2 =LX/ Ly
23 :LX/LZ



What is frustration?

FM on square lattice Anti-FM on square lattice AFM on triangular lattice

Ei=-JSi §; Ei=+JS §; Ei=+JSi S

FM - unique ground state Anti-FM - 2 ground states Anti-FM - multi ground states

no frustration but still no frustration with frustration.
Not all bond energies can

acquire their minima.

20



dipolar interactions

Mo [3(m; - Fij)(m; - Fij) — m; - m;]

Hdd — 4 —— Mecen

> 7|3
l>j |rl r]l

#
#@

high energy high energy

i

medium energy medium energy

# #
#
low energy low energy
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frustration in a spin-ice vertex
(dipolar interactions)

all pointing in

really high energy
and nobody is happy

two-in, two-out
(ice rule)

the lowest energy
but still nobody is happy

R
b
e



Interactions = dipolar + shape anisotropy +  external field

Lo [3(@; - Fij) (L -Tij) — [ -

il A a N
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FIG. 2: (a) Configuration of the ground-state obtained for
L = 6a, in exact agreement with that experimentally ob-
served. Note that the ice rules are manifested at each vertex.
This is the case in which the topology demands the minimum
energy (see Fig. ( 3)). (b) Another configuration also respect-
ing the ice rule, but displaying a topology which costs more

energy. (Mol et al 2008.) 29

i €asy axis  hard axis

lce-rule:

For lowest energy, equal
numbers of inward and
outward pointing dipoles
at each vertex.



quantized excitations in a vertex

3 pointing in

# [ #
a “monopole”

q=-1

3 pointing out

- + G

a “monopole”
qg=+1

23

l 4 pointing in

a double pole
q=-2

a double pole
q=+2

T 4 pointing out
-I_



energies of Ising-like states of a vertex

Type I (2) Type II (4) Type III (8) Type IV (2)
E,=-13.0D Ey=-4.0D Epy=0 En=21.0D

! 1 1

€<<0O>> >>0>> <«<> <«<<e>—

1 1 1 !

24

2
D= Ho K |
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deviations from the ice rule
= higher energy and monopole “charges”

ice-rule ice-rule single charges double charges
A 4 v A A 4 v A
2O i oM Sl I b g 5 S ' e b S K
Tollete Q|| Ve e || T
A 4 v A v 4 A A
(a) (b) (©) (d)

FIG. 3: The 4 distinct topologies and the 16 possible mag-
netic moment configurations on a vertex of 4 islands. Al-
though configurations (a) and (b) obey the ice rule, the
topology of (a) is more energetically favorable than that of
(b). Hamiltonian (1) correctly yields to the true ground-state
based on topology (a), without further assumptions. Topolo-
gies (c) and (d) does not obey the ice rule. Particularly, (c)
implies in a monopole with charge Q.
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How do the
excitations behave
as particles, interact
with each other, and
contribute to
thermodynamics!?



With temperature T>0. For the movement in one cell:

d_m = m X (5—H;S) — am X [mx (5—|—IZ)}
dT
R stochastic fields /

fluctuation-dissipation theorem:

kT kT
b () b2 (7)) = 20T S 6(T — 7' = — = ——
(05 (1) b5 (77)) r go(r —1) 7 Jeell 2AL

(the stochastic fields carry thermal energy & power)

We can integrate with Heun’s 2"? order algorithm:

dr b5 (1) — osw;

%

0. = V2aT AT ran( )

: nt+A
A. Euler predictor step. T AT
B. Trapezoid corrector step. r

26



artificial ice model

D =0.1
KIZO.I

K3=O.5

kT=0.01

~ ground state

(from long-time
Langevin dynamics)

o W

D =
47 a’

State 103/103
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artificial ice model

28

D =0.1
KIZO.I

K3=O.5

kT=0.10

> ground state

(from long-time
Langevin dynamics)



artificial ice model

Z22=0,783 mb=-0,001 +- 0,0002 D — O 1
K 1 =0.1

K3=O.5

kT=0.14

few monopoles

(from long-time
Langevin dynamics)

1/1. 512 Spins gqm=4, np=4, sgl=4, multi=0 State 90/103

29



artificial ice model

306 n1=38 n2=0 Z=0,578 Z2=0,594 nb=-0,002 +- 0,0004 D — O . 1
K 1 =0.1

K3=O.5

kT=0.22

~ transition to
high-T phase

(from long-time
Langevin dynamics)

2 9 pins C

30



artificial ice model

Z=-0,008 Z2=0.,456

71,

mult i=4

31

mbh=0,001 +- 0Q.C

D =0.1
KIZO.I

K3=O.5

kT=0.30

~ high-T disorder

(from long-time
Langevin dynamics)



Typical thermodynamics shows a phase transition

e U
250 energy : energy and specific heat
 Shectic |8 - : per island.
e 2r < ] 16 x 16 square lattice 10 i
~ B = . X ~
O couplings: d=k,=k,=0.1 =
1.5F IS}
- 4-0.4
1= -
OoF ~— 406
0: I I I | | | | | | | | | | | ! | | \ | .
0 0.2 0.4 0.6 0.8 1

k T/ ¢
r 7 T 7 T T
lattice = 16 x 16
couplings: d=k =k,=0.1 7

magnetic susceptibilities
per island.
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Densities of single, double, and

total monopoles.

T T T T T ]
- 16x16 square ice

7= couplings: d=k =k,=0.1

00000
0000000000000000
<
%%
00000
%%
&
O
<
&
<
&

00000000

000000000000000

01

kBT/ €

Order parameter Z measures
alignment to a ground state.
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scanning through applied magnetic field.

1 I ! | ! | ! ! ! ! ! .
- | —k,T/e=10 :
- | — kpT/e=0.50 y
0.5 |-k, T/e=0.25 ]
- | k,T7e=0.10 =
m o- _
05+ 0,=0 |
et lattice = 16 x 16 ]
s ) couplings: d=k =k,=0.1 A

_ . | ! | ! | | ! | ! | ! | !

b8 06 04 02 0 02 04 06
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The hysteresis curve deforms when
the ground state 1s approached
(low-T, blue curve).



ice model for Wang et al (2006) particles

35

D = 0.000835
K120.0897

K3=O.ZOOO

kT=0.001

+ ground state

(from long-time
Langevin dynamics)

Note: 300 K 1s
kT = 1.29x107

o (°

D =
4 a3




ice model for Wang et al (2006) particles

Sys 171, 512 Spins

éﬁ,{

DA O

L= G-

<t < .;:.:E;. £ I::-E—::I 57

p=99, =s9l1=91, multi=2
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D = 0.000835
K120.0897

K3=O.ZOOO

kT=0.01

+ ground state

(from long-time
Langevin dynamics)



ice model for Wang et al (2006) particles

D = 0.000835

,. K,=0.0897
Y e K,=0.2000

<t BB FTOR

H.ﬂﬁf ni:iﬂz nE:iﬂ Z:—ﬂ.ﬂz? ZE:ﬂ.a?i mb:ﬂ.ﬂli +— ﬂ.ﬂﬂﬂ'

kT=0.015

more monopoles

4@
a

tr

LB

(from long-time
Langevin dynamics)

Sys 171, 512 Spins gm=122, np=112, =g91=102, multi=10
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ice model for Wang et al (2006) particles

D = 0.000835
K120.0897

K3=O.ZOOO

n.ﬁﬂ'ﬁﬂ E:iz.ﬁ?ﬂ nl=107 nz2=18 Z:—ﬂ.ﬂa' 7=

kT=0.024

PN

Crebe '« ' oce more monopoles

@

3N )

U (B T

(from long-time
Langevin dynamics)

== DA P AP
A

e
A

Sys 171, 512 Spins gqm=143, np=125, =sg9l1=107, multi=18
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ice model for Wang et al (2006) particles

—DE DA A

=0.0897
=0.2000

1
3

b

K

&

T.

Y" (

x

kT=0.040

highly disordered

arvery A r 4 A s N A L (fI’OIIl lon g-ti me
: ;Af <VEM%£%?¥445 D0 ) S iLangthldynanﬁcs)

=140, np=127, sgl=114, multi=13
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artificial ice model - Kagom¢ lattice

0,02000 E=-15,692 Lx=13,0 Ly=11,3 N=123 ng=66

D=0.1
KIZO.I

K3=O.5

1 of 6
ground states




artificial ice model - Kagom¢ lattice

0,02000 E=-15,692 Lx=13,0 Ly=11,3 N=123 ng=66

D=0.1
KIZO.I

K3=O.5

1 of 6
ground states

all vertices have a
monopole charge.




artificial ice model - Kagom¢ lattice

END h=0,00000 kT=0,01000 E=-40,101 nl1=120 nm=0 Z=-0,067 Z2=0,745 mb=0,058 +- 0,0003

D=0.1
KIZO.I

K3=O.5

kT=0.01 (low T).

Frustrated state
does not approach
ground state.

(from long-time
Langevin dynamics)

Sys 1/1, 212 Spins gqm=60, np=120, =gl=120, multi=0 State 102/102




artificial ice model - Kagom¢ lattice

Z22=0,711 mb=-0,003 +- 0, ,0007

s
—

(+)
L/

TN ﬁ_-
—
s TV

G

——
-

N

Spins qmn=60, np=120, =g1=120, multi=0

(from long-time
Langevin dynamics)




artificial ice model - Kagom¢ lattice

END h=0,00000 kT=0,10000 E=-15,733 nl1=115

D=0.1
KIZO.I

K3=O.5

4,’ \.'
TN
I+)
S/

kT=0.1 (moderate)

AN

’\I —
4

S

-4
|

N4

multi-charge poles

(from long-time
Langevin dynamics)

212 Spins gqn=62,. np=120, =g1=118, multi=2




artificial 1ce model - Kagome lattice

END h=0,00000 kT=0,30000 E=21,343 nl=100 nm=20 Z=0,001 Z2=0,449 mnh=0,000 +- 0,0007

D=0.1
KIZO.I

K3=O.5

kT=0.3 (high)

many
multi-charge poles

(from long-time
Langevin dynamics)
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What about linearized (small amplitude) oscillations
at low temperature! (work by Thomas Lasnier)

7\ 7\
B \LD B D
C A C A
0o < ° > 0o €——— 0o ——>
7\ 7\
D B D B
v A C v A C
6o — > 0 &€——— 0 —— > 0 &—
B D
y C xyxy A
° < > %OH

A square ice ground state.
Notation for deviations around a site A.
Keep only near neighbor interactions.
There are four sublattices!

Hamiltonian:
B(f - i) (- Fij) — fli - L]
3 3

dma” = (rij/a)

i)’ + Ks(f; - 2)° }

effective field: Eq. of motion:

5H dju;
B, = — — eAZ' XBi.
OpLi dt TeH
N A
M, = A Cii_t — A X F(A)

F(A) — /ilAm}A(— /€3A y/
+61{3[(BT + BY) - 1] £y — B! — B!

+3 (D" 4+ DY) - 5y ] £y — DT — Di}

Also get eqgns. for dB/dt, dC/dt, dD/dt .
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Linearization: Assume small deviations:

A = Ay+a=(1+ag,ay,a;),
B = Bog+b=(b,1+0b,,b.),
C = Cot+c=(—-14+cy, ¢y, ), You get a
D = Dyg+d=(d;,—1+d,,d,).
—lwa, =
BT —lwa, =
C —lwb, =
° <— —iwb, =
D! —lwe, =
\ A —1lWC, =
—iwd, =
and traveling waves: —iwd,
by (r,t) = bye!(dT—wh), /
/ Dipole interaction
wave vector

u=2cos|5(q
frequency

47

simple 8x8 eigenvalue problem.

01(6a, + ub, + vd,) + K130,

01(—6a, + ub vdw) — K10y,
51 6bz ?JCZ) — lilgbz,
01(6by — Suay + Svey) + Kiba,

6c, — ud, — vb,) + K13Cs,
6c, — ud + vb ) — K1Cy,
d1(6d, + ucz + vaz) — K13d,

(
(=
(=
(
(=
(
(
(=

01(—6d, + Sucy, — gvay) + K1dy.
v =2cos % —qy)]
) Anisotropy



There are 4 kinds of modes.

2 are antisymmetric across the vertex:

B=(—0.—6)

-

A=(9.6)

Mode A

C=(¢.6)

D=(—¢.-6)

Mode A- has the lowest frequency
at long wavelength.
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B=(¢.8)

-

A=(9.6)

Maode A*

C=(¢.6)

D=(¢.6)

Mode A+ has the highest frequency
at long wavelength.



There are 4 kinds of modes.

2 are antisymmetric across the vertex:

B:(—(I),—Q)
A=(¢,9)
D=(_¢7_6)
Mode A

Mode A- has the lowest frequency
at long wavelength.
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B=(¢,0)
A=(¢9,0)
D=(¢,0)
Mode A*

Mode A+ has the highest frequency
at long wavelength.



There are 4 kinds of modes.

2 are symmetric across the vertex:

A A
B=(-0.-6) B=(¢.0)
C=(-0.-9) C=(-0.-8)
- <} - <3
A=(9.6) A=(9.6)
D=(¢.8) D=(—¢.—6)
ModeS™ § Mode 8*  {

Modes S- and S+ are nearly degenerate at long wavelength.
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There are 4 kinds of modes.

2 are symmetric across the vertex:

B=(-¢,-6) B=(¢,0)
C=(-¢,-0) C=(-¢,-0)
D=(¢,9) D=(-¢,~6)
Mode S~ Mode S+

Modes S- and S+ are nearly degenerate at long wavelength.
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An excitation spectrum for weak island anisotropy

k,=028.Kk,=3, q=(q,0)

I2‘Jrc

/ A gap due to island anisotropy
Weap = wa— (0) = /K1 (k13 + 261).
A(0,0), S*(m/a,m/a) have
lowest energy, are most relevant
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But should plot spectrum in |st Brillouin zone.

The islands’ unit cell is tilted at 45 degrees
and the islands’ lattice constant is a’=a/sqrt(2).

T/ \l/ \T/ \l/ .
SoviaslNes \A//

R\l/ \m/ \l/ \h/ N
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square lattice Brillouin zone.



Plotting spectrum in |st Brillouin zone.
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square lattice Brillouin zone.



Future work & improvements

|) Dynamics in remnant state!

AN N\ N\
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2) Beyond nearest neighbors.
Include long-range dipole interactions.



Summary
Shape anisotropy of magnetic islands has a strong effect on the states.

Anisotropy coefficients for islands used in artificial spin ice are found
from the effective potential of the magnetic moment in an island.

A model is developed for spin-ice with continuous dynamics, based on
island dipoles which can point in any direction, while constrained by
easy-plane and uniaxial anisotropies.

The linearized mode spectrum around a ground state in square ice can
be partitioned into symmetric and antisymmetric states; the lowest
frequency mode is antisymmetric at long wavelength.

wysin@phys.ksu.edu
www.phys.ksu.edu/personal/wysin
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