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• NPs can be made much smaller than  λ of the light  
Rayleigh limit & collective electron motion.

• Experiment will measure the combined response of a 
collection of particles in a medium (composite system).

• The dielectric function ε(ω) determines all EM responses, 
like absorption, scattering, and Faraday rotation and other 
polarization effects ⇒ better knowledge of the quantum 
electron physics.

• Faraday rotation can be affected by plasmon modes.

• It’s fun. You get to use a lot of physics theory you learned in 
grad school.

Why Study Nanoparticle Electromagnetics?



Today’s topics

• plasmon oscillations in NPs

• light polarization, Faraday rotation, and ε(ω)

• Classical (Drude model) and quantum theory for the 
dielectric function ε(ω)

• the importance of bound electrons in ε(ω)

• how BDC enters ε(ω) in quantum vs. classical theory

• why electrons in NPs don’t have Landau levels due to BDC 
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A nearly uniform  polarization is induced in the NP.
Its amplitude depends on the dielectric function ε(ω).

How to describe effects on the light?
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Figure 2a 
 

 
 
Figure 2 (a) TEM image of Fe2O3 nanoparticles used in the experiment.

Viktor Chikan’s core particles



Figure 3b 
 

 
 
 
Figure 3 (b) Variation of color change when the thickness of gold onto the surface of the 

nanoparticles is increased.

gold-shell on maghemite (Fe2O3) cores (from Viktor Chikan’s lab)



Figure 3a 
 

 
 
Figure 3 (a) UV-vis absorption spectrum of 3

rd
 batch synthesis of gold coated Fe2O3 

nanoparticles. The initial peak position is indicated by an arrow at 606 nm and shifts to 

532 nm with increasing thickness of gold shell.

Viktor Chikan’s core/shell particles

(plasmon
 resonance)



Bulk Plasma oscillations

z = electron gas displacement
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I. PLASMONIC OSCILLATIONS

A. Bulk plasmons

About bulk plasmon excitations in a slab of perfect conductor. The electronic charge density

ne gets a shift thru distance z. Surface charge is

q = σA = −enzA, −→ σ = −enz (1)

Generates uniform electric field in the slab

E = − σ

ε0
(2)

The restoring force acts on all the volume charge in the slab and the mass involved is also

proportional

Q = −enV F = QE = (−enV )

(
− σ

ε0

)
M = mnV (3)

This gives an equation of motion

F = Mz̈ QE = Mz̈ (4)

− (enV )

(
− σ

ε0

)
= (mnV ) z̈ −

(
ne2

ε0

)
z = mz̈ (5)

z̈ = − ne2

mε0
z = −ω2

p z ωp =

√
ne2

mε0
(6)

B. Bulk plasmon in a solid conducting sphere, radius a

Suppose the whole electronic charge density shifts upward by a displacement z. Then the

surface charge distribution that is generated makes rings of charge. The layer thickness for

the charge varies as

l = z cos θ (7)

so the surface charge is

σ = −nez cos θ θ = azimuthal angle (8)
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n = electron number density 

I. PLASMONIC OSCILLATIONS

A. Bulk plasmons

About bulk plasmon excitations in a slab of perfect conductor. The electronic charge density

ne gets a shift thru distance z. Surface charge is

q = σA = −enzA, −→ σ = −enz (1)

Generates uniform electric field in the slab

E = − σ

ε0
(2)

The restoring force acts on all the volume charge in the slab and the mass involved is also

proportional

Q = −enV F = QE = (−enV )

(
− σ

ε0

)
M = mnV (3)

This gives an equation of motion

F = Mz̈ QE = Mz̈ (4)

− (enV )

(
− σ

ε0

)
= (mnV ) z̈ −

(
ne2

ε0

)
z = mz̈ (5)

z̈ = − ne2

mε0
z = −ω2

p z ωp =

√
ne2

mε0
(6)

B. Bulk plasmon in a solid conducting sphere, radius a

Suppose the whole electronic charge density shifts upward by a displacement z. Then the

surface charge distribution that is generated makes rings of charge. The layer thickness for

the charge varies as

l = z cos θ (7)

so the surface charge is

σ = −nez cos θ θ = azimuthal angle (8)

2

I. PLASMONIC OSCILLATIONS

A. Bulk plasmons

About bulk plasmon excitations in a slab of perfect conductor. The electronic charge density

ne gets a shift thru distance z. Surface charge is

q = σA = −enzA, −→ σ = −enz (1)

Generates uniform electric field in the slab

E = − σ

ε0
(2)

The restoring force acts on all the volume charge in the slab and the mass involved is also

proportional

Q = −enV F = QE = (−enV )

(
− σ

ε0

)
M = mnV (3)

This gives an equation of motion

F = Mz̈ QE = Mz̈ (4)

− (enV )

(
− σ

ε0

)
= (mnV ) z̈ −

(
ne2

ε0

)
z = mz̈ (5)

z̈ = − ne2

mε0
z = −ω2

p z ωp =

√
ne2

mε0
(6)

B. Bulk plasmon in a solid conducting sphere, radius a

Suppose the whole electronic charge density shifts upward by a displacement z. Then the

surface charge distribution that is generated makes rings of charge. The layer thickness for

the charge varies as

l = z cos θ (7)

so the surface charge is

σ = −nez cos θ θ = azimuthal angle (8)

2

newtonian mechanics:
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About electric polarization P
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dipole moment:
p = σAh

h
Polarization: 

P = p/V = σ = -enz

A = top/bottom surface area



Spherical conductor, 
plasma oscillations

z = electron gas displacement
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Do engineering physics to get electric field, with dq = σdA,

dEz = dE cos θ =
k dq

r2
cos θ =

1

4πε0

nez cos θ

a2

(
2πa2 sin θdθ

)
cos θ (9)

Get the result

Ez =
nez

2ε0

∫ +1

−1

cos2 θd(cos θ) =
nez

3ε0
(10)

Or get the net dipole moment of the particle

pz =

∫
σ(a cos θ)dA =

∫ +1

−1

(−nez cos θ) (a cos θ)
(
2πa2d(cos θ)

)
(11)

pz = −4πa3

3
(nez) %P = −(nez)ẑ (12)

Then for a sphere, one can use electrostatics and show that there is a uniform electric field

inside,

%E = −
%P

3ε0
=

nez

3ε0
ẑ (13)

This electric field acts on the whole charge of the sphere, so the equation of motion involves

QE = Mz̈ =⇒ (−enV )
nez

3ε0
= (mnV )z̈ (14)

Gives equation for the oscillations with an extra factor of 1/3:

z̈ = − ne2

3mε0
z = −ω2

sz ωs =

√
ne2

3mε0
=

ωp√
3

(15)

Spherical geometry reduces the plasma resonance frequency.

C. Solid dielectric sphere surrounded by dielectric, in applied field !E0

Consider more general problem, sphere of radius a, dielectric εb, surrounded by a medium of

dielectric εa. Solving Laplace’s equation (electrostatics) using the Rayleigh approximation,

λ$ a, leads to potential and electric field inside the sphere

Φinside = −
(

3εa

2εa + εb

)
E0r cos θ %Einside =

3εa

2εa + εb

%E0 (16)

The potential and electric field outside are

Φoutside = −
[
r −

(
εb − εa

2εa + εb

)
a3

r2

]
E0 cos θ %Eoutside = %E0 +

%p · %r
4πεar3

(17)
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Therefore, Geometry affects the resonance frequency:

bulk gold:

spherical gold:
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     ωp = 1.36 x 1016 rad/s

λp = 138.5 nm (very short)

n = 5.90 x 1028/m3

     ωs = 7.85 x 1015 rad/s

λs = 240 nm (still too short)
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Then for a sphere, one can use electrostatics and show that there is a uniform electric field

inside,

%E = −
%P

3ε0
=

nez

3ε0
ẑ (13)

This electric field acts on the whole charge of the sphere, so the equation of motion involves

QE = Mz̈ =⇒ (−enV )
nez

3ε0
= (mnV )z̈ (14)

Gives equation for the oscillations with an extra factor of 1/3:

z̈ = − ne2

3mε0
z = −ω2

sz ωs =

√
ne2

3mε0
=

ωp√
3

(15)

Spherical geometry reduces the plasma resonance frequency.

C. Solid dielectric sphere surrounded by dielectric, in applied field !E0

Consider more general problem, sphere of radius a, dielectric εb, surrounded by a medium of

dielectric εa. Solving Laplace’s equation (electrostatics) using the Rayleigh approximation,

λ$ a, leads to potential and electric field inside the sphere

Φinside = −
(

3εa

2εa + εb

)
E0r cos θ %Einside =

3εa

2εa + εb

%E0 (16)

The potential and electric field outside are

Φoutside = −
[
r −

(
εb − εa

2εa + εb

)
a3

r2

]
E0 cos θ %Eoutside = %E0 +

%p · %r
4πεar3

(17)

3

Laplace eqn. solution.

Do engineering physics to get electric field, with dq = σdA,

dEz = dE cos θ =
k dq

r2
cos θ =

1

4πε0

nez cos θ

a2

(
2πa2 sin θdθ

)
cos θ (9)

Get the result

Ez =
nez

2ε0

∫ +1

−1

cos2 θd(cos θ) =
nez

3ε0
(10)

Or get the net dipole moment of the particle

pz =

∫
σ(a cos θ)dA =

∫ +1

−1

(−nez cos θ) (a cos θ)
(
2πa2d(cos θ)

)
(11)

pz = −4πa3

3
(nez) %P = −(nez)ẑ (12)
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Then for a sphere, one can use electrostatics and show that there is a uniform electric field

inside,

%E = −
%P

3ε0
=

nez

3ε0
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= uniform

where the induced effective net electric dipole moment of the sphere is

!p =

(
εb − εa

2εa + εb

) (
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!E0

)
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Now the short explanation of the plasmon resonance for a sphere, is that there can be a large

induced dipole moment even in the absence of an applied field, if the denominator vanishes.

Using the Drude model for εb without damping,

εb(ω) = ε0

[
1− ω2
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the resonance occurs when
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+ 1− ω2
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which then leads to a resonance at ω = ωSP, defined by

ωSP =
ωp√

2 εa
εb

+ 1
(21)

If the exterior medium is vacuum, then

ωSP =
ωp√

3
≈ 0.577ωp (22)

If the exterior medium is water, with n =
√

εa/ε0 ≈ 1.33, then

ωSP =
ωp√

2(1.33)2 + 1
≈ 0.47ωp (23)

Part of the reduction from the bulk plasmon frequency comes geometry. The other part is

coming from matching the fields at the sphere boundary.

D. Oscillation of electron gas in DC !B, AC !E: Simple EP2 theory

Consider free electrons exposed to a circularly polarized EM wave moving in the +z direction,

with static magnetic field B along ẑ. Suppose waves aproach +z direction. Look at view of

waves coming out of page, in xy-plane.

4

induced electric dipole:
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λ$ a, leads to potential and electric field inside the sphere

Φinside = −
(

3εa

2εa + εb

)
E0r cos θ %Einside =

3εa

2εa + εb

%E0 (16)

The potential and electric field outside are

Φoutside = −
[
r −

(
εb − εa

2εa + εb

)
a3

r2

]
E0 cos θ %Eoutside = %E0 +

%p · %r
4πεar3

(17)

3

for gold 
surrounded 

by H20:

n=(εa/ε0)1/2

=1.33

Do engineering physics to get electric field, with dq = σdA,

dEz = dE cos θ =
k dq

r2
cos θ =

1

4πε0

nez cos θ

a2

(
2πa2 sin θdθ

)
cos θ (9)

Get the result

Ez =
nez

2ε0

∫ +1

−1

cos2 θd(cos θ) =
nez

3ε0
(10)

Or get the net dipole moment of the particle

pz =

∫
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∫ +1

−1

(−nez cos θ) (a cos θ)
(
2πa2d(cos θ)

)
(11)

pz = −4πa3

3
(nez) %P = −(nez)ẑ (12)

Then for a sphere, one can use electrostatics and show that there is a uniform electric field

inside,

%E = −
%P

3ε0
=

nez

3ε0
ẑ (13)

This electric field acts on the whole charge of the sphere, so the equation of motion involves

QE = Mz̈ =⇒ (−enV )
nez

3ε0
= (mnV )z̈ (14)

Gives equation for the oscillations with an extra factor of 1/3:

z̈ = − ne2

3mε0
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where the induced effective net electric dipole moment of the sphere is

!p =

(
εb − εa

2εa + εb

) (
4πa3εa

!E0

)
(18)

Now the short explanation of the plasmon resonance for a sphere, is that there can be a large

induced dipole moment even in the absence of an applied field, if the denominator vanishes.

Using the Drude model for εb without damping,

εb(ω) = ε0

[
1− ω2

p

ω2

]
(19)

the resonance occurs when

2εa + εb = 0 or 2
εa

ε0
+ 1− ω2

p

ω2
= 0 (20)

which then leads to a resonance at ω = ωSP, defined by

ωSP =
ωp√

2 εa
εb

+ 1
(21)

If the exterior medium is vacuum, then

ωSP =
ωp√

3
≈ 0.577ωp (22)

If the exterior medium is water, with n =
√

εa/ε0 ≈ 1.33, then

ωSP =
ωp√

2(1.33)2 + 1
≈ 0.47ωp (23)

Part of the reduction from the bulk plasmon frequency comes geometry. The other part is

coming from matching the fields at the sphere boundary.

D. Oscillation of electron gas in DC !B, AC !E: Simple EP2 theory

Consider free electrons exposed to a circularly polarized EM wave moving in the +z direction,

with static magnetic field B along ẑ. Suppose waves aproach +z direction. Look at view of

waves coming out of page, in xy-plane.

4

λSP = 295 nm

where the induced effective net electric dipole moment of the sphere is

!p =

(
εb − εa

2εa + εb

) (
4πa3εa

!E0

)
(18)

Now the short explanation of the plasmon resonance for a sphere, is that there can be a large

induced dipole moment even in the absence of an applied field, if the denominator vanishes.

Using the Drude model for εb without damping,

εb(ω) = ε0

[
1− ω2

p

ω2

]
(19)

the resonance occurs when

2εa + εb = 0 or 2
εa

ε0
+ 1− ω2

p

ω2
= 0 (20)

which then leads to a resonance at ω = ωSP, defined by

ωSP =
ωp√

2 εa
ε0

+ 1
(21)

If the exterior medium is vacuum, then

ωSP =
ωp√

3
≈ 0.577ωp (22)

If the exterior medium is water, with n =
√

εa/ε0 ≈ 1.33, then

ωSP =
ωp√

2(1.33)2 + 1
≈ 0.47ωp (23)

Part of the reduction from the bulk plasmon frequency comes geometry. The other part is

coming from matching the fields at the sphere boundary.

D. Oscillation of electron gas in DC !B, AC !E: Simple EP2 theory

Consider free electrons exposed to a circularly polarized EM wave moving in the +z direction,
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What about electron response and Faraday rotation? 

Use circular polarization, and magnetic field B along k=kn.

E E

LEFT circular polarization
CCW rotation

positive helicity  ν=σ·n=+1 

EM waves approaching you, the observer:

B

RIGHT circular polarization
CW rotation

negative helicity  ν=σ·n=-1 

k

This is sometimes expressed in a form

ε =

 εxx iεxy

−iεxy εxx

 (54)

Only two parameters define the matrix:

εxx = ε0 − (ne2/m) (ω2 − ω2
0 + iωγ)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(55)

εxy =
(ne2/m)(ωeBz/m)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(56)

Now when a wave propagates in the medium, we get the simple dispersion relation k =
√

εµω

only for a mode where k is a single number, i.e., determined by an eigenvalue of ε. Look at

its eigenspectrum.  εxx iεxy

−iεxy εxx

  Ex

Ey

 = λ

 Ex

Ey

 (57)

Then one finds easily the eigenspectrum

λ1 = εR = εxx + εxy û1 = ûR =
1√
2
(x̂− iŷ) Right circular (58)

λ2 = εL = εxx − εxy û2 = ûL =
1√
2
(x̂ + iŷ) Left circular (59)

Then a little algebra gives the eigenvalues separately as

εR = ε0 − ne2

D + C
εL = ε0 − ne2

D − C
(60)

or expressed as

εR = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ + ωωB

)
(61)

εL = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ − ωωB

)
(62)

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:

%E = Exx̂ + Eyŷ = ERûR + ELûL (63)

Can show the relation between these leads to relations

ER = 1√
2
(Ex + iEy)

EL = 1√
2
(Ex − iEy)

Ex = 1√
2
(ER + EL)

Ey = −i√
2
(ER − EL)

(64)
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are not free; the restoring force is characterized by a resonant frequency ω0. The force on

an electron in the bulk of a medium gives dynamics:

"F = −mω2
0"r − e "E − e"̇r × "B −mγ"̇r = m"̈r (37)

Assume a harmonic time dependences,

for the applied electric field, "E = "E0e−iωt

and for the electron position, "r(t) = "r0e−iωt "r0 = x0x̂ + y0ŷ

The dynamics follows Newton’s law "F = m"̈r "̇r = −iω"r

The equation of motion becomes

−mω2
0"r − e "E − e(−iω)"r × "B −mγ(−iω)"r = −mω2"r (38)

It can be re-arranged into an operator-like equation

m
(
ω2 − ω2

0 + iωγ
)
"r − iωe "B × "r = e "E (39)

Even better is to arrange it into a matrix equation, using the x and y components as the

basis. Remember that "B = Bz ẑ, then

x̂ : m
(
ω2 − ω2

0 + iωγ
)
x + iωeBzy = eE0x (40)

ŷ : m
(
ω2 − ω2

0 + iωγ
)
y − iωeBzx = eE0y (41)

Then as a matrix equation it is more exciting m (ω2 − ω2
0 + iωγ) iωeBz

−iωeBz m (ω2 − ω2
0 + iωγ)

  x

y

 =

 eE0x

eE0y

 (42)

Or just as

M · "r = e "E (43)

The matrix has a simple basic structure like

M =

 D iC

−iC D

 D = m (ω2 − ω2
0 + iωγ)

C = ωeBz

(44)

The eigenvalues and eigenvectors are really simple,

λ1 = D + C = m
(
ω2 − ω2

0 + iωγ
)

+ ωeBz û1 =
1√
2

 1

−i

 (45)
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Faraday Rotation angle:

φ=½Re{kR-kL}z z = propagation distance 

waves towards observer

E(0) = linearly polarized

E(z)

φ
B

kR, kL = propagation wave vectors



Why is there Faraday rotation, and how large is it?
F. How Faraday rotation results

Start with a linear polarization along x̂, then propagate thru a distance z. Incident waves

are

!Einc = Eincx̂ = Einc
1√
2
(ûR + ûL) (65)

Then each component propagates with its respective wave vector.

!E(z) =
Einc√

2

[
ûReikRz + ûLeikLz

]
(66)

After using the definitions of R/L basis, we get

!E(z) = Einc

[
x̂ cos

(
∆k

2
z

)
+ ŷ sin

(
∆k

2
z

)]
eik̄z

k̄ ≡ 1
2(kR + kL)

∆k ≡ kR − kL

(67)

Then it’s obvious that the plane of polarization has rotated through the angle ∆φ around

the z-axis,

∆φ =
∆k

2
z (68)

In the case of small magnetic field, an expansion leads to approximate result, using the

relative permittivities with εxy $ εxx,

∆k =
ω

c

[√
εxx + εxy −

√
εxx − εxy

] ≈ ω

c

εxy√
εxx

∆φ =
ω

2c

εxy√
εxx

z (69)

More generally, this is a complex angle. the real part is the rotation of the polarization, the

imaginary part is the ellipticity.

θF = Real

{
ω

2c

εxy√
εxx

z

}
χF = Imag

{
ω

2c

εxy√
εxx

z

}
(70)

G. Spherical core/shell particle electrostatics

Consider a core/shell particle, has εc in the core to radius b, εb in the shell between radii b

and a, surrounded by medium εa for r > a. There is some uniform applied field strength

E0. The problem can be solved by ”induction” scheme or by solving boundary problem

for Laplace’s equation. Either way, we get the exterior field is that of an electric dipole of

strength !p given by

!p = 3εa

(
εb−εa

2εa+εb

)
+

(
b
a

)3
(

2εb+εa

2εa+εb

) (
εc−εb
2εb+εc

)
1 + 2

(
b
a

)3
(

εb−εa

2εa+εb

) (
εc−εb
2εb+εc

) (
4πa3

3

)
!E0 = αV !E0

b = core radius

a = shell outer radius

(71)
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Incident linear polarization, at a single frequency ω:

F. How Faraday rotation results

Start with a linear polarization along x̂, then propagate thru a distance z. Incident waves
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After propagation through z:

This is sometimes expressed in a form

ε =

 εxx iεxy

−iεxy εxx

 (54)

Only two parameters define the matrix:

εxx = ε0 − (ne2/m) (ω2 − ω2
0 + iωγ)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(55)

εxy =
(ne2/m)(ωeBz/m)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(56)

Now when a wave propagates in the medium, we get the simple dispersion relation k =
√

εµω

only for a mode where k is a single number, i.e., determined by an eigenvalue of ε. Look at

its eigenspectrum.  εxx iεxy

−iεxy εxx

  Ex

Ey

 = λ

 Ex

Ey

 (57)

Then one finds easily the eigenspectrum

λ1 = εR = εxx + εxy û1 = ûR =
1√
2
(x̂− iŷ) Right circular (58)

λ2 = εL = εxx − εxy û2 = ûL =
1√
2
(x̂ + iŷ) Left circular (59)

Then a little algebra gives the eigenvalues separately as

εR = ε0 − ne2

D + C
εL = ε0 − ne2

D − C
(60)

or expressed as

εR = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ + ωωB

)
(61)

εL = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ − ωωB

)
(62)

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:

%E = Exx̂ + Eyŷ = ERûR + ELûL (63)

Can show the relation between these leads to relations

ER = 1√
2
(Ex + iEy)

EL = 1√
2
(Ex − iEy)

Ex = 1√
2
(ER + EL)

Ey = −i√
2
(ER − EL)

(64)

9

This is sometimes expressed in a form

ε =

 εxx iεxy

−iεxy εxx

 (54)

Only two parameters define the matrix:

εxx = ε0 − (ne2/m) (ω2 − ω2
0 + iωγ)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(55)

εxy =
(ne2/m)(ωeBz/m)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(56)

Now when a wave propagates in the medium, we get the simple dispersion relation k =
√

εµω

only for a mode where k is a single number, i.e., determined by an eigenvalue of ε. Look at

its eigenspectrum.  εxx iεxy

−iεxy εxx

  Ex

Ey

 = λ

 Ex

Ey

 (57)

Then one finds easily the eigenspectrum

λ1 = εR = εxx + εxy û1 = ûR =
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1√
2
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imaginary part is the ellipticity.
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χF = Imag
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εxy√
εxx

z
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G. Spherical core/shell particle electrostatics

Consider a core/shell particle, has εc in the core to radius b, εb in the shell between radii b

and a, surrounded by medium εa for r > a. There is some uniform applied field strength

E0. The problem can be solved by ”induction” scheme or by solving boundary problem

for Laplace’s equation. Either way, we get the exterior field is that of an electric dipole of

strength !p given by

!p = 3εa
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2εa+εb

)
+

(
b
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)3
(

2εb+εa
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) (
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)
1 + 2
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b
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)3
(
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4πa3

3

)
!E0 = αV !E0

b = core radius

a = shell outer radius
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F. How Faraday rotation results
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2
(ûR + ûL) (65)
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]
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Faraday rotation:

k z

These are the basic form of ε that determines propagation of the wave eigenstates. We can
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2
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(ER − EL)

(66)
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Now in presence of the DC B out of page, ie, !B = Bz ẑ, there are both magnetic and electric

forces acting. The electron is dragged around in the same circular sense as the EM waves,

frequecy ω. It is forced to move at ω.

CCW rotation =⇒ left circular polarization (positive helicity). Net centripetal

force towards center causes centripetal acceleration:

Fnet = eE0 + evBz = mω2r v = ωr (24)

Solving for the orbital radius in response to applied waves amplitude E0,

r =
eE0

mω2 − eωBz
=

eE0

mω(ω − ωB)
ωB =

eBz

m
(25)

CW rotation =⇒ right circular polarization (negative helicity). Net centripetal

force towards center causes centripetal acceleration:

Fnet = eE0 − evBz = mω2r v = ωr (26)

Solving for the orbital radius in response to applied waves amplitude E0,

r =
eE0

mω2 + eωBz
=

eE0

mω(ω + ωB)
ωB =

eBz

m
(27)

The size of the orbit is larger for right circular polarization. This affects how the wave

propagates thru the medium by changing the effective dielectric constant. Get electric

dipole moment, then find epsilon.

!p = −e!r ε !E = !D = ε0
!E + !P !P = n!p (28)

So we get the effective diagonal permittivity for each circular polarization via

ε =
D0

E0
=

ε0E0 + P

E0
= ε0 +

P

E0
ε = ε0 + n

p

E0
(29)

So the resulting dielectric permittivities are expressed by a single formula

ε = ε0 − ne2

mω(ω ± ωB)
ε = ε0

[
1− ne2

mε0ω(ω ± ωB)

]
(30)

Usually this is re-expressed using the bulk plasma frequency,

ε = ε0

[
1− ω2

p

ω(ω ± ωB)

]
+ /− for right/left polarization (31)
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larger orbit, 

larger induced electric dipole 



Now in presence of the DC B out of page, ie, !B = Bz ẑ, there are both magnetic and electric

forces acting. The electron is dragged around in the same circular sense as the EM waves,

frequecy ω. It is forced to move at ω.

CCW rotation =⇒ left circular polarization (positive helicity). Net centripetal

force towards center causes centripetal acceleration:
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electric dipole:

Effect on electric permittivity ε

Now in presence of the DC B out of page, ie, !B = Bz ẑ, there are both magnetic and electric
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permittivity ε:
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polarization:

Now in presence of the DC B out of page, ie, !B = Bz ẑ, there are both magnetic and electric

forces acting. The electron is dragged around in the same circular sense as the EM waves,
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CW rotation =⇒ right circular polarization (negative helicity). Net centripetal

force towards center causes centripetal acceleration:
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The size of the orbit is larger for right circular polarization. This affects how the wave

propagates thru the medium by changing the effective dielectric constant. Get electric

dipole moment, then find epsilon.

!p = −e!r ε !E = !D = ε0
!E + !P !P = n!p (28)

So we get the effective diagonal permittivity for each circular polarization via

ε =
D0

E0
=

ε0E0 + P

E0
= ε0 +

P

E0
ε = ε0 + n

p

E0
(29)

So the resulting dielectric permittivities are expressed by a single formula

ε = ε0 − ne2

mω(ω ± ωB)
ε = ε0

[
1− ne2

mε0ω(ω ± ωB)

]
(30)

Usually this is re-expressed using the bulk plasma frequency,

ε = ε0

[
1− ω2

p

ω(ω ± ωB)

]
+ /− for right/left polarization (31)
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Do engineering physics to get electric field, with dq = σdA,

dEz = dE cos θ =
k dq

r2
cos θ =

1

4πε0

nez cos θ

a2

(
2πa2 sin θdθ

)
cos θ (9)

Get the result

Ez =
nez

2ε0

∫ +1

−1

cos2 θd(cos θ) =
nez

3ε0
(10)

Or get the net dipole moment of the particle

pz =

∫
σ(a cos θ)dA =

∫ +1

−1

(−nez cos θ) (a cos θ)
(
2πa2d(cos θ)

)
(11)

pz = −4πa3

3
(nez) %P = −(nez)ẑ (12)

Then for a sphere, one can use electrostatics and show that there is a uniform electric field

inside,

%E = −
%P

3ε0
=

nez

3ε0
ẑ (13)

This electric field acts on the whole charge of the sphere, so the equation of motion involves

QE = Mz̈ =⇒ (−enV )
nez

3ε0
= (mnV )z̈ (14)

Gives equation for the oscillations with an extra factor of 1/3:

z̈ = − ne2

3mε0
z = −ω2

sz ωs =

√
ne2

3mε0
=

ωp√
3

(15)

Spherical geometry reduces the plasma resonance frequency.

C. Solid dielectric sphere surrounded by dielectric, in applied field !E0

Consider more general problem, sphere of radius a, dielectric εb, surrounded by a medium of

dielectric εa. Solving Laplace’s equation (electrostatics) using the Rayleigh approximation,

λ$ a, leads to potential and electric field inside the sphere

Φinside = −
(

3εa

2εa + εb

)
E0r cos θ %Einside =

3εa

2εa + εb

%E0 (16)

The potential and electric field outside are

Φoutside = −
[
r −

(
εb − εa

2εa + εb

)
a3

r2

]
E0 cos θ %Eoutside = %E0 +

%p · %r
4πεar3

(17)
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+ for RIGHT circular
- for LEFT circular

The index of refraction n =
√

ε determines the wave speed as vph = c/n. Consider for

propagating waves, ω > ωp. Then the left circular polarization has the smaller ε and the

smaller index. Its phase velocity will be faster than for the right circular polarization. (also

it is faster than c, how to reconcile this?!)

But what is important in propation of the waves is not the speed, so much, as the wave

vector k. It is given by the dispersion formula with λ being the wavelength in the medium,

k =
2π

λ
=
√

εµ ω (32)

Consider magnetically neutral media with µ = µ0 and
√

ε0µ0 = 1/c,

k =
ω

c

√
1− ω2

p

ω(ω ± ωB)
(33)

So now there are different wavelengths for right/left circular polarization:

λR =
2π

kR
=

2π

ω
√

εRµ0
=

2πc

ω

[
1− ω2

p

ω(ω + ωB)

]−1/2

(34)

λL =
2π

kL
=

2π

ω
√

εLµ0
=

2πc

ω

[
1− ω2

p

ω(ω − ωB)

]−1/2

(35)

Assuming ωB > 0, the right polarization has a shorter wavelength and changes phase faster

over some distance:

λR < λL for ωB > 0 (36)

This is the basic physical reason why a Faraday rotation can take place. The two types of

waves get out of sync with distance, which leads to a rotation of the plane of polarization

for linearly polarized light.

E. More realistic: Oscillation of electron gas in applied fields

Now consider the basic explanation of oscillation of an electron gas in a DC magnetic field %B,

in combination with the AC electric field %E of a plane wave. Use the Rayleigh approximation

of long wavelength, larger than the particle. Suppose for simplicity the electrons are exposed

to forces from %E, %B (due only to the DC field), a restoring force and damping. The electrons
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smaller index. Its phase velocity will be faster than for the right circular polarization. (also

it is faster than c, how to reconcile this?!)

But what is important in propation of the waves is not the speed, so much, as the wave

vector k. It is given by the dispersion formula with λ being the wavelength in the medium,

k =
2π

λ
=
√

εµ ω (32)

Consider magnetically neutral media with µ = µ0 and
√

ε0µ0 = 1/c,

k =
ω

c

√
1− ω2

p

ω(ω ± ωB)
(33)

So now there are different wavelengths for right/left circular polarization:

λR =
2π

kR
=

2π

ω
√

εRµ0
=

2πc

ω

[
1− ω2

p

ω(ω + ωB)

]−1/2

(34)

λL =
2π

kL
=

2π

ω
√

εLµ0
=

2πc

ω

[
1− ω2

p

ω(ω − ωB)

]−1/2

(35)

Assuming ωB > 0, the right polarization has a shorter wavelength and changes phase faster

over some distance:

λR < λL for ωB > 0 (36)

This is the basic physical reason why a Faraday rotation can take place. The two types of

waves get out of sync with distance, which leads to a rotation of the plane of polarization

for linearly polarized light.

E. More realistic: Oscillation of electron gas in applied fields

Now consider the basic explanation of oscillation of an electron gas in a DC magnetic field %B,

in combination with the AC electric field %E of a plane wave. Use the Rayleigh approximation

of long wavelength, larger than the particle. Suppose for simplicity the electrons are exposed

to forces from %E, %B (due only to the DC field), a restoring force and damping. The electrons

6

The index of refraction n =
√

ε determines the wave speed as vph = c/n. Consider for

propagating waves, ω > ωp. Then the left circular polarization has the smaller ε and the

smaller index. Its phase velocity will be faster than for the right circular polarization. (also

it is faster than c, how to reconcile this?!)

But what is important in propation of the waves is not the speed, so much, as the wave

vector k. It is given by the dispersion formula with λ being the wavelength in the medium,

k =
2π

λ
=
√

εµ ω (32)

Consider magnetically neutral media with µ = µ0 and
√

ε0µ0 = 1/c,

k =
ω

c

√
1− ω2

p

ω(ω ± ωB)
(33)

So now there are different wavelengths for right/left circular polarization:

λR =
2π

kR
=

2π

ω
√

εRµ0
=

2πc

ω

[
1− ω2

p

ω(ω + ωB)

]−1/2

(34)

λL =
2π

kL
=

2π

ω
√

εLµ0
=

2πc

ω

[
1− ω2

p

ω(ω − ωB)

]−1/2

(35)

Assuming ωB > 0, the right polarization has a shorter wavelength and changes phase faster

over some distance:

λR < λL for ωB > 0 (36)

This is the basic physical reason why a Faraday rotation can take place. The two types of

waves get out of sync with distance, which leads to a rotation of the plane of polarization

for linearly polarized light.

E. More realistic: Oscillation of electron gas in applied fields

Now consider the basic explanation of oscillation of an electron gas in a DC magnetic field %B,

in combination with the AC electric field %E of a plane wave. Use the Rayleigh approximation

of long wavelength, larger than the particle. Suppose for simplicity the electrons are exposed

to forces from %E, %B (due only to the DC field), a restoring force and damping. The electrons

6



Classical Faraday rotation:  dielectric matrix ε
FB

FE
v

Fv

F0

An electron is affected by several forces:

are not free; the restoring force is characterized by a resonant frequency ω0. The force on

an electron in the bulk of a medium gives dynamics:

"F = −mω2
0"r − e "E − e"̇r × "B −mγ"̇r = m"̈r (37)

Assume a harmonic time dependences,

for the applied electric field, "E = "E0e−iωt

and for the electron position, "r(t) = "r0e−iωt "r0 = x0x̂ + y0ŷ

The dynamics follows Newton’s law "F = m"̈r "̇r = −iω"r

The equation of motion becomes

−mω2
0"r − e "E − e(−iω)"r × "B −mγ(−iω)"r = −mω2"r (38)

It can be re-arranged into an operator-like equation

m
(
ω2 − ω2

0 + iωγ
)
"r − iωe "B × "r = e "E (39)

Even better is to arrange it into a matrix equation, using the x and y components as the

basis. Remember that "B = Bz ẑ, then

x̂ : m
(
ω2 − ω2

0 + iωγ
)
x + iωeBzy = eE0x (40)

ŷ : m
(
ω2 − ω2

0 + iωγ
)
y − iωeBzx = eE0y (41)

Then as a matrix equation it is more exciting m (ω2 − ω2
0 + iωγ) iωeBz

−iωeBz m (ω2 − ω2
0 + iωγ)

  x

y

 =

 eE0x

eE0y

 (42)

Or just as

M · "r = e "E (43)

The matrix has a simple basic structure like

M =

 D iC

−iC D

 D = m (ω2 − ω2
0 + iωγ)

C = ωeBz

(44)

The eigenvalues and eigenvectors are really simple,

λ1 = D + C = m
(
ω2 − ω2

0 + iωγ
)

+ ωeBz û1 =
1√
2

 1

−i

 (45)
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incident waves

electron response
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−mω2
0"r − e "E − e(−iω)"r × "B −mγ(−iω)"r = −mω2"r (38)

It can be re-arranged into an operator-like equation

m
(
ω2 − ω2

0 + iωγ
)
"r − iωe "B × "r = e "E (39)

Even better is to arrange it into a matrix equation, using the x and y components as the

basis. Remember that "B = Bz ẑ, then

x̂ : m
(
ω2 − ω2

0 + iωγ
)
x + iωeBzy = eE0x (40)

ŷ : m
(
ω2 − ω2

0 + iωγ
)
y − iωeBzx = eE0y (41)

Then as a matrix equation it is more exciting m (ω2 − ω2
0 + iωγ) iωeBz

−iωeBz m (ω2 − ω2
0 + iωγ)

  x

y

 =

 eE0x

eE0y

 (42)

Or just as

M · "r = e "E (43)

The matrix has a simple basic structure like

M =

 D iC

−iC D

 D = m (ω2 − ω2
0 + iωγ)

C = ωeBz

(44)

The eigenvalues and eigenvectors are really simple,

λ1 = D + C = m
(
ω2 − ω2

0 + iωγ
)

+ ωeBz û1 =
1√
2

 1

−i

 (45)
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are not free; the restoring force is characterized by a resonant frequency ω0. The force on

an electron in the bulk of a medium gives dynamics:

"F = −mω2
0"r − e "E − e"̇r × "B −mγ"̇r = m"̈r (37)

Assume a harmonic time dependences,
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basis. Remember that "B = Bz ẑ, then
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(
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)
x + iωeBzy = eE0x (40)

ŷ : m
(
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0 + iωγ
)
y − iωeBzx = eE0y (41)

Then as a matrix equation it is more exciting m (ω2 − ω2
0 + iωγ) iωeBz

−iωeBz m (ω2 − ω2
0 + iωγ)
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y

 =
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Or just as

M · "r = e "E (43)

The matrix has a simple basic structure like

M =

 D iC

−iC D

 D = m (ω2 − ω2
0 + iωγ)

C = ωeBz

(44)

The eigenvalues and eigenvectors are really simple,

λ1 = D + C = m
(
ω2 − ω2

0 + iωγ
)

+ ωeBz û1 =
1√
2

 1

−i

 (45)
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form is:

λ2 = D − C = m
(
ω2 − ω2

0 + iωγ
)− ωeBz û2 =

1√
2

 1

i

 (46)

So the response for (x, y) will be simple, if the applied field is composed from these eigen-

vectors, which relate direct to the circular polarizations. So it is best to suppose one of

the circular polarizations. An incident wave with right circular polarization has $E rotating

clockwise when viewed looking towards the source.

CW rotation = right circular. Corresponds to the first eigenvector:

$E = Real

{
ER

(x̂− iŷ)√
2

e−iωt

}
= ER

1√
2
(x̂ cos ωt− ŷ sin ωt) (47)

CCW rotation = left circular. Corresponds to the second eigenvector:

$E = Real

{
EL

(x̂ + iŷ)√
2

e−iωt

}
= EL

1√
2
(x̂ cos ωt + ŷ sin ωt) (48)

Get the repsonse more easily by simply inverting the matrix M . It’s inverse is simple because

it is a 2× 2.

M−1 =
1

D2 − C2

 D −iC

iC D

 (49)

Then the solution for the position response is simple,

$r =

 x

y

 = M−1

 eE0x

eE0y

 =
1

D2 − C2

 D −iC

iC D

  eE0x

eE0y

 (50)

Then the induced electric dipole moment per unit volume is

$P = −ne$r =
−ne2

D2 − C2

 D −iC

iC D

  E0x

E0y

 (51)

Now this implies a matrix for the permitivity, from the relation

ε $E = ε0
$E + $P (52)

Therefore the dielectric permittivity matrix is

ε = ε0

 1 0

0 1

− ne2

D2 − C2

 D −iC

iC D

 (53)
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solution is:



λ2 = D − C = m
(
ω2 − ω2

0 + iωγ
)− ωeBz û2 =

1√
2

 1

i

 (46)

So the response for (x, y) will be simple, if the applied field is composed from these eigen-

vectors, which relate direct to the circular polarizations. So it is best to suppose one of

the circular polarizations. An incident wave with right circular polarization has $E rotating

clockwise when viewed looking towards the source.

CW rotation = right circular. Corresponds to the first eigenvector:
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ER

(x̂− iŷ)√
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e−iωt

}
= ER

1√
2
(x̂ cos ωt− ŷ sin ωt) (47)

CCW rotation = left circular. Corresponds to the second eigenvector:

$E = Real

{
EL

(x̂ + iŷ)√
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e−iωt

}
= EL

1√
2
(x̂ cos ωt + ŷ sin ωt) (48)

Get the repsonse more easily by simply inverting the matrix M . It’s inverse is simple because

it is a 2× 2.

M−1 =
1

D2 − C2

 D −iC

iC D

 (49)

Then the solution for the position response is simple,
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y
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 =
1
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 D −iC

iC D

  eE0x

eE0y

 (50)

Then the induced electric dipole moment per unit volume is

$P = −ne$r =
−ne2

D2 − C2

 D −iC

iC D

  E0x

E0y

 (51)

Now this implies a matrix for the permitivity, from the relation

ε $E = ε0
$E + $P (52)

Therefore the dielectric permittivity matrix is

ε = ε0

 1 0

0 1

− ne2

D2 − C2

 D −iC

iC D

 (53)
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λ2 = D − C = m
(
ω2 − ω2

0 + iωγ
)− ωeBz û2 =

1√
2

 1

i

 (46)

So the response for (x, y) will be simple, if the applied field is composed from these eigen-

vectors, which relate direct to the circular polarizations. So it is best to suppose one of

the circular polarizations. An incident wave with right circular polarization has $E rotating

clockwise when viewed looking towards the source.

CW rotation = right circular. Corresponds to the first eigenvector:

$E = Real

{
ER

(x̂− iŷ)√
2

e−iωt

}
= ER

1√
2
(x̂ cos ωt− ŷ sin ωt) (47)

CCW rotation = left circular. Corresponds to the second eigenvector:

$E = Real

{
EL

(x̂ + iŷ)√
2

e−iωt

}
= EL

1√
2
(x̂ cos ωt + ŷ sin ωt) (48)

Get the repsonse more easily by simply inverting the matrix M . It’s inverse is simple because

it is a 2× 2.

M−1 =
1

D2 − C2

 D −iC

iC D

 (49)

Then the solution for the position response is simple,

$r =

 x

y

 = M−1

 eE0x

eE0y

 =
1

D2 − C2

 D −iC

iC D

  eE0x

eE0y

 (50)

Then the induced electric dipole moment per unit volume is

$P = −ne$r =
−ne2

D2 − C2

 D −iC

iC D

  E0x

E0y

 (51)

Now this implies a matrix for the permitivity, from the relation

ε $E = ε0
$E + $P (52)

Therefore the dielectric permittivity matrix is

ε = ε0

 1 0

0 1

− ne2

D2 − C2

 D −iC

iC D

 (53)
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Result for electric permittivity ε

λ2 = D − C = m
(
ω2 − ω2

0 + iωγ
)− ωeBz û2 =

1√
2

 1

i

 (46)

So the response for (x, y) will be simple, if the applied field is composed from these eigen-

vectors, which relate direct to the circular polarizations. So it is best to suppose one of

the circular polarizations. An incident wave with right circular polarization has $E rotating

clockwise when viewed looking towards the source.

CW rotation = right circular. Corresponds to the first eigenvector:

$E = Real

{
ER

(x̂− iŷ)√
2

e−iωt

}
= ER

1√
2
(x̂ cos ωt− ŷ sin ωt) (47)

CCW rotation = left circular. Corresponds to the second eigenvector:

$E = Real

{
EL

(x̂ + iŷ)√
2

e−iωt

}
= EL

1√
2
(x̂ cos ωt + ŷ sin ωt) (48)

Get the repsonse more easily by simply inverting the matrix M . It’s inverse is simple because

it is a 2× 2.

M−1 =
1

D2 − C2

 D −iC

iC D

 (49)

Then the solution for the position response is simple,

$r =

 x

y

 = M−1

 eE0x

eE0y

 =
1

D2 − C2

 D −iC

iC D

  eE0x

eE0y

 (50)

Then the induced electric dipole moment per unit volume is

$P = −ne$r =
−ne2

D2 − C2

 D −iC

iC D

  E0x

E0y

 (51)

Now this implies a matrix for the permitivity, from the relation

ε $E = ε0
$E + $P (52)

Therefore the dielectric permittivity matrix is

ε = ε0

 1 0

0 1

− ne2

D2 − C2

 D −iC

iC D

 (53)
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λ2 = D − C = m
(
ω2 − ω2

0 + iωγ
)− ωeBz û2 =

1√
2

 1

i

 (46)

So the response for (x, y) will be simple, if the applied field is composed from these eigen-

vectors, which relate direct to the circular polarizations. So it is best to suppose one of

the circular polarizations. An incident wave with right circular polarization has $E rotating

clockwise when viewed looking towards the source.

CW rotation = right circular. Corresponds to the first eigenvector:

$E = Real

{
ER

(x̂− iŷ)√
2

e−iωt

}
= ER

1√
2
(x̂ cos ωt− ŷ sin ωt) (47)

CCW rotation = left circular. Corresponds to the second eigenvector:

$E = Real

{
EL

(x̂ + iŷ)√
2

e−iωt

}
= EL

1√
2
(x̂ cos ωt + ŷ sin ωt) (48)

Get the repsonse more easily by simply inverting the matrix M . It’s inverse is simple because

it is a 2× 2.

M−1 =
1

D2 − C2

 D −iC

iC D

 (49)

Then the solution for the position response is simple,

$r =

 x

y

 = M−1

 eE0x

eE0y

 =
1

D2 − C2

 D −iC

iC D

  eE0x

eE0y

 (50)

Then the induced electric dipole moment per unit volume is

$P = −ne$r =
−ne2

D2 − C2

 D −iC

iC D

  E0x

E0y

 (51)

Now this implies a matrix for the permitivity, from the relation

ε $E = ε0
$E + $P (52)

Therefore the dielectric permittivity matrix is

ε = ε0

 1 0

0 1

− ne2

D2 − C2

 D −iC

iC D

 (53)
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Then magic happens and

This is sometimes expressed in a form

ε =

 εxx iεxy

−iεxy εxx

 (54)

Only two parameters define the matrix:

εxx = ε0 − (ne2/m) (ω2 − ω2
0 + iωγ)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(55)

εxy =
(ne2/m)(ωeBz/m)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(56)

Now when a wave propagates in the medium, we get the simple dispersion relation k =
√

εµω

only for a mode where k is a single number, i.e., determined by an eigenvalue of ε. Look at

its eigenspectrum.  εxx iεxy

−iεxy εxx

  Ex

Ey

 = λ

 Ex

Ey

 (57)

Then one finds easily the eigenspectrum

λ1 = εR = εxx + εxy û1 = ûR =
1√
2
(x̂− iŷ) Right circular (58)

λ2 = εL = εxx − εxy û2 = ûL =
1√
2
(x̂ + iŷ) Left circular (59)

Then a little algebra gives the eigenvalues separately as

εR = ε0 − ne2

D + C
εL = ε0 − ne2

D − C
(60)

or expressed as

εR = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ + ωωB

)
(61)

εL = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ − ωωB

)
(62)

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:

%E = Exx̂ + Eyŷ = ERûR + ELûL (63)

Can show the relation between these leads to relations

ER = 1√
2
(Ex + iEy)

EL = 1√
2
(Ex − iEy)

Ex = 1√
2
(ER + EL)

Ey = −i√
2
(ER − EL)

(64)
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What’s important:  The eigenstates of ε are the 
RIGHT/LEFT circular polarization states! 

This is sometimes expressed in a form

ε =

 εxx iεxy

−iεxy εxx

 (54)

Only two parameters define the matrix:

εxx = ε0 − (ne2/m) (ω2 − ω2
0 + iωγ)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(55)

εxy =
(ne2/m)(ωeBz/m)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(56)

Now when a wave propagates in the medium, we get the simple dispersion relation k =
√

εµω
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 (57)
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λ2 = εL = εxx − εxy û2 = ûL =
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2
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Then a little algebra gives the eigenvalues separately as
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εL = ε0 − ne2
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(60)

or expressed as
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p

ω2 − ω2
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)
(61)

εL = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ − ωωB

)
(62)

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:

%E = Exx̂ + Eyŷ = ERûR + ELûL (63)

Can show the relation between these leads to relations

ER = 1√
2
(Ex + iEy)

EL = 1√
2
(Ex − iEy)

Ex = 1√
2
(ER + EL)

Ey = −i√
2
(ER − EL)

(64)
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This is sometimes expressed in a form

ε =

 εxx iεxy

−iεxy εxx

 (54)

Only two parameters define the matrix:

εxx = ε0 − (ne2/m) (ω2 − ω2
0 + iωγ)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(55)

εxy =
(ne2/m)(ωeBz/m)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(56)

Now when a wave propagates in the medium, we get the simple dispersion relation k =
√

εµω

only for a mode where k is a single number, i.e., determined by an eigenvalue of ε. Look at

its eigenspectrum.  εxx iεxy

−iεxy εxx

  Ex

Ey

 = λ

 Ex

Ey

 (57)

Then one finds easily the eigenspectrum

λ1 = εR = εxx + εxy û1 = ûR =
1√
2
(x̂− iŷ) Right circular (58)

λ2 = εL = εxx − εxy û2 = ûL =
1√
2
(x̂ + iŷ) Left circular (59)

Then a little algebra gives the eigenvalues separately as

εR = ε0 − ne2

D + C
εL = ε0 − ne2

D − C
(60)

or expressed as

εR = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ + ωωB

)
(61)

εL = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ − ωωB

)
(62)

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:

%E = Exx̂ + Eyŷ = ERûR + ELûL (63)

Can show the relation between these leads to relations

ER = 1√
2
(Ex + iEy)

EL = 1√
2
(Ex − iEy)

Ex = 1√
2
(ER + EL)

Ey = −i√
2
(ER − EL)

(64)
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RIGHT circular

LEFT circular

Therefore the dielectric permittivity matrix is

ε = ε0

 1 0

0 1

− ne2

D2 − C2

 D −iC

iC D

 (54)

This can be expressed in a form

ε =

 εxx εxy

−εxy εxx

 =

 εxx iExy

−iExy εxx

 (55)

Only two parameters define the matrix:

εxx = ε0 − (ne2/m) (ω2 − ω2
0 + iωγ)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(56)

Exy = −iεxy =
(ne2/m)(ωeBz/m)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(57)

Now when a wave propagates in the medium, we get the simple dispersion relation k =
√

εµω

only for a mode where k is a single number, i.e., determined by an eigenvalue of ε. Look at

its eigenspectrum.  εxx iExy

−iExy εxx

  Ex

Ey

 = λ

 Ex

Ey

 (58)

Then one finds easily the eigenspectrum

λ1 = εR = εxx + Exy û1 = ûR =
1√
2
(x̂− iŷ) Right circular (59)

λ2 = εL = εxx − Exy û2 = ûL =
1√
2
(x̂ + iŷ) Left circular (60)

or write it as

λ1 = εR = εxx − iεxy û1 = ûR =
1√
2
(x̂− iŷ) Right circular (61)

λ2 = εL = εxx + iεxy û2 = ûL =
1√
2
(x̂ + iŷ) Left circular (62)

Then a little algebra gives the eigenvalues separately as

εR = ε0 − ne2

D + C
εL = ε0 − ne2

D − C
(63)

or expressed as

εR = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ + ωωB

)
(64)
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Therefore the dielectric permittivity matrix is

ε = ε0

 1 0

0 1

− ne2

D2 − C2

 D −iC

iC D

 (54)

This can be expressed in a form

ε =

 εxx εxy

−εxy εxx

 =

 εxx iExy

−iExy εxx

 (55)

Only two parameters define the matrix:

εxx = ε0 − (ne2/m) (ω2 − ω2
0 + iωγ)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(56)

Exy = −iεxy =
(ne2/m)(ωeBz/m)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(57)

Now when a wave propagates in the medium, we get the simple dispersion relation k =
√

εµω

only for a mode where k is a single number, i.e., determined by an eigenvalue of ε. Look at

its eigenspectrum.  εxx iExy

−iExy εxx

  Ex

Ey

 = λ

 Ex

Ey

 (58)

Then one finds easily the eigenspectrum

λ1 = εR = εxx + Exy û1 = ûR =
1√
2
(x̂− iŷ) Right circular (59)

λ2 = εL = εxx − Exy û2 = ûL =
1√
2
(x̂ + iŷ) Left circular (60)

or write it as
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λ2 = εL = εxx + iεxy û2 = ûL =
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2
(x̂ + iŷ) Left circular (62)

Then a little algebra gives the eigenvalues separately as

εR = ε0 − ne2

D + C
εL = ε0 − ne2

D − C
(63)

or expressed as

εR = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ + ωωB

)
(64)
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Therefore the dielectric permittivity matrix is

ε = ε0

 1 0

0 1

− ne2

D2 − C2

 D −iC

iC D

 (54)

This can be expressed in a form
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 =

 εxx iExy

−iExy εxx
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1√
2
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(x̂− iŷ) Right circular (61)

λ2 = εL = εxx + iεxy û2 = ûL =
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Complex Faraday rotation:

ψ=½(kR-kL)z

This is sometimes expressed in a form
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 (54)
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(55)
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(56)
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 = λ

 Ex

Ey

 (57)

Then one finds easily the eigenspectrum

λ1 = εR = εxx + εxy û1 = ûR =
1√
2
(x̂− iŷ) Right circular (58)

λ2 = εL = εxx − εxy û2 = ûL =
1√
2
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Then a little algebra gives the eigenvalues separately as

εR = ε0 − ne2

D + C
εL = ε0 − ne2
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or expressed as

εR = ε0

(
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0 + iωγ + ωωB
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or expressed in a single formula as

εR/L = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ ± ωωB

)
(63)

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:

%E = Exx̂ + Eyŷ = ERûR + ELûL (64)

9

The index of refraction n =
√

ε determines the wave speed as vph = c/n. Consider for

propagating waves, ω > ωp. Then the left circular polarization has the smaller ε and the

smaller index. Its phase velocity will be faster than for the right circular polarization. (also

it is faster than c, how to reconcile this?!)

But what is important in propation of the waves is not the speed, so much, as the wave

vector k. It is given by the dispersion formula with λ being the wavelength in the medium,

k =
2π

λ
=
√

εµ ω (32)

This means a separate equation for each polarization:

kR =
√

εRµ0 ω kL =
√

εLµ0 ω (33)

Consider magnetically neutral media with µ = µ0 and
√

ε0µ0 = 1/c,

kR/L =
ω

c

√
1− ω2

p

ω(ω ± ωB)
(34)

So now there are different wavelengths for right/left circular polarization:

λR =
2π

kR
=

2π

ω
√

εRµ0
=

2πc

ω

[
1− ω2

p

ω(ω + ωB)

]−1/2

(35)

λL =
2π

kL
=

2π

ω
√

εLµ0
=

2πc

ω

[
1− ω2

p

ω(ω − ωB)

]−1/2

(36)

Assuming ωB > 0, the right polarization has a shorter wavelength and changes phase faster

over some distance:

λR < λL for ωB > 0 (37)

This is the basic physical reason why a Faraday rotation can take place. The two types of

waves get out of sync with distance, which leads to a rotation of the plane of polarization

for linearly polarized light.

E. More realistic: Oscillation of electron gas in applied fields

Now consider the basic explanation of oscillation of an electron gas in a DC magnetic field %B,

in combination with the AC electric field %E of a plane wave. Use the Rayleigh approximation
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for the propagating eigenstates:

⇒

⇒

Real and Imag parts:  

= rotation

= ellipticity
x

y

φ

path of E

waves approaching 
observer

φ
x

εL = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ − ωωB

)
(65)

or expressed in a single formula as

εR/L = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ ± ωωB

)
(66)

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:

$E = Exx̂ + Eyŷ = ERûR + ELûL (67)

Can show the relation between these leads to relations

ER = 1√
2
(Ex + iEy)

EL = 1√
2
(Ex − iEy)

Ex = 1√
2
(ER + EL)

Ey = −i√
2
(ER − EL)

(68)

F. How Faraday rotation results

Start with a linear polarization along x̂, then propagate thru a distance z. Incident waves

are

$Einc = Eincx̂ = Einc
1√
2
(ûR + ûL) (69)

Then each component propagates with its respective wave vector.

$E(z) =
Einc√

2

[
ûReikRz + ûLeikLz

]
(70)

After using the definitions of R/L basis, we get

$E(z) = Einc

[
x̂ cos

(
∆k

2
z

)
+ ŷ sin

(
∆k

2
z

)]
eik̄z

k̄ ≡ 1
2(kR + kL)

∆k ≡ kR − kL

(71)

Then it’s obvious that the plane of polarization has rotated through the complex angle ψ

around the z-axis,

ψ =
∆k

2
z (72)

In the case of small magnetic field, an expansion leads to approximate result, using the

relative permittivities with |εxy|$ |εxx|,

∆k =
ω

c

[√
εxx − iεxy −

√
εxx + iεxy

]
≈ −i

ω

c

εxy√
εxx

ψ = −i
ω

2c

εxy√
εxx

z (73)

10More generally, this is a complex angle. the real part is the rotation of the polarization, the

imaginary part is the ellipticity.

ψ = ϕ + iχ ϕ = Real

{
−i

ω

2c

εxy√
εxx

z

}
χ = Imag

{
−i

ω

2c

εxy√
εxx

z

}
(74)

G. Spherical core/shell particle electrostatics

Consider a core/shell particle, has εc in the core to radius b, εb in the shell between radii b

and a, surrounded by medium εa for r > a. There is some uniform applied field strength

E0. The problem can be solved by ”induction” scheme or by solving boundary problem

for Laplace’s equation. Either way, we get the exterior field is that of an electric dipole of

strength &p given by

&p = 3εa

(
εb−εa

2εa+εb

)
+

(
b
a

)3
(

2εb+εa

2εa+εb

) (
εc−εb
2εb+εc

)
1 + 2

(
b
a

)3
(

εb−εa

2εa+εb

) (
εc−εb
2εb+εc

) (
4πa3

3

)
&E0 = αsV &E0

b = core radius

a = shell outer radius

(75)

The dipole moment per unit volume is related to a polarizability αs, defined thru

&P =
&p

4πa3/3
= αs

&E0 (76)

The solution also gives a uniform field in the core, and a varying field in the shell.

&Ecore =

(
3εa

2εa + εb

) (
3εb

2εb+εc

)
1 + 2

(
b
a

)3
(

εb−εa

2εa+εb

) (
εc−εb
2εb+εc

) &E0 (77)

The averaged field in the shell is

〈 &Eshell〉 =

(
3εa

2εa + εb

)
1

1 + 2
(

b
a

)3
(

εb−εa

2εa+εb

) (
εc−εb
2εb+εc

) &E0 (78)

The core is weighted by its volume Vcore ∝ b3 and the shell is weighted by its volume

Vshell ∝ a3 − b3, so the averaged internal field is found from

〈 &Ein〉 =
Vcore〈 &Ecore〉+ Vshell〈 &Eshell〉

Vparticle
(79)

and there results

〈 &Ein〉 =

(
3εa

2εa + εb

) 1 +
(

b
a

)3
(

εb−εc

2εb+εc

)
1 + 2

(
b
a

)3
(

εb−εa

2εa+εb

) (
εc−εb
2εb+εc

) &E0 〈 &Ein〉 = Fs
&E0 (80)

So we know the response of a particle to an applied field.
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(Maxwell-Garnet theory)
Scattering is from a collection of NPs. Use effective medium theory.
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Find this for RIGHT/LEFT polarizations

εs=scatterers’ permittivity
Es=field inside the scatterers

6

to be randomly dispersed and not sticking to each other.
In the Maxwell-Garnett (MG) theory,23,24 one finds the
volume-averaged electric field and the volume-averaged
polarization response to that field, from which εeff is de-
termined. The MG theory is known to apply well even
in the presence of multiple-scattering.30 These volume
averages are

Eav = fsEs + (1 − fs)Eh , (37)

Pav = fsPs + (1 − fs)Ph , (38)

where s and h refer to the values in the scatterer and
the host, respectively. For spherical scatterers exposed
to asymptotic field Eh in the host, the Clausius-Mosotti
equation gives the internal fields,

Es =
3εh

εs + 2εh
Eh , Ps = (εs − 1) ε0Es . (39)

Then with polarization Ph = (εh − 1)ε0Eh in the host,
one finds the average

εeff = 1 +
Pav

ε0Eav
= εh

1 + 2βf

1 − βf
, (40)

which involves the scaled volume fraction (fs is the frac-
tion of volume occupied by NPs in the solution),

βf = fs
εs − εh

εs + 2εh
. (41)

This MG averaging procedure for composite systems is
usually summarized by the equivalent relation,

εeff − εh

εeff + 2εh
= fs

εs − εh

εs + 2εh
. (42)

Expression (40) can be applied separately to the left and
right circular polarization states, then leading to an ef-
fective dielectric function for each, that will then give
the Faraday rotation (3) for a dilute solution.

C. Classical model parameters for gold
nanoparticles

Based on the work in Ref. 8, the parameters needed
for this classical model were found by fitting it to the ab-
sorption measured experimentally with B = 0, for a di-
lute solution of 17 nm diameter gold NPs in water. That
fitting is based on using the effective dielectric function
εeff from the MG theory, to give the absorption in the
solution, according to expression (17).

For this classical Drude model, based on the elec-
tron number density, and using effective mass equal to
the bare electron mass, the bulk plasma frequency is
ωp = 1.37 × 1016 rad/s, which corresponds to λp =
2πc/ωp = 138.5 nm. The damping of the free electrons in
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FIG. 1: (Color online) Fitting of the absorption of 17 nm
diameter gold particles in water solution, according to the
Drude model for the bound electrons. Parameters indicated
are used to get a good fit to the absorption peak near 522
nm. The fitted volume fraction of gold is fs = 3.36 × 10−6.
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FIG. 2: (Color online) The bound electron contribution to
the permittivity, from the second term of Eq. (34), according
to the Drude model for the bound electrons, using the param-
eters of Figure 1. The real part of ε(ω) becomes negative for
frequencies above ω0 (wavelength 504 nm), which is a defect
of this model.

NPs can have an intrinsic term and a surface scattering
term. Thus a size-dependent damping factor is included,
according to the combination of these processes,31

γp =
1

τ
+

vF

d
, (43)

where τ ≈ 9.1 fs is the intrinsic scattering time, vF =
1.40×106 m/s is the Fermi velocity, and d is the thickness
of the gold. This thickness could be the diameter for
solid spherical particles, or, the thickness of a shell for
core/shell particles. We discuss data for gold particles of
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FIG. 1: (Color online) Fitting of the absorption of 17 nm
diameter gold particles in water solution, according to the
Drude model for the bound electrons. Parameters indicated
are used to get a good fit to the absorption peak near 522
nm. The fitted volume fraction of gold is fs = 3.36 × 10−6.

200 300 400 500 600 700 800 900 1000
! (nm)

-2

0

2

4

6

& b
o

u
n

d Re{&}

Im{&}

bound electrons, Drude form

FIG. 2: (Color online) The bound electron contribution to
the permittivity, from the second term of Eq. (34), according
to the Drude model for the bound electrons, using the param-
eters of Figure 1. The real part of ε(ω) becomes negative for
frequencies above ω0 (wavelength 504 nm), which is a defect
of this model.

NPs can have an intrinsic term and a surface scattering
term. Thus a size-dependent damping factor is included,
according to the combination of these processes,31

γp =
1

τ
+

vF

d
, (43)

where τ ≈ 9.1 fs is the intrinsic scattering time, vF =
1.40×106 m/s is the Fermi velocity, and d is the thickness
of the gold. This thickness could be the diameter for
solid spherical particles, or, the thickness of a shell for
core/shell particles. We discuss data for gold particles of
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to be randomly dispersed and not sticking to each other.
In the Maxwell-Garnett (MG) theory,23,24 one finds the
volume-averaged electric field and the volume-averaged
polarization response to that field, from which εeff is de-
termined. The MG theory is known to apply well even
in the presence of multiple-scattering.30 These volume
averages are

Eav = fsEs + (1 − fs)Eh , (37)

Pav = fsPs + (1 − fs)Ph , (38)

where s and h refer to the values in the scatterer and
the host, respectively. For spherical scatterers exposed
to asymptotic field Eh in the host, the Clausius-Mosotti
equation gives the internal fields,

Es =
3εh

εs + 2εh
Eh , Ps = (εs − 1) ε0Es . (39)

Then with polarization Ph = (εh − 1)ε0Eh in the host,
one finds the average

εeff = 1 +
Pav

ε0Eav
= εh

1 + 2βf

1 − βf
, (40)

which involves the scaled volume fraction (fs is the frac-
tion of volume occupied by NPs in the solution),

βf = fs
εs − εh

εs + 2εh
. (41)

This MG averaging procedure for composite systems is
usually summarized by the equivalent relation,

εeff − εh

εeff + 2εh
= fs

εs − εh

εs + 2εh
. (42)

Expression (40) can be applied separately to the left and
right circular polarization states, then leading to an ef-
fective dielectric function for each, that will then give
the Faraday rotation (3) for a dilute solution.

C. Classical model parameters for gold
nanoparticles

Based on the work in Ref. 8, the parameters needed
for this classical model were found by fitting it to the ab-
sorption measured experimentally with B = 0, for a di-
lute solution of 17 nm diameter gold NPs in water. That
fitting is based on using the effective dielectric function
εeff from the MG theory, to give the absorption in the
solution, according to expression (17).

For this classical Drude model, based on the elec-
tron number density, and using effective mass equal to
the bare electron mass, the bulk plasma frequency is
ωp = 1.37 × 1016 rad/s, which corresponds to λp =
2πc/ωp = 138.5 nm. The damping of the free electrons in
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FIG. 2: (Color online) The bound electron contribution to
the permittivity, from the second term of Eq. (34), according
to the Drude model for the bound electrons, using the param-
eters of Figure 1. The real part of ε(ω) becomes negative for
frequencies above ω0 (wavelength 504 nm), which is a defect
of this model.
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according to the combination of these processes,31
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where τ ≈ 9.1 fs is the intrinsic scattering time, vF =
1.40×106 m/s is the Fermi velocity, and d is the thickness
of the gold. This thickness could be the diameter for
solid spherical particles, or, the thickness of a shell for
core/shell particles. We discuss data for gold particles of

6

to be randomly dispersed and not sticking to each other.
In the Maxwell-Garnett (MG) theory,23,24 one finds the
volume-averaged electric field and the volume-averaged
polarization response to that field, from which εeff is de-
termined. The MG theory is known to apply well even
in the presence of multiple-scattering.30 These volume
averages are

Eav = fsEs + (1 − fs)Eh , (37)

Pav = fsPs + (1 − fs)Ph , (38)

where s and h refer to the values in the scatterer and
the host, respectively. For spherical scatterers exposed
to asymptotic field Eh in the host, the Clausius-Mosotti
equation gives the internal fields,

Es =
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εs + 2εh
Eh , Ps = (εs − 1) ε0Es . (39)

Then with polarization Ph = (εh − 1)ε0Eh in the host,
one finds the average

εeff = 1 +
Pav
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, (40)

which involves the scaled volume fraction (fs is the frac-
tion of volume occupied by NPs in the solution),
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This MG averaging procedure for composite systems is
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Expression (40) can be applied separately to the left and
right circular polarization states, then leading to an ef-
fective dielectric function for each, that will then give
the Faraday rotation (3) for a dilute solution.

C. Classical model parameters for gold
nanoparticles

Based on the work in Ref. 8, the parameters needed
for this classical model were found by fitting it to the ab-
sorption measured experimentally with B = 0, for a di-
lute solution of 17 nm diameter gold NPs in water. That
fitting is based on using the effective dielectric function
εeff from the MG theory, to give the absorption in the
solution, according to expression (17).

For this classical Drude model, based on the elec-
tron number density, and using effective mass equal to
the bare electron mass, the bulk plasma frequency is
ωp = 1.37 × 1016 rad/s, which corresponds to λp =
2πc/ωp = 138.5 nm. The damping of the free electrons in
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FIG. 2: (Color online) The bound electron contribution to
the permittivity, from the second term of Eq. (34), according
to the Drude model for the bound electrons, using the param-
eters of Figure 1. The real part of ε(ω) becomes negative for
frequencies above ω0 (wavelength 504 nm), which is a defect
of this model.
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where τ ≈ 9.1 fs is the intrinsic scattering time, vF =
1.40×106 m/s is the Fermi velocity, and d is the thickness
of the gold. This thickness could be the diameter for
solid spherical particles, or, the thickness of a shell for
core/shell particles. We discuss data for gold particles of
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to be randomly dispersed and not sticking to each other.
In the Maxwell-Garnett (MG) theory,23,24 one finds the
volume-averaged electric field and the volume-averaged
polarization response to that field, from which εeff is de-
termined. The MG theory is known to apply well even
in the presence of multiple-scattering.30 These volume
averages are

Eav = fsEs + (1 − fs)Eh , (37)

Pav = fsPs + (1 − fs)Ph , (38)

where s and h refer to the values in the scatterer and
the host, respectively. For spherical scatterers exposed
to asymptotic field Eh in the host, the Clausius-Mosotti
equation gives the internal fields,

Es =
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εs + 2εh
Eh , Ps = (εs − 1) ε0Es . (39)

Then with polarization Ph = (εh − 1)ε0Eh in the host,
one finds the average

εeff = 1 +
Pav

ε0Eav
= εh

1 + 2βf

1 − βf
, (40)

which involves the scaled volume fraction (fs is the frac-
tion of volume occupied by NPs in the solution),

βf = fs
εs − εh
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This MG averaging procedure for composite systems is
usually summarized by the equivalent relation,
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εeff + 2εh
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εs + 2εh
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Expression (40) can be applied separately to the left and
right circular polarization states, then leading to an ef-
fective dielectric function for each, that will then give
the Faraday rotation (3) for a dilute solution.

C. Classical model parameters for gold
nanoparticles

Based on the work in Ref. 8, the parameters needed
for this classical model were found by fitting it to the ab-
sorption measured experimentally with B = 0, for a di-
lute solution of 17 nm diameter gold NPs in water. That
fitting is based on using the effective dielectric function
εeff from the MG theory, to give the absorption in the
solution, according to expression (17).

For this classical Drude model, based on the elec-
tron number density, and using effective mass equal to
the bare electron mass, the bulk plasma frequency is
ωp = 1.37 × 1016 rad/s, which corresponds to λp =
2πc/ωp = 138.5 nm. The damping of the free electrons in
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FIG. 2: (Color online) The bound electron contribution to
the permittivity, from the second term of Eq. (34), according
to the Drude model for the bound electrons, using the param-
eters of Figure 1. The real part of ε(ω) becomes negative for
frequencies above ω0 (wavelength 504 nm), which is a defect
of this model.

NPs can have an intrinsic term and a surface scattering
term. Thus a size-dependent damping factor is included,
according to the combination of these processes,31
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where τ ≈ 9.1 fs is the intrinsic scattering time, vF =
1.40×106 m/s is the Fermi velocity, and d is the thickness
of the gold. This thickness could be the diameter for
solid spherical particles, or, the thickness of a shell for
core/shell particles. We discuss data for gold particles of

(Clausius-Mosotti eqn.)
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If the electric field contains only one of the circular
polarizations, i.e., E = Eν ûν , the response r also will be
proportional to the same eigenvector. Then the solution
for the electron position is very simple,

r =
eEν

moΩ2
ν

ûν . (25)

The factor e/mΩ2
ν gives the size of the response for this

polarization. Here we see the fundamental physical dif-
ference between the polarizations. One of the polariza-
tions causes a larger circular motion of the electrons than
the other polarization. Which one actually is larger de-
pends on the relation between ω0 and ω. This difference
leads to a corresponding difference in the dielectric ef-
fects.

Based on this position response, it is then easy to find
the effective dielectric functions for the two circular po-
larizations, using d = er. The susceptibility due to these
electrons is χ = n〈d〉/ε0E. The result can be summa-
rized in a single formula,

χν(ω) =
ne2

moε0 Ω2
ν

, (26)

where ν = −1/ + 1 refers to R/L polarizations, respec-
tively. This applies to separately, the contribution from
the bound electrons, or, the contribution of the free elec-
trons, using appropriate parameters in each case.

Look at this another way. An arbitrary electric field
can be expressed either as E = Exx̂ + Ey ŷ or as E =
ERûR + ELûL, where

ER = 1√
2

(Ex + iEy) , Ex = 1√
2

(ER + EL) , (27)

EL = 1√
2

(Ex − iEy) , Ey = −i√
2

(ER − EL) . (28)

One can combine the right and left solutions and get the
general solution for any electric field, in diagonal form:

r =
eER

moΩ2
R

ûR +
eEL

moΩ2
L

ûL . (29)

Alternatively, this can be written in Cartesian compo-
nents,

x =
1√
2

e

mo

[
ER

Ω2
R

+
EL

Ω2
L

]
, (30)

y =
1√
2

ie

mo

[
ER

Ω2
R

− EL

Ω2
L

]
. (31)

Simplifying, or inverting the matrix equation (20), leads
to the general electron motion,[

x
y

]
=

e/mo

Ω2
RΩ2

L

[
ω2

0 − ω2 − iωγ0 −iωωB

+iωωB ω2
0 − ω2 − iωγ0

] [
Ex

Ey

]
.

(32)

Multiplied by e, the relation shows the polarizability ma-
trix of the electron. This expression leads to the suscep-
tibility tensor,

χ̃ =
ne2/moε0

Ω2
LΩ2

R

[
ω2

0 − ω2 − iωγ0 −iωωB

+iωωB ω2
0 − ω2 + iωγ0

]
.

(33)
One can see this is consistent with (26), because its eigen-
values are χR = χxx − iχxy and χL = χxx + iχxy, which
agrees exactly with (26).

A. Combination of free and bound electron
responses

Now to use this to describe a metal such as gold, we
assume first there is some density of free electrons n,
with a bulk plasma frequency ω2

p = ne2/moε0, a damp-
ing γp and a zero binding frequency. In addition, there
is some other density n0 of bound electrons, leading to
an effective weight g2

0 = n0e2/moε0, with an associated
damping γ0 and binding frequency ω0. The net dielec-
tric function is the sum of the two contributions to χ̃.
In terms of the polarization states ν = ±1, the dielectric
function is taken as

εν(ω) = 1− ω2
p

ω2 + iωγp + νωωB
− g2

0

ω2 − ω2
0 + iωγ0 + νωωB

.

(34)
The first two terms are the usual ones for describing a
free electron gas. The last term uses the single resonance
to approximate the effects of bound electrons. Both in-
clude the DC magnetic field implicitly in the cyclotron
frequency, ωB. The ease with which the magnetic field
is included in the bound electron response is the main
advantage of this model.

One can produce the Cartesian elements of ε̃, for in-
stance, using (12) and (13), by the combinations of these
eigenvalues:

εxx = εyy = 1
2 (εR + εL) , (35)

εxy = −εyx = iExy = i
2 (εR − εL) . (36)

B. Maxwell-Garnett averaging for dilute solutions

The medium of interest here is actually a dilute so-
lution of NPs at a volume fraction fs % 1 in a host
liquid, which we take as water, with its host dielectric
constant εh = 1.777. The NPs are considered the scat-
terers with dielectric function εs For comparison with
experiment, the effective dielectric function εeff of the
solution is required. The theory for calculating the ef-
fective dielectric function depends somewhat on the as-
sumption of how the particles are dispersed in the liq-
uid. In the simplest approximation, they are assumed

Classical (Drude) model for pure gold NPs response:
(what we really do)

For ν=-1/+1, right/left circular polarizations

(free electrons) (bound electrons)
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to be randomly dispersed and not sticking to each other.
In the Maxwell-Garnett (MG) theory,23,24 one finds the
volume-averaged electric field and the volume-averaged
polarization response to that field, from which εeff is de-
termined. The MG theory is known to apply well even
in the presence of multiple-scattering.30 These volume
averages are

Eav = fsEs + (1 − fs)Eh , (37)

Pav = fsPs + (1 − fs)Ph , (38)

where s and h refer to the values in the scatterer and
the host, respectively. For spherical scatterers exposed
to asymptotic field Eh in the host, the Clausius-Mosotti
equation gives the internal fields,

Es =
3εh

εs + 2εh
Eh , Ps = (εs − 1) ε0Es . (39)

Then with polarization Ph = (εh − 1)ε0Eh in the host,
one finds the average

εeff = 1 +
Pav

ε0Eav
= εh

1 + 2βf

1 − βf
, (40)

which involves the scaled volume fraction (fs is the frac-
tion of volume occupied by NPs in the solution),

βf = fs
εs − εh

εs + 2εh
. (41)

This MG averaging procedure for composite systems is
usually summarized by the equivalent relation,

εeff − εh

εeff + 2εh
= fs

εs − εh

εs + 2εh
. (42)

Expression (40) can be applied separately to the left and
right circular polarization states, then leading to an ef-
fective dielectric function for each, that will then give
the Faraday rotation (3) for a dilute solution.

C. Classical model parameters for gold
nanoparticles

Based on the work in Ref. 8, the parameters needed
for this classical model were found by fitting it to the ab-
sorption measured experimentally with B = 0, for a di-
lute solution of 17 nm diameter gold NPs in water. That
fitting is based on using the effective dielectric function
εeff from the MG theory, to give the absorption in the
solution, according to expression (17).

For this classical Drude model, based on the elec-
tron number density, and using effective mass equal to
the bare electron mass, the bulk plasma frequency is
ωp = 1.37 × 1016 rad/s, which corresponds to λp =
2πc/ωp = 138.5 nm. The damping of the free electrons in
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FIG. 1: (Color online) Fitting of the absorption of 17 nm
diameter gold particles in water solution, according to the
Drude model for the bound electrons. Parameters indicated
are used to get a good fit to the absorption peak near 522
nm. The fitted volume fraction of gold is fs = 3.36 × 10−6.
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FIG. 2: (Color online) The bound electron contribution to
the permittivity, from the second term of Eq. (34), according
to the Drude model for the bound electrons, using the param-
eters of Figure 1. The real part of ε(ω) becomes negative for
frequencies above ω0 (wavelength 504 nm), which is a defect
of this model.

NPs can have an intrinsic term and a surface scattering
term. Thus a size-dependent damping factor is included,
according to the combination of these processes,31

γp =
1

τ
+

vF

d
, (43)

where τ ≈ 9.1 fs is the intrinsic scattering time, vF =
1.40×106 m/s is the Fermi velocity, and d is the thickness
of the gold. This thickness could be the diameter for
solid spherical particles, or, the thickness of a shell for
core/shell particles. We discuss data for gold particles of

Fit parameters from absorption 
of a solution of gold particles:
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travels to position z, leading to the rotation of the polar-
ization through the angle ϕ given in expression (3). One
might also mention, that in general, the dielectric tensor
elements are complex, then there is also a change in el-
lipticity X of the polarization, given from the imaginary
part,

X = 1
2 Im (kR − kL) z . (14)

The two effects of Faraday rotation and change in ellip-
ticity (tanX = ratio of minor to major axis of the ellipse
swept out by the electric vector) can be combined into
one complex parameter,28

ψ = ϕ + iX = 1
2 (kR − kL) z . (15)

Usually these effects are extremely small and close to
linear in B. Then there is only a tiny difference in kR

and kL, which gives to a very good approximation, the
complex relation,

ψ = ϕ + iX ≈ ω

2c

√
µ

εxx
Exy z . (16)

This emphasizes how the components of ε̃ are needed to
describe the changes in the optical polarization.

From the experimental perspective, the measurement
of the absorption (or, attenuation) coefficient α is at least
one technique that sets a relative scale for the FR. It is
given from

α = 2 Im {keff} = 2
ω

c
Im {√µεeff} . (17)

This could use either εR or εL or their average for the
effective dielectric function εeff of the medium, as this
expression does not involve their difference, which is ex-
tremely small. Thus, measurements of α serve to set
some unknown fitting parameters, when needed.

IV. CLASSICAL PHENOMENOLOGICAL
MODEL FOR ε(ω) (DRUDE MODEL)

In this section the electron motion is assumed to be
classical. An electron of bare mass mo and charge e =
−1.602× 10−19 C has some trajectory r(t) = (x(t), y(t))
in response to all forces acting on it, and the averaging
of its induced electric dipole moment d = er lead to the
dielectric function.

To include the effect of the constant B on ε̃ it is as-
sumed that there are two primary contributions to the
dielectric response. The first is the contribution of free
electrons with number density n, and some damping pa-
rameter γp, that leads to the usual plasmon response
with a plasma frequency ω2

p = ne2/mε0. The second is a
contribution due to bound electrons, with some binding
frequency ω0 and another damping parameter γ0. The

contribution of bound electrons is essential to describe
ε(ω) correctly15 in NPs.

Any electron, whether free or bound, is acted on as
well by the electric force from the optical field, and the
Lorentz force from the DC magnetic field. The force due
to the optical magnetic field can be ignored in lowest or-
der. In this Drude approximation the equation of motion
of a bound electron is29

mor̈ = eE + eṙ× B − moω
2
0r− moγ0ṙ . (18)

Under the assumption of e−iωt time dependence of the
optical field E, which is the source field, this is[

mo(ω
2
0 − ω2 − iωγ0) − iωeB×]

r = eE . (19)

In terms of the components this is a matrix relation,[
ω2

0 − ω2 − iωγ0 +iωωB

−iωωB ω2
0 − ω2 − iωγ0

] [
x
y

]
=

e

mo

[
Ex

Ey

]
,

(20)
where the cyclotron frequency with B along ẑ is

ωB =
eB

mo
. (21)

The matrix Ω̃2 on the LHS of (20) has the same kind
of symmetry as that of ε̃ in (11), because the diagonal
elements are equal and the imaginary off-diagonal ele-
ments differ only in sign. This means Ω̃2 has the same
eigenvectors, which are the right and left circular polar-
ization states. Based on its structure, the eigenvalues
Ω2

R and Ω2
L of Ω̃2 are easy to read out. For right circular

polarization,

Ω2
R = ω2

0 − ω2 − iωγ0 + ωωB . (22)

For left circular polarization, the last term (from the
off-diagonal element) has the opposite sign,

Ω2
L = ω2

0 − ω2 − iωγ0 − ωωB . (23)

The effect of the DC magnetic field appears only in the
last factor. These two eigenvalues can be combined into
a single convenient expression in terms of the helicity
ν = −1 for right circular polarization and ν = +1 for
left circular polarization:

Ω2
ν = ω2

0 − ω2 − iωγ0 − νωωB . (24)

The helicity is the projection of the photon intrinsic an-
gular momentum (L on the direction of propagation (k
or ẑ). In this expression it multiplies the magnetic field
component along the same axis. Any physical differences
for right and left circular polarizations will become inter-
changed if the direction of the magnetic field is reversed.
In terms of a vector (ν = (L/!, the last factor in these
eigenvalues could be written most generally as ω(ν · (ωB.

for volume fraction of NPs 

fs=3.36x10-6

plasmon peak near 530 nm
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to be randomly dispersed and not sticking to each other.
In the Maxwell-Garnett (MG) theory,23,24 one finds the
volume-averaged electric field and the volume-averaged
polarization response to that field, from which εeff is de-
termined. The MG theory is known to apply well even
in the presence of multiple-scattering.30 These volume
averages are

Eav = fsEs + (1 − fs)Eh , (37)

Pav = fsPs + (1 − fs)Ph , (38)

where s and h refer to the values in the scatterer and
the host, respectively. For spherical scatterers exposed
to asymptotic field Eh in the host, the Clausius-Mosotti
equation gives the internal fields,

Es =
3εh

εs + 2εh
Eh , Ps = (εs − 1) ε0Es . (39)

Then with polarization Ph = (εh − 1)ε0Eh in the host,
one finds the average

εeff = 1 +
Pav

ε0Eav
= εh

1 + 2βf

1 − βf
, (40)

which involves the scaled volume fraction (fs is the frac-
tion of volume occupied by NPs in the solution),

βf = fs
εs − εh

εs + 2εh
. (41)

This MG averaging procedure for composite systems is
usually summarized by the equivalent relation,

εeff − εh

εeff + 2εh
= fs

εs − εh

εs + 2εh
. (42)

Expression (40) can be applied separately to the left and
right circular polarization states, then leading to an ef-
fective dielectric function for each, that will then give
the Faraday rotation (3) for a dilute solution.

C. Classical model parameters for gold
nanoparticles

Based on the work in Ref. 8, the parameters needed
for this classical model were found by fitting it to the ab-
sorption measured experimentally with B = 0, for a di-
lute solution of 17 nm diameter gold NPs in water. That
fitting is based on using the effective dielectric function
εeff from the MG theory, to give the absorption in the
solution, according to expression (17).

For this classical Drude model, based on the elec-
tron number density, and using effective mass equal to
the bare electron mass, the bulk plasma frequency is
ωp = 1.37 × 1016 rad/s, which corresponds to λp =
2πc/ωp = 138.5 nm. The damping of the free electrons in
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FIG. 1: (Color online) Fitting of the absorption of 17 nm
diameter gold particles in water solution, according to the
Drude model for the bound electrons. Parameters indicated
are used to get a good fit to the absorption peak near 522
nm. The fitted volume fraction of gold is fs = 3.36 × 10−6.
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FIG. 2: (Color online) The bound electron contribution to
the permittivity, from the second term of Eq. (34), according
to the Drude model for the bound electrons, using the param-
eters of Figure 1. The real part of ε(ω) becomes negative for
frequencies above ω0 (wavelength 504 nm), which is a defect
of this model.

NPs can have an intrinsic term and a surface scattering
term. Thus a size-dependent damping factor is included,
according to the combination of these processes,31

γp =
1

τ
+

vF

d
, (43)

where τ ≈ 9.1 fs is the intrinsic scattering time, vF =
1.40×106 m/s is the Fermi velocity, and d is the thickness
of the gold. This thickness could be the diameter for
solid spherical particles, or, the thickness of a shell for
core/shell particles. We discuss data for gold particles of

Drude fitting, gold NPs, 
bound electron part:

negative real part below 
505 nm probably is unphysical



Faraday rotation at  ωB≪ω
cyclotron frequency at B=1.0 T

ωB = eB/m = 1.8x1011 rad/s
optical frequency at λ=600 nm  
ω = 2πc/λ=3.1x1015 rad/s  ≪

Then the Faraday rotation is proportional to B:

υ =φ/(Bz)= Verdet constant

Also the Faraday rotation is proportional to volume fraction fs:

"φ/(Bzfs)=Verdet constant per volume fraction

Z"x/(Bzfs)=ellipticity constant per volume fraction
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FIG. 3: (Color online) Faraday rotation for 17 nm diame-
ter gold NPs, from experiment, and according to the Drude
model for the bound electrons, using the Drude fitting pa-
rameters of Figure 1. The experimental results have been
scaled by 1/100 to allow them to be plotted together with
the Drude theory. The theory result was obtained with the
MG effective medium approach. Faraday rotation angle ϕ
and ellipticity angle X have been scaled by B, z, fs, to give
Ψ = Υ + iZ.

average diameter 17 nm; the prediction for their effective
damping is then γp = 1.92× 1014 rad/s, or, a time scale
τp = γ−1

p = 5.20 fs.
The Drude theory was fitted to experimental data for

absorption through a 1 cm path of water solution of
gold particles with average diameter of 17 nm. The
fitting parameters were chosen to get a good descrip-
tion of the absorption peak present near 522 nm, at-
tributed to surface plasmon response. A good descrip-
tion can be obtained while also allowing the volume frac-
tion and free electron parameters ωp and γp to vary,
see Figure 1. The contribution from the bound elec-
trons can be represented approximately using the am-
plitude parameter g0 = 3.70 × 1015 rad/s, the binding
frequency ω0 = 3.73 × 1015 rad/s (wavelength 504 nm),
and damping frequency γ0 = 6.08 × 1015 rad/s, which
corresponds to a damping time of τ0 = 1/γ0 ≈ 1.64 fs.
To get this good fit to the peak, the free electrons are
at the same time represented using plasma frequency
ωp = 1.40 × 1016 rad/s, equivalent to λp = 134.1 nm,
and a damping γp = 1.118 × 1014 rad/s, correspond-
ing to the damping time τp = 8.94 fs. These are slightly
different than the accepted bulk values, however, we con-
sider them here only as a model that fits accurately the
absorption peak.

From these fitted dielectric parameters, the theoretical
Faraday rotation response can be obtained. Results for
the Faraday rotation and ellipticity for 17 nm gold NPs
in solution are shown in Fig. 3. The complex rotation
angle ψ is found from Eq. 15, together with applying the

Maxwell-Garnett procedure for the composite medium,
Eq. 40, for the effective dielectric function of the com-
posite solution. We have scaled the rotation angle ϕ and
ellipticity X by the product of path length z, magnetic
field B and gold volume fraction fs, to remove the lin-
ear dependence on these quantities. Thus we define the
complex rotation angle scaled by volume fraction,

Ψ ≡ Υ + iZ = ψ/fs . (44)

Then, Υ ≡ ϕ/(Bzfs) is the Verdet factor per unit vol-
ume fraction, and Z ≡ X/(Bzfs) is a corresponding
ellipticity factor per unit volume fraction. Then the re-
sults for Υ and Z do not depend on B, z, or fs in the
linear regime. The experimental data for Υ are also dis-
played in Fig. 3, scaled down by a factor of 1/100 in
order to be shown together with the theory.

One sees that the model predicts a negative peak in
the Faraday rotation near 525 nm, apparently associ-
ated with the plasmon resonance (see 28 for the dis-
tinction between positive and negative rotation angles).
The experimental data have a similar negative peak in
the same region, although its magnitude is significantly
larger than this theory predicts. The theory has a wider
positive peak around 580 nm and a long tail at longer
wavelengths, but this positive peak is rather weak in
the experimental data. For the ellipticity, the main fea-
ture predicted is a positive peak around 540 nm, slightly
above the plasmon wavelength, together with its associ-
ated negative peak and long tail at shorter wavelengths.
Unfortunately, the model exhibits an artifact at shorter
wavelengths: both ϕ and X tend to increase greatly at
short wavelengths in an unphysical behavior. This is due
to the fact that classical Drude model cannot correctly
describe the bound electron response at higher frequen-
cies.

This model is an approximate way to include the ef-
fect of B on classical bound electrons, however, it should
be replaced by the more complete calculation using the
quantum interband transitions presented later. It gives
a reasonable fit to the absorption curve from 900 nm
down to 400 nm, however, below that wavelength it pre-
dicts much more absorption than actually takes place.
Also, this Drude description of the bound electrons can-
not accurately describe the response in the wavelengths
350 – 500 nm. This model does not require any back-
ground (i.e., high-frequency) dielectric function ε∞ ∼ 10,
as has been applied in other studies to mimic the effect
of bound electrons.31 Even so, the fit to the absorption
peak due to the SP mode is very good, while the corre-
sponding negative FR peak due to the SP mode of 17
nm gold particles is about 100 times stronger than the
theory predicts.

scaled rotation 
& ellipticity
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Drude theory, 17 nm diameter gold NPs
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Drude theory result is much smaller than experiment.
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What about quantum electron dynamics with 
a DC magnetic field and the AC optical field?

The optical field is a perturbation:

8

V. QUANTUM DESCRIPTION OF ε(ω) VIA
PERTURBATION OF THE DENSITY MATRIX

In this Section we consider the quantum calculation
of the effects due to bound electrons, which is taken into
account by finding contributions to ε(ω) due to interband
transitions, in the presence of the DC magnetic field.
The electrons are considered non-interacting.

The single-electron Hamiltonian is taken as

Ĥ =
1

2mo

[
p̂− eÂ(r̂, t)

]2
+ eφ̂(r̂, t) + Û(r̂) , (45)

where the charge is e, φ̂ and Â are the scalar and vec-
tor potentials of the EM fields, and Û is the periodic
potential of the lattice. The canonical momentum oper-
ator for the electron is p̂ = −i!$∇. The more physical
momentum is the kinetic momentum operator,

$π = p̂ − eÂ , (46)

because it is the square of this operator that deter-
mines the energy. We take the scalar potential as zero
(Coulomb gauge). The vector potential Â includes a
term for the DC magnetic field, Â0 and a term for the
AC optical field Â1. The optical field is treated as a
classical non-quantized field, that oscillates as e−iωt.

The electron bands, unperturbed by optical fields,
come from the solution of a Hamiltonian with the ki-
netic energy, the lattice periodic potential, and the DC
magnetic field,

Ĥ0 =
1

2mo

(
p̂− eÂ0

)2
+ U(r) . (47)

At weak enough DC magnetic field, the quadratic term
in Â0 can be dropped, and the effect of the cross term
with p̂ is the orbital Zeeman splitting,

Ĥ0 =
p̂2

2mo
+ U(r) − $µ · B . (48)

The magnetic dipole moment due to the orbital angular
momentum is

$µ =
e

2mo

$L . (49)

As the electron charge is negative, $µ points opposite to
$L. The component of $µ along the magnetic field is mµB,
where µB = e!/2mo is the (negative) Bohr magneton,
and m = ml is the magnetic quantum number. The
Zeeman splitting is an energy shift ∆E = −mµBB =
− 1

2m!ωB, where both µB and ωB can be negative, due
to the negative electron charge. The states of this Hamil-
tonian are some electron band states, including any Zee-
man shifts,

Ĥ0|klm〉 = Eklm|klm〉 . (50)

The band states, labeled by wave vector k and angular
indexes l, m, have wave functions

ψklm(r) = 〈r|klm〉 =
1√
V

eik·ruklm(r) . (51)

These can be considered the original states of an unper-
turbed problem. The optical field is the perturbation
on these states, whose effect is studied using the density
matrix approach.

Because we consider states in NPs, the DC magnetic
field only produces Zeeman shifts, rather than Landau
levels. Due to the geometrical confinement, there is no
sense to Landau levels that would have extended wave
functions much larger than the size of the particles. For
instance, at a small applied field strength B = 0.1 tesla,
the length scale of the Landau levels is the Landau ra-

dius, r0 =
√

2!

eB = 115 nm. This is much larger than the

radius of the nanoparticles under consideration, typically
from 5 – 10 nm. The Landau wave functions do not fit
into the NPs at this field strength, giving a non-bulk sit-
uation. The degeneracy of Landau levels is on the order
of (R/r0)2, where R is the system radius. At B = 0.1
tesla, the degeneracy is about (8.5/115)2 ≈ 0.0055, how-
ever, this fractional value is not meaningful. For the
larger magnetic field B = 4.2 T, the Landau radius is
reduced to r0 = 17.7 nm. This is still somewhat larger
that the NP radius of 8.5 nm, and the degeneracy is
about (8.5/17.7)2 ≈ 0.23, still significantly less than 1,
so the theory should be applicable.

These considerations show that the Landau levels are
the incorrect solutions in a confined geometry. When one
looks more carefully at how to arrive at the quantum so-
lution, the radial wave functions should go to zero at the
boundary of the NP (for bound electrons). For spheri-
cal particles, that radial dependence would be described
by spherical Bessel functions, jl(kr), with discrete al-
lowed k, and angular dependence described by spherical
harmonics for a chosen angular momentum, l, m. We
consider a quasi-bulk approximation, where the discrete
k are assumed to be close enough together to be reason-
ably described by electron bands.

A. The density operator ρ̂

Statistically, the band states are populated according
to a Fermi-Dirac distribution for the given temperature,
when the system is in equilibrium. The density operator
ρ̂ is a way to introduce this population into the QM
problem and provide for mixed states. Of course, once
the optical field is turned on, a new equilibrium can be
established and the density operator can change. Its
basic definition for an equilibrium situation, in terms of

A = A0 + A1
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These can be considered the original states of an unper-
turbed problem. The optical field is the perturbation
on these states, whose effect is studied using the density
matrix approach.

Because we consider states in NPs, the DC magnetic
field only produces Zeeman shifts, rather than Landau
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tesla, the degeneracy is about (8.5/115)2 ≈ 0.0055, how-
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looks more carefully at how to arrive at the quantum so-
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boundary of the NP (for bound electrons). For spheri-
cal particles, that radial dependence would be described
by spherical Bessel functions, jl(kr), with discrete al-
lowed k, and angular dependence described by spherical
harmonics for a chosen angular momentum, l, m. We
consider a quasi-bulk approximation, where the discrete
k are assumed to be close enough together to be reason-
ably described by electron bands.

A. The density operator ρ̂

Statistically, the band states are populated according
to a Fermi-Dirac distribution for the given temperature,
when the system is in equilibrium. The density operator
ρ̂ is a way to introduce this population into the QM
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the state probabilities wi is

ρ̂0 =
∑

i

wi|ψi〉〈ψi| . (52)

For the equilibrium distribution, the weights are taken
as proportional to the Fermi-Dirac occupation numbers,

wi =
1

N
f0(Ei), f0(Ei) =

1

eβ(Ei−EF ) + 1
, (53)

where β is the inverse temperature and EF is the Fermi
level. This is a density matrix normalized to one for N
electrons in the system. The time derivative of a general
ρ̂ follows from the quantum Liouville equation:

∂ρ̂

∂t
=

1

i!
[Ĥ, ρ̂] . (54)

To apply this, we consider the leading perturbation
term in the Hamiltonian, which is the electric force from
the optical field (Â1). The optical magnetic force is ig-
nored. Then the perturbation is described by the Hamil-
tonian

Ĥ1 = − e

mo
Â1 ·

(
p̂ − eÂ0

)
. (55)

Now the total density operator is assumed to be a sum
of the equilibrium operator plus some change caused by
the perturbation:

ρ̂ = ρ̂0 + ρ̂1 . (56)

As the total Hamiltonian also is a sum of unper-
turbed and perturbation parts, we can use the fact
that [Ĥ0, ρ̂0] = 0, and ignore the small nonlinear term
[Ĥ1, ρ̂1] ≈ 0, then the equation of motion for the pertur-
bation is

i!
∂ρ̂1

∂t
≈ [Ĥ0, ρ̂1] + [Ĥ1, ρ̂0] . (57)

Now assume expansions of Ĥ1 and of ρ̂1 in the unper-
turbed basis states,

Ĥ1 =
∑
if

|f〉〈f |Ĥ1|i〉〈i|, ρ̂1 =
∑
if

cfi|f〉〈i|. (58)

The constants cfi = 〈f |ρ̂1|i〉 are just the matrix elements
of ρ̂1, in the H0 basis states. After evaluation of the
commutators, and assuming e−iωt time dependence for
ρ̂1, the constants cfi are found, and the change in the
density operator is found to be

ρ̂1 =
∑
if

(wi − wf )|f〉〈f |Ĥ1|i〉〈i|
!(ω + iγ) + (Ei − Ef )

. (59)

A small imaginary part γ has been added to the fre-
quency to effect the turning on of the perturbation. This

constant can be considered a phenomenological damping
constant, or, it can be let to go to zero if the results with-
out damping are of interest. This expression has been
used in various problems by Adler21 and in the thesis
of M. Prange.32 Ei and Ef are energies of two states of
the unperturbed Hamiltonian. One can think that the
expression involves transitions between pairs of states.
Obviously the oscillatory time behavior of the perturba-
tion Hamiltonian must be reflected in a similar behavior
in this part of the density matrix. Thus, we are inter-
ested only in the response in the density matrix at the
same frequency as the perturbation.

B. Thermal and volume averages

To find the dielectric function, statistical averages of
the polarization or the current density are necessary.
This can be done by first defining a local quantum op-
erator, ρ̂e(r) for the one-electron charge density,

ρ̂e(r) = e|r〉〈r| , (60)

and another, ĵ(r), for the one-electron current density,

ĵ(r) =
e

2
{|r〉〈r|v̂ + v̂|r〉〈r|} . (61)

The current density operator is defined in terms of the
electron velocity,

v̂ =
'π

mo
=

1

mo

(
p̂− eÂ

)
. (62)

The statistically averaged values of these operators are
found from the trace with the density operator,

ρe(r) = 〈ρ̂e(r)〉 = Tr {ρ̂ρ̂e(r)} , (63)

j(r) = 〈ĵ(r)〉 = Tr
{
ρ̂ĵ(r)

}
. (64)

In a pure state |ψ〉, with density operator ρ̂ = |ψ〉〈ψ|,
these produce the usual expressions for the quantum
charge and current densities at point r,

ρe(r) = e|ψ(r)|2 , (65)

j(r) = Re {ψ∗(r)ev̂ψ(r)} . (66)

We can also define the local polarization operator using
the electron position,

d̂(r) = er̂|r〉〈r| , (67)

which is statistically averaged by the same procedure,

d(r) = Tr
{

ρ̂d̂(r)
}

. (68)

At some point in the calculation the volume averages
are desired, to describe ε(ω) for the whole sample. These

The potential & A0 determine the

stationary states:

Apply perturbation theory to H = H0 + H1
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Ĥ0 =
p̂2

2mo
+ U(r) − $µ · B . (48)

The magnetic dipole moment due to the orbital angular
momentum is

$µ =
e

2mo

$L . (49)

As the electron charge is negative, $µ points opposite to
$L. The component of $µ along the magnetic field is mµB,
where µB = e!/2mo is the (negative) Bohr magneton,
and m = ml is the magnetic quantum number. The
Zeeman splitting is an energy shift ∆E = −mµBB =
− 1

2m!ωB, where both µB and ωB can be negative, due
to the negative electron charge. The states of this Hamil-
tonian are some electron band states, including any Zee-
man shifts,
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turbed problem. The optical field is the perturbation
on these states, whose effect is studied using the density
matrix approach.

Because we consider states in NPs, the DC magnetic
field only produces Zeeman shifts, rather than Landau
levels. Due to the geometrical confinement, there is no
sense to Landau levels that would have extended wave
functions much larger than the size of the particles. For
instance, at a small applied field strength B = 0.1 tesla,
the length scale of the Landau levels is the Landau ra-

dius, r0 =
√

2!

eB = 115 nm. This is much larger than the

radius of the nanoparticles under consideration, typically
from 5 – 10 nm. The Landau wave functions do not fit
into the NPs at this field strength, giving a non-bulk sit-
uation. The degeneracy of Landau levels is on the order
of (R/r0)2, where R is the system radius. At B = 0.1
tesla, the degeneracy is about (8.5/115)2 ≈ 0.0055, how-
ever, this fractional value is not meaningful. For the
larger magnetic field B = 4.2 T, the Landau radius is
reduced to r0 = 17.7 nm. This is still somewhat larger
that the NP radius of 8.5 nm, and the degeneracy is
about (8.5/17.7)2 ≈ 0.23, still significantly less than 1,
so the theory should be applicable.

These considerations show that the Landau levels are
the incorrect solutions in a confined geometry. When one
looks more carefully at how to arrive at the quantum so-
lution, the radial wave functions should go to zero at the
boundary of the NP (for bound electrons). For spheri-
cal particles, that radial dependence would be described
by spherical Bessel functions, jl(kr), with discrete al-
lowed k, and angular dependence described by spherical
harmonics for a chosen angular momentum, l, m. We
consider a quasi-bulk approximation, where the discrete
k are assumed to be close enough together to be reason-
ably described by electron bands.

A. The density operator ρ̂

Statistically, the band states are populated according
to a Fermi-Dirac distribution for the given temperature,
when the system is in equilibrium. The density operator
ρ̂ is a way to introduce this population into the QM
problem and provide for mixed states. Of course, once
the optical field is turned on, a new equilibrium can be
established and the density operator can change. Its
basic definition for an equilibrium situation, in terms of

At weak enough DC magnetic field:

8

V. QUANTUM DESCRIPTION OF ε(ω) VIA
PERTURBATION OF THE DENSITY MATRIX

In this Section we consider the quantum calculation
of the effects due to bound electrons, which is taken into
account by finding contributions to ε(ω) due to interband
transitions, in the presence of the DC magnetic field.
The electrons are considered non-interacting.

The single-electron Hamiltonian is taken as

Ĥ =
1

2mo

[
p̂− eÂ(r̂, t)

]2
+ eφ̂(r̂, t) + Û(r̂) , (45)

where the charge is e, φ̂ and Â are the scalar and vec-
tor potentials of the EM fields, and Û is the periodic
potential of the lattice. The canonical momentum oper-
ator for the electron is p̂ = −i!$∇. The more physical
momentum is the kinetic momentum operator,

$π = p̂ − eÂ , (46)

because it is the square of this operator that deter-
mines the energy. We take the scalar potential as zero
(Coulomb gauge). The vector potential Â includes a
term for the DC magnetic field, Â0 and a term for the
AC optical field Â1. The optical field is treated as a
classical non-quantized field, that oscillates as e−iωt.

The electron bands, unperturbed by optical fields,
come from the solution of a Hamiltonian with the ki-
netic energy, the lattice periodic potential, and the DC
magnetic field,

Ĥ0 =
1

2mo

(
p̂− eÂ0

)2
+ U(r) . (47)

At weak enough DC magnetic field, the quadratic term
in Â0 can be dropped, and the effect of the cross term
with p̂ is the orbital Zeeman splitting,

Ĥ0 =
p̂2

2mo
+ U(r) − $µ · B . (48)

The magnetic dipole moment due to the orbital angular
momentum is

$µ =
e

2mo

$L . (49)

As the electron charge is negative, $µ points opposite to
$L. The component of $µ along the magnetic field is mµB,
where µB = e!/2mo is the (negative) Bohr magneton,
and m = ml is the magnetic quantum number. The
Zeeman splitting is an energy shift ∆E = −mµBB =
− 1

2m!ωB, where both µB and ωB can be negative, due
to the negative electron charge. The states of this Hamil-
tonian are some electron band states, including any Zee-
man shifts,

Ĥ0|klm〉 = Eklm|klm〉 . (50)

The band states, labeled by wave vector k and angular
indexes l, m, have wave functions

ψklm(r) = 〈r|klm〉 =
1√
V

eik·ruklm(r) . (51)

These can be considered the original states of an unper-
turbed problem. The optical field is the perturbation
on these states, whose effect is studied using the density
matrix approach.

Because we consider states in NPs, the DC magnetic
field only produces Zeeman shifts, rather than Landau
levels. Due to the geometrical confinement, there is no
sense to Landau levels that would have extended wave
functions much larger than the size of the particles. For
instance, at a small applied field strength B = 0.1 tesla,
the length scale of the Landau levels is the Landau ra-

dius, r0 =
√

2!

eB = 115 nm. This is much larger than the

radius of the nanoparticles under consideration, typically
from 5 – 10 nm. The Landau wave functions do not fit
into the NPs at this field strength, giving a non-bulk sit-
uation. The degeneracy of Landau levels is on the order
of (R/r0)2, where R is the system radius. At B = 0.1
tesla, the degeneracy is about (8.5/115)2 ≈ 0.0055, how-
ever, this fractional value is not meaningful. For the
larger magnetic field B = 4.2 T, the Landau radius is
reduced to r0 = 17.7 nm. This is still somewhat larger
that the NP radius of 8.5 nm, and the degeneracy is
about (8.5/17.7)2 ≈ 0.23, still significantly less than 1,
so the theory should be applicable.

These considerations show that the Landau levels are
the incorrect solutions in a confined geometry. When one
looks more carefully at how to arrive at the quantum so-
lution, the radial wave functions should go to zero at the
boundary of the NP (for bound electrons). For spheri-
cal particles, that radial dependence would be described
by spherical Bessel functions, jl(kr), with discrete al-
lowed k, and angular dependence described by spherical
harmonics for a chosen angular momentum, l, m. We
consider a quasi-bulk approximation, where the discrete
k are assumed to be close enough together to be reason-
ably described by electron bands.

A. The density operator ρ̂

Statistically, the band states are populated according
to a Fermi-Dirac distribution for the given temperature,
when the system is in equilibrium. The density operator
ρ̂ is a way to introduce this population into the QM
problem and provide for mixed states. Of course, once
the optical field is turned on, a new equilibrium can be
established and the density operator can change. Its
basic definition for an equilibrium situation, in terms of

This depends on the electron orbital magnetic 
dipole moment:
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the state probabilities wi is

ρ̂0 =
∑

i

wi|ψi〉〈ψi| . (52)

For the equilibrium distribution, the weights are taken
as proportional to the Fermi-Dirac occupation numbers,

wi =
1

N
f0(Ei), f0(Ei) =

1

eβ(Ei−EF ) + 1
, (53)

where β is the inverse temperature and EF is the Fermi
level. This is a density matrix normalized to one for N
electrons in the system. The time derivative of a general
ρ̂ follows from the quantum Liouville equation:

∂ρ̂

∂t
=

1

i!
[Ĥ, ρ̂] . (54)

To apply this, we consider the leading perturbation
term in the Hamiltonian, which is the electric force from
the optical field (Â1). The optical magnetic force is ig-
nored. Then the perturbation is described by the Hamil-
tonian

Ĥ1 = − e

mo
Â1 ·

(
p̂ − eÂ0

)
. (55)

Now the total density operator is assumed to be a sum
of the equilibrium operator plus some change caused by
the perturbation:

ρ̂ = ρ̂0 + ρ̂1 . (56)

As the total Hamiltonian also is a sum of unper-
turbed and perturbation parts, we can use the fact
that [Ĥ0, ρ̂0] = 0, and ignore the small nonlinear term
[Ĥ1, ρ̂1] ≈ 0, then the equation of motion for the pertur-
bation is

i!
∂ρ̂1

∂t
≈ [Ĥ0, ρ̂1] + [Ĥ1, ρ̂0] . (57)

Now assume expansions of Ĥ1 and of ρ̂1 in the unper-
turbed basis states,

Ĥ1 =
∑
if

|f〉〈f |Ĥ1|i〉〈i|, ρ̂1 =
∑
if

cfi|f〉〈i|. (58)

The constants cfi = 〈f |ρ̂1|i〉 are just the matrix elements
of ρ̂1, in the H0 basis states. After evaluation of the
commutators, and assuming e−iωt time dependence for
ρ̂1, the constants cfi are found, and the change in the
density operator is found to be

ρ̂1 =
∑
if

(wi − wf )|f〉〈f |Ĥ1|i〉〈i|
!(ω + iγ) + (Ei − Ef )

. (59)

A small imaginary part γ has been added to the fre-
quency to effect the turning on of the perturbation. This

constant can be considered a phenomenological damping
constant, or, it can be let to go to zero if the results with-
out damping are of interest. This expression has been
used in various problems by Adler21 and in the thesis
of M. Prange.32 Ei and Ef are energies of two states of
the unperturbed Hamiltonian. One can think that the
expression involves transitions between pairs of states.
Obviously the oscillatory time behavior of the perturba-
tion Hamiltonian must be reflected in a similar behavior
in this part of the density matrix. Thus, we are inter-
ested only in the response in the density matrix at the
same frequency as the perturbation.

B. Thermal and volume averages

To find the dielectric function, statistical averages of
the polarization or the current density are necessary.
This can be done by first defining a local quantum op-
erator, ρ̂e(r) for the one-electron charge density,

ρ̂e(r) = e|r〉〈r| , (60)

and another, ĵ(r), for the one-electron current density,

ĵ(r) =
e

2
{|r〉〈r|v̂ + v̂|r〉〈r|} . (61)

The current density operator is defined in terms of the
electron velocity,

v̂ =
'π

mo
=

1

mo

(
p̂− eÂ

)
. (62)

The statistically averaged values of these operators are
found from the trace with the density operator,

ρe(r) = 〈ρ̂e(r)〉 = Tr {ρ̂ρ̂e(r)} , (63)

j(r) = 〈ĵ(r)〉 = Tr
{
ρ̂ĵ(r)

}
. (64)

In a pure state |ψ〉, with density operator ρ̂ = |ψ〉〈ψ|,
these produce the usual expressions for the quantum
charge and current densities at point r,

ρe(r) = e|ψ(r)|2 , (65)

j(r) = Re {ψ∗(r)ev̂ψ(r)} . (66)

We can also define the local polarization operator using
the electron position,

d̂(r) = er̂|r〉〈r| , (67)

which is statistically averaged by the same procedure,

d(r) = Tr
{

ρ̂d̂(r)
}

. (68)

At some point in the calculation the volume averages
are desired, to describe ε(ω) for the whole sample. These

Use density operator, in equilibrium:
(determined by states ψi of H0)
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the state probabilities wi is

ρ̂0 =
∑

i

wi|ψi〉〈ψi| . (52)

For the equilibrium distribution, the weights are taken
as proportional to the Fermi-Dirac occupation numbers,

wi =
1

N
f0(Ei), f0(Ei) =

1

eβ(Ei−EF ) + 1
, (53)

where β is the inverse temperature and EF is the Fermi
level. This is a density matrix normalized to one for N
electrons in the system. The time derivative of a general
ρ̂ follows from the quantum Liouville equation:

∂ρ̂

∂t
=

1

i!
[Ĥ, ρ̂] . (54)

To apply this, we consider the leading perturbation
term in the Hamiltonian, which is the electric force from
the optical field (Â1). The optical magnetic force is ig-
nored. Then the perturbation is described by the Hamil-
tonian

Ĥ1 = − e

mo
Â1 ·

(
p̂ − eÂ0

)
. (55)

Now the total density operator is assumed to be a sum
of the equilibrium operator plus some change caused by
the perturbation:

ρ̂ = ρ̂0 + ρ̂1 . (56)

As the total Hamiltonian also is a sum of unper-
turbed and perturbation parts, we can use the fact
that [Ĥ0, ρ̂0] = 0, and ignore the small nonlinear term
[Ĥ1, ρ̂1] ≈ 0, then the equation of motion for the pertur-
bation is

i!
∂ρ̂1

∂t
≈ [Ĥ0, ρ̂1] + [Ĥ1, ρ̂0] . (57)

Now assume expansions of Ĥ1 and of ρ̂1 in the unper-
turbed basis states,

Ĥ1 =
∑
if

|f〉〈f |Ĥ1|i〉〈i|, ρ̂1 =
∑
if

cfi|f〉〈i|. (58)

The constants cfi = 〈f |ρ̂1|i〉 are just the matrix elements
of ρ̂1, in the H0 basis states. After evaluation of the
commutators, and assuming e−iωt time dependence for
ρ̂1, the constants cfi are found, and the change in the
density operator is found to be

ρ̂1 =
∑
if

(wi − wf )|f〉〈f |Ĥ1|i〉〈i|
!(ω + iγ) + (Ei − Ef )

. (59)

A small imaginary part γ has been added to the fre-
quency to effect the turning on of the perturbation. This

constant can be considered a phenomenological damping
constant, or, it can be let to go to zero if the results with-
out damping are of interest. This expression has been
used in various problems by Adler21 and in the thesis
of M. Prange.32 Ei and Ef are energies of two states of
the unperturbed Hamiltonian. One can think that the
expression involves transitions between pairs of states.
Obviously the oscillatory time behavior of the perturba-
tion Hamiltonian must be reflected in a similar behavior
in this part of the density matrix. Thus, we are inter-
ested only in the response in the density matrix at the
same frequency as the perturbation.

B. Thermal and volume averages

To find the dielectric function, statistical averages of
the polarization or the current density are necessary.
This can be done by first defining a local quantum op-
erator, ρ̂e(r) for the one-electron charge density,

ρ̂e(r) = e|r〉〈r| , (60)

and another, ĵ(r), for the one-electron current density,

ĵ(r) =
e

2
{|r〉〈r|v̂ + v̂|r〉〈r|} . (61)

The current density operator is defined in terms of the
electron velocity,

v̂ =
'π

mo
=

1

mo

(
p̂− eÂ

)
. (62)

The statistically averaged values of these operators are
found from the trace with the density operator,

ρe(r) = 〈ρ̂e(r)〉 = Tr {ρ̂ρ̂e(r)} , (63)

j(r) = 〈ĵ(r)〉 = Tr
{
ρ̂ĵ(r)

}
. (64)

In a pure state |ψ〉, with density operator ρ̂ = |ψ〉〈ψ|,
these produce the usual expressions for the quantum
charge and current densities at point r,

ρe(r) = e|ψ(r)|2 , (65)

j(r) = Re {ψ∗(r)ev̂ψ(r)} . (66)

We can also define the local polarization operator using
the electron position,

d̂(r) = er̂|r〉〈r| , (67)

which is statistically averaged by the same procedure,

d(r) = Tr
{

ρ̂d̂(r)
}

. (68)

At some point in the calculation the volume averages
are desired, to describe ε(ω) for the whole sample. These
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the state probabilities wi is

ρ̂0 =
∑

i

wi|ψi〉〈ψi| . (52)

For the equilibrium distribution, the weights are taken
as proportional to the Fermi-Dirac occupation numbers,

wi =
1

N
f0(Ei), f0(Ei) =

1

eβ(Ei−EF ) + 1
, (53)

where β is the inverse temperature and EF is the Fermi
level. This is a density matrix normalized to one for N
electrons in the system. The time derivative of a general
ρ̂ follows from the quantum Liouville equation:

∂ρ̂

∂t
=

1

i!
[Ĥ, ρ̂] . (54)

To apply this, we consider the leading perturbation
term in the Hamiltonian, which is the electric force from
the optical field (Â1). The optical magnetic force is ig-
nored. Then the perturbation is described by the Hamil-
tonian

Ĥ1 = − e

mo
Â1 ·

(
p̂ − eÂ0

)
. (55)

Now the total density operator is assumed to be a sum
of the equilibrium operator plus some change caused by
the perturbation:

ρ̂ = ρ̂0 + ρ̂1 . (56)

As the total Hamiltonian also is a sum of unper-
turbed and perturbation parts, we can use the fact
that [Ĥ0, ρ̂0] = 0, and ignore the small nonlinear term
[Ĥ1, ρ̂1] ≈ 0, then the equation of motion for the pertur-
bation is

i!
∂ρ̂1

∂t
≈ [Ĥ0, ρ̂1] + [Ĥ1, ρ̂0] . (57)

Now assume expansions of Ĥ1 and of ρ̂1 in the unper-
turbed basis states,

Ĥ1 =
∑
if

|f〉〈f |Ĥ1|i〉〈i|, ρ̂1 =
∑
if

cfi|f〉〈i|. (58)

The constants cfi = 〈f |ρ̂1|i〉 are just the matrix elements
of ρ̂1, in the H0 basis states. After evaluation of the
commutators, and assuming e−iωt time dependence for
ρ̂1, the constants cfi are found, and the change in the
density operator is found to be

ρ̂1 =
∑
if

(wi − wf )|f〉〈f |Ĥ1|i〉〈i|
!(ω + iγ) + (Ei − Ef )

. (59)

A small imaginary part γ has been added to the fre-
quency to effect the turning on of the perturbation. This

constant can be considered a phenomenological damping
constant, or, it can be let to go to zero if the results with-
out damping are of interest. This expression has been
used in various problems by Adler21 and in the thesis
of M. Prange.32 Ei and Ef are energies of two states of
the unperturbed Hamiltonian. One can think that the
expression involves transitions between pairs of states.
Obviously the oscillatory time behavior of the perturba-
tion Hamiltonian must be reflected in a similar behavior
in this part of the density matrix. Thus, we are inter-
ested only in the response in the density matrix at the
same frequency as the perturbation.

B. Thermal and volume averages

To find the dielectric function, statistical averages of
the polarization or the current density are necessary.
This can be done by first defining a local quantum op-
erator, ρ̂e(r) for the one-electron charge density,

ρ̂e(r) = e|r〉〈r| , (60)

and another, ĵ(r), for the one-electron current density,

ĵ(r) =
e

2
{|r〉〈r|v̂ + v̂|r〉〈r|} . (61)

The current density operator is defined in terms of the
electron velocity,

v̂ =
'π

mo
=

1

mo

(
p̂− eÂ

)
. (62)

The statistically averaged values of these operators are
found from the trace with the density operator,

ρe(r) = 〈ρ̂e(r)〉 = Tr {ρ̂ρ̂e(r)} , (63)

j(r) = 〈ĵ(r)〉 = Tr
{
ρ̂ĵ(r)

}
. (64)

In a pure state |ψ〉, with density operator ρ̂ = |ψ〉〈ψ|,
these produce the usual expressions for the quantum
charge and current densities at point r,

ρe(r) = e|ψ(r)|2 , (65)

j(r) = Re {ψ∗(r)ev̂ψ(r)} . (66)

We can also define the local polarization operator using
the electron position,

d̂(r) = er̂|r〉〈r| , (67)

which is statistically averaged by the same procedure,

d(r) = Tr
{

ρ̂d̂(r)
}

. (68)

At some point in the calculation the volume averages
are desired, to describe ε(ω) for the whole sample. These

The perturbation.
Let light shine on the sample:

9

the state probabilities wi is

ρ̂0 =
∑

i

wi|ψi〉〈ψi| . (52)

For the equilibrium distribution, the weights are taken
as proportional to the Fermi-Dirac occupation numbers,

wi =
1

N
f0(Ei), f0(Ei) =

1

eβ(Ei−EF ) + 1
, (53)

where β is the inverse temperature and EF is the Fermi
level. This is a density matrix normalized to one for N
electrons in the system. The time derivative of a general
ρ̂ follows from the quantum Liouville equation:

∂ρ̂

∂t
=

1

i!
[Ĥ, ρ̂] . (54)

To apply this, we consider the leading perturbation
term in the Hamiltonian, which is the electric force from
the optical field (Â1). The optical magnetic force is ig-
nored. Then the perturbation is described by the Hamil-
tonian

Ĥ1 = − e

mo
Â1 ·

(
p̂ − eÂ0

)
. (55)

Now the total density operator is assumed to be a sum
of the equilibrium operator plus some change caused by
the perturbation:

ρ̂ = ρ̂0 + ρ̂1 . (56)

As the total Hamiltonian also is a sum of unper-
turbed and perturbation parts, we can use the fact
that [Ĥ0, ρ̂0] = 0, and ignore the small nonlinear term
[Ĥ1, ρ̂1] ≈ 0, then the equation of motion for the pertur-
bation is

i!
∂ρ̂1

∂t
≈ [Ĥ0, ρ̂1] + [Ĥ1, ρ̂0] . (57)

Now assume expansions of Ĥ1 and of ρ̂1 in the unper-
turbed basis states,

Ĥ1 =
∑
if

|f〉〈f |Ĥ1|i〉〈i|, ρ̂1 =
∑
if

cfi|f〉〈i|. (58)

The constants cfi = 〈f |ρ̂1|i〉 are just the matrix elements
of ρ̂1, in the H0 basis states. After evaluation of the
commutators, and assuming e−iωt time dependence for
ρ̂1, the constants cfi are found, and the change in the
density operator is found to be

ρ̂1 =
∑
if

(wi − wf )|f〉〈f |Ĥ1|i〉〈i|
!(ω + iγ) + (Ei − Ef )

. (59)

A small imaginary part γ has been added to the fre-
quency to effect the turning on of the perturbation. This

constant can be considered a phenomenological damping
constant, or, it can be let to go to zero if the results with-
out damping are of interest. This expression has been
used in various problems by Adler21 and in the thesis
of M. Prange.32 Ei and Ef are energies of two states of
the unperturbed Hamiltonian. One can think that the
expression involves transitions between pairs of states.
Obviously the oscillatory time behavior of the perturba-
tion Hamiltonian must be reflected in a similar behavior
in this part of the density matrix. Thus, we are inter-
ested only in the response in the density matrix at the
same frequency as the perturbation.

B. Thermal and volume averages

To find the dielectric function, statistical averages of
the polarization or the current density are necessary.
This can be done by first defining a local quantum op-
erator, ρ̂e(r) for the one-electron charge density,

ρ̂e(r) = e|r〉〈r| , (60)

and another, ĵ(r), for the one-electron current density,

ĵ(r) =
e

2
{|r〉〈r|v̂ + v̂|r〉〈r|} . (61)

The current density operator is defined in terms of the
electron velocity,

v̂ =
'π

mo
=

1

mo

(
p̂− eÂ

)
. (62)

The statistically averaged values of these operators are
found from the trace with the density operator,

ρe(r) = 〈ρ̂e(r)〉 = Tr {ρ̂ρ̂e(r)} , (63)

j(r) = 〈ĵ(r)〉 = Tr
{
ρ̂ĵ(r)

}
. (64)

In a pure state |ψ〉, with density operator ρ̂ = |ψ〉〈ψ|,
these produce the usual expressions for the quantum
charge and current densities at point r,

ρe(r) = e|ψ(r)|2 , (65)

j(r) = Re {ψ∗(r)ev̂ψ(r)} . (66)

We can also define the local polarization operator using
the electron position,

d̂(r) = er̂|r〉〈r| , (67)

which is statistically averaged by the same procedure,

d(r) = Tr
{

ρ̂d̂(r)
}

. (68)

At some point in the calculation the volume averages
are desired, to describe ε(ω) for the whole sample. These

due to optical field ~ e-iωt

quantum Liouville equation ⇒ dynamics:

9

the state probabilities wi is

ρ̂0 =
∑

i

wi|ψi〉〈ψi| . (52)

For the equilibrium distribution, the weights are taken
as proportional to the Fermi-Dirac occupation numbers,

wi =
1

N
f0(Ei), f0(Ei) =

1

eβ(Ei−EF ) + 1
, (53)

where β is the inverse temperature and EF is the Fermi
level. This is a density matrix normalized to one for N
electrons in the system. The time derivative of a general
ρ̂ follows from the quantum Liouville equation:

∂ρ̂

∂t
=

1

i!
[Ĥ, ρ̂] . (54)

To apply this, we consider the leading perturbation
term in the Hamiltonian, which is the electric force from
the optical field (Â1). The optical magnetic force is ig-
nored. Then the perturbation is described by the Hamil-
tonian

Ĥ1 = − e

mo
Â1 ·

(
p̂ − eÂ0

)
. (55)

Now the total density operator is assumed to be a sum
of the equilibrium operator plus some change caused by
the perturbation:

ρ̂ = ρ̂0 + ρ̂1 . (56)

As the total Hamiltonian also is a sum of unper-
turbed and perturbation parts, we can use the fact
that [Ĥ0, ρ̂0] = 0, and ignore the small nonlinear term
[Ĥ1, ρ̂1] ≈ 0, then the equation of motion for the pertur-
bation is

i!
∂ρ̂1

∂t
≈ [Ĥ0, ρ̂1] + [Ĥ1, ρ̂0] . (57)

Now assume expansions of Ĥ1 and of ρ̂1 in the unper-
turbed basis states,

Ĥ1 =
∑
if

|f〉〈f |Ĥ1|i〉〈i|, ρ̂1 =
∑
if

cfi|f〉〈i|. (58)

The constants cfi = 〈f |ρ̂1|i〉 are just the matrix elements
of ρ̂1, in the H0 basis states. After evaluation of the
commutators, and assuming e−iωt time dependence for
ρ̂1, the constants cfi are found, and the change in the
density operator is found to be

ρ̂1 =
∑
if

(wi − wf )|f〉〈f |Ĥ1|i〉〈i|
!(ω + iγ) + (Ei − Ef )

. (59)

A small imaginary part γ has been added to the fre-
quency to effect the turning on of the perturbation. This

constant can be considered a phenomenological damping
constant, or, it can be let to go to zero if the results with-
out damping are of interest. This expression has been
used in various problems by Adler21 and in the thesis
of M. Prange.32 Ei and Ef are energies of two states of
the unperturbed Hamiltonian. One can think that the
expression involves transitions between pairs of states.
Obviously the oscillatory time behavior of the perturba-
tion Hamiltonian must be reflected in a similar behavior
in this part of the density matrix. Thus, we are inter-
ested only in the response in the density matrix at the
same frequency as the perturbation.

B. Thermal and volume averages

To find the dielectric function, statistical averages of
the polarization or the current density are necessary.
This can be done by first defining a local quantum op-
erator, ρ̂e(r) for the one-electron charge density,

ρ̂e(r) = e|r〉〈r| , (60)

and another, ĵ(r), for the one-electron current density,

ĵ(r) =
e

2
{|r〉〈r|v̂ + v̂|r〉〈r|} . (61)

The current density operator is defined in terms of the
electron velocity,

v̂ =
'π

mo
=

1

mo

(
p̂− eÂ

)
. (62)

The statistically averaged values of these operators are
found from the trace with the density operator,

ρe(r) = 〈ρ̂e(r)〉 = Tr {ρ̂ρ̂e(r)} , (63)

j(r) = 〈ĵ(r)〉 = Tr
{
ρ̂ĵ(r)

}
. (64)

In a pure state |ψ〉, with density operator ρ̂ = |ψ〉〈ψ|,
these produce the usual expressions for the quantum
charge and current densities at point r,

ρe(r) = e|ψ(r)|2 , (65)

j(r) = Re {ψ∗(r)ev̂ψ(r)} . (66)

We can also define the local polarization operator using
the electron position,

d̂(r) = er̂|r〉〈r| , (67)

which is statistically averaged by the same procedure,

d(r) = Tr
{

ρ̂d̂(r)
}

. (68)

At some point in the calculation the volume averages
are desired, to describe ε(ω) for the whole sample. These

leads to the time-dependence 
of the density operator:

*Approach used by Boswarva, Howard and Lidiard (1962);  Adler (1962); Prange (2009).
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the state probabilities wi is

ρ̂0 =
∑

i

wi|ψi〉〈ψi| . (52)

For the equilibrium distribution, the weights are taken
as proportional to the Fermi-Dirac occupation numbers,

wi =
1

N
f0(Ei), f0(Ei) =

1

eβ(Ei−EF ) + 1
, (53)

where β is the inverse temperature and EF is the Fermi
level. This is a density matrix normalized to one for N
electrons in the system. The time derivative of a general
ρ̂ follows from the quantum Liouville equation:

∂ρ̂

∂t
=

1

i!
[Ĥ, ρ̂] . (54)

To apply this, we consider the leading perturbation
term in the Hamiltonian, which is the electric force from
the optical field (Â1). The optical magnetic force is ig-
nored. Then the perturbation is described by the Hamil-
tonian

Ĥ1 = − e

mo
Â1 ·

(
p̂ − eÂ0

)
. (55)

Now the total density operator is assumed to be a sum
of the equilibrium operator plus some change caused by
the perturbation:

ρ̂ = ρ̂0 + ρ̂1 . (56)

As the total Hamiltonian also is a sum of unper-
turbed and perturbation parts, we can use the fact
that [Ĥ0, ρ̂0] = 0, and ignore the small nonlinear term
[Ĥ1, ρ̂1] ≈ 0, then the equation of motion for the pertur-
bation is

i!
∂ρ̂1

∂t
≈ [Ĥ0, ρ̂1] + [Ĥ1, ρ̂0] . (57)

Now assume expansions of Ĥ1 and of ρ̂1 in the unper-
turbed basis states,

Ĥ1 =
∑
if

|f〉〈f |Ĥ1|i〉〈i|, ρ̂1 =
∑
if

cfi|f〉〈i|. (58)

The constants cfi = 〈f |ρ̂1|i〉 are just the matrix elements
of ρ̂1, in the H0 basis states. After evaluation of the
commutators, and assuming e−iωt time dependence for
ρ̂1, the constants cfi are found, and the change in the
density operator is found to be

ρ̂1 =
∑
if

(wi − wf )|f〉〈f |Ĥ1|i〉〈i|
!(ω + iγ) + (Ei − Ef )

. (59)

A small imaginary part γ has been added to the fre-
quency to effect the turning on of the perturbation. This

constant can be considered a phenomenological damping
constant, or, it can be let to go to zero if the results with-
out damping are of interest. This expression has been
used in various problems by Adler21 and in the thesis
of M. Prange.32 Ei and Ef are energies of two states of
the unperturbed Hamiltonian. One can think that the
expression involves transitions between pairs of states.
Obviously the oscillatory time behavior of the perturba-
tion Hamiltonian must be reflected in a similar behavior
in this part of the density matrix. Thus, we are inter-
ested only in the response in the density matrix at the
same frequency as the perturbation.

B. Thermal and volume averages

To find the dielectric function, statistical averages of
the polarization or the current density are necessary.
This can be done by first defining a local quantum op-
erator, ρ̂e(r) for the one-electron charge density,

ρ̂e(r) = e|r〉〈r| , (60)

and another, ĵ(r), for the one-electron current density,

ĵ(r) =
e

2
{|r〉〈r|v̂ + v̂|r〉〈r|} . (61)

The current density operator is defined in terms of the
electron velocity,

v̂ =
'π

mo
=

1

mo

(
p̂− eÂ

)
. (62)

The statistically averaged values of these operators are
found from the trace with the density operator,

ρe(r) = 〈ρ̂e(r)〉 = Tr {ρ̂ρ̂e(r)} , (63)

j(r) = 〈ĵ(r)〉 = Tr
{
ρ̂ĵ(r)

}
. (64)

In a pure state |ψ〉, with density operator ρ̂ = |ψ〉〈ψ|,
these produce the usual expressions for the quantum
charge and current densities at point r,

ρe(r) = e|ψ(r)|2 , (65)

j(r) = Re {ψ∗(r)ev̂ψ(r)} . (66)

We can also define the local polarization operator using
the electron position,

d̂(r) = er̂|r〉〈r| , (67)

which is statistically averaged by the same procedure,

d(r) = Tr
{

ρ̂d̂(r)
}

. (68)

At some point in the calculation the volume averages
are desired, to describe ε(ω) for the whole sample. These

electron’s electric dipole operator:
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the state probabilities wi is

ρ̂0 =
∑

i

wi|ψi〉〈ψi| . (52)

For the equilibrium distribution, the weights are taken
as proportional to the Fermi-Dirac occupation numbers,

wi =
1

N
f0(Ei), f0(Ei) =

1

eβ(Ei−EF ) + 1
, (53)

where β is the inverse temperature and EF is the Fermi
level. This is a density matrix normalized to one for N
electrons in the system. The time derivative of a general
ρ̂ follows from the quantum Liouville equation:

∂ρ̂

∂t
=

1

i!
[Ĥ, ρ̂] . (54)

To apply this, we consider the leading perturbation
term in the Hamiltonian, which is the electric force from
the optical field (Â1). The optical magnetic force is ig-
nored. Then the perturbation is described by the Hamil-
tonian

Ĥ1 = − e

mo
Â1 ·

(
p̂ − eÂ0

)
. (55)

Now the total density operator is assumed to be a sum
of the equilibrium operator plus some change caused by
the perturbation:

ρ̂ = ρ̂0 + ρ̂1 . (56)

As the total Hamiltonian also is a sum of unper-
turbed and perturbation parts, we can use the fact
that [Ĥ0, ρ̂0] = 0, and ignore the small nonlinear term
[Ĥ1, ρ̂1] ≈ 0, then the equation of motion for the pertur-
bation is

i!
∂ρ̂1

∂t
≈ [Ĥ0, ρ̂1] + [Ĥ1, ρ̂0] . (57)

Now assume expansions of Ĥ1 and of ρ̂1 in the unper-
turbed basis states,

Ĥ1 =
∑
if

|f〉〈f |Ĥ1|i〉〈i|, ρ̂1 =
∑
if

cfi|f〉〈i|. (58)

The constants cfi = 〈f |ρ̂1|i〉 are just the matrix elements
of ρ̂1, in the H0 basis states. After evaluation of the
commutators, and assuming e−iωt time dependence for
ρ̂1, the constants cfi are found, and the change in the
density operator is found to be

ρ̂1 =
∑
if

(wi − wf )|f〉〈f |Ĥ1|i〉〈i|
!(ω + iγ) + (Ei − Ef )

. (59)

A small imaginary part γ has been added to the fre-
quency to effect the turning on of the perturbation. This

constant can be considered a phenomenological damping
constant, or, it can be let to go to zero if the results with-
out damping are of interest. This expression has been
used in various problems by Adler21 and in the thesis
of M. Prange.32 Ei and Ef are energies of two states of
the unperturbed Hamiltonian. One can think that the
expression involves transitions between pairs of states.
Obviously the oscillatory time behavior of the perturba-
tion Hamiltonian must be reflected in a similar behavior
in this part of the density matrix. Thus, we are inter-
ested only in the response in the density matrix at the
same frequency as the perturbation.

B. Thermal and volume averages

To find the dielectric function, statistical averages of
the polarization or the current density are necessary.
This can be done by first defining a local quantum op-
erator, ρ̂e(r) for the one-electron charge density,

ρ̂e(r) = e|r〉〈r| , (60)

and another, ĵ(r), for the one-electron current density,

ĵ(r) =
e

2
{|r〉〈r|v̂ + v̂|r〉〈r|} . (61)

The current density operator is defined in terms of the
electron velocity,

v̂ =
'π

mo
=

1

mo

(
p̂− eÂ

)
. (62)

The statistically averaged values of these operators are
found from the trace with the density operator,

ρe(r) = 〈ρ̂e(r)〉 = Tr {ρ̂ρ̂e(r)} , (63)

j(r) = 〈ĵ(r)〉 = Tr
{
ρ̂ĵ(r)

}
. (64)

In a pure state |ψ〉, with density operator ρ̂ = |ψ〉〈ψ|,
these produce the usual expressions for the quantum
charge and current densities at point r,

ρe(r) = e|ψ(r)|2 , (65)

j(r) = Re {ψ∗(r)ev̂ψ(r)} . (66)

We can also define the local polarization operator using
the electron position,

d̂(r) = er̂|r〉〈r| , (67)

which is statistically averaged by the same procedure,

d(r) = Tr
{

ρ̂d̂(r)
}

. (68)

At some point in the calculation the volume averages
are desired, to describe ε(ω) for the whole sample. These

averaged electric dipole at position r:

volume average ⇒ 
electric polarization:
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are obtained from the usual definition, say, for the charge
density (the overbar indicates volume average) due to N
electrons in a volume V ,

ρe =
N

V

∫
d3r ρe(r) =

Ne

V

∑
i

wi

∫
d3r |ψi(r)|2 . (69)

The individual electron states ψi are unit normalized and
the probabilities sum to one. This recovers an obvious
result,

ρ = Nρe =
N

V
Tr {ρ̂e} = ne . (70)

For the current density and the electric polarization,
there are similar expressions,

J = N j =
N

V

∫
d3r j(r) = Tr {ρ̂nev̂} , (71)

P = Nd =
N

V

∫
d3r d(r) = Tr {ρ̂ner̂} . (72)

For the most part, we use the averaging of the operator,

P̂ = ner̂ , (73)

to determine the volume-averaged polarization response.

C. Averaged electric polarization response

The perturbation oscillates at frequency ω and there-
fore we get the response in the electric polarization P
that oscillates at the same frequency, using only the
change ρ̂1 in the density matrix,

P = Tr
{
ρ̂1P̂

}
= ne

∑
if

〈f |ρ̂1|i〉〈i|r̂|f〉 . (74)

This requires matrix elements of the position operator
in the unperturbed basis states. Those can be obtained

from the equation of motion in the unperturbed system,

i! ˙̂r = i!v̂ = [r̂, Ĥ0] . (75)

Then the needed matrix elements can be expressed using
the velocity,

〈i|r̂|f〉 =
i!

(Ef − Ei)
〈i|v̂|f〉 . (76)

The optical electric field is E = −(∂Â1/∂t) = i(ω +
iγ)Â1, including the turning on of the perturbation. The
perturbation can be expressed now as

Ĥ1 = −eÂ1 · v̂ =
−e

i(ω + iγ)
E · v̂ , (77)

The operator v̂ need include only the DC vector poten-
tial, Â0. Then the matrix elements of both ρ̂ and Ĥ1

come from the velocity. The result for the averaged elec-
tric polarization is expressed as

P =
ne2!

(ω + iγ)

∑
if

(wi − wf )〈i|v̂ |f〉〈f |E · v̂ |i〉
[!(ω + iγ) + Ei − Ef ] (Ei − Ef )

.

(78)
As E is assumed to oscillate at frequency ω, this is indeed
the response oscillating at that same frequency. The
damping γ is necessary so that an appropriate limit gives
the classical damped responses found earlier.

With the transition frequencies given by

!ωif = Ei − Ef , (79)

the susceptibility components that result from (78) are

χab =
ne2

ε0!(ω + iγ)

∑
if

(wi − wf )〈i|v̂a|f〉〈f |v̂b|i〉
ωif (ω + iγ + ωif )

. (80)

We apply this to find only the effects from interband
transitions. The free electron response in (34) is still
applied for the quantum model.

The result can be symmetrized by labeling some states as occupied states (o) and the rest as unoccupied (u). All
terms correspond to transitions from occupied to unoccupied states. In this way the expression becomes

χab =
ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif

{ 〈i|v̂a|f〉〈f |v̂b|i〉
ω + iγ + ωif

+
〈i|v̂b|f〉〈f |v̂a|i〉
ω + iγ − ωif

}
(81)

D. Application to band models

To apply this result, we need to use the energy levels
appropriate for the bands under consideration. The dis-

cussion is restricted to a parabolic two-band model, with
the bands separated by some gap energy Eg. There are
effective masses m∗

h and m∗
e for the occupied (lower) and

unoccupied (higher) bands, respectively. Each band is
affected by the Zeeman shift in the same direction; there
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silver. The pulsed current to the coil is provided via
a simple RLC circuit. The capacitor bank of 77.3 µF
from Maxwell Laboratories is charged by a power sup-
ply/charger of Lumina Power, Inc. The power supply
uses 100-240 V AC-50/60 Hz input and output of 10 kV
at 500 J/s in continuous operation. The charge from the
capacitor bank is discharged into the coil via a high volt-
age trigger spark gap. The current is monitored in the
circuit via a Rogowski coil, which measures the current
derivative.

The Faraday rotation of the nanoparticle solutions is
measured in a plastic cell placed in the coil. A flash
light source is triggered along with the pulsed magnet
that allows the synchronization of the magnet with the
optical measurement. The duration of the light pulse
is 1.4 µs, while the duration of the magnetic pulse is
∼ 50 µs, which allows that during the optical measure-
ment the magnetic field is relatively constant. In front
of the flash light source a polarizer is placed to produce
polarized light for the Faraday measurement. The po-
larized light passes through the sample containing the
nanoparticle solutions. The light leaving the optical cell
passes through another polarizer that is set to 45 degree
with respect the first polarizer. The light then enters a
fiber optic spectrometer, which is also synchronized with
the pulsed magnet and the light source. The Faraday ro-
tation is calculated from the intensity change in the spec-
trum before and after the magnetic pulse. The magnetic
field and the Faraday rotation setup are calibrated with
water placed into the optical cell. The measurements are
taken at 4.2 tesla magnetic fields.

III. THEORY: DIELECTRIC POLARIZATION,
CURRENTS, ε(ω) AND FARADAY ROTATION

We consider EM radiation at frequency ω with the
electric field E(t) ∼ e−iωt, incident on a material particle
(an individual NP) much smaller then the wavelength
(the Rayleigh limit). Then the field E is taken as uniform
inside the sample. The dielectric properties are based on
the averaged dipole moment of the electrons of charge e,
d = er. For n = N/V electrons per unit volume, the
electric polarization can be expressed as

P = n〈d〉 = χ̃ · ε0E , (5)

where ε0 is the permittivity of vacuum and χ̃ is the sus-
ceptibility tensor that is to be found. The dielectric func-
tion considered as a tensor ε̃ is defined via the electric
displacement D = ε0ε̃ · E or

D = ε0E + P , (6)

from which the usual definition results,

ε̃ = 1 + χ̃ . (7)

It is useful to realize another way to get to ε̃, via aver-
aging of the microscopic currents, i.e., those caused by
the optical fields. The dielectric medium under study
has current density J, which combines with the vacuum
displacement current. In this view the Ampere/Maxwell
Law is

∇× H = J + ε0
∂E

∂t
. (8)

All the effects of the medium are contained in J. This
must be equivalent to the alternative viewpoint that the
currents are represented instead by a dielectric function,

∇× H =
∂D

∂t
. (9)

Considered at the frequency of the EM radiation with
time derivatives ∂/∂t → −iω, these alternate views give

J = −iωε0 (ε̃ − 1) · E = −iωχ̃ · ε0E . (10)

Thus, an averaging of the microscopic currents will also
lead to the susceptibility and dielectric tensors.

We assume that the DC magnetic field B is along the
ẑ-direction, the same as the propagation direction of the
EM waves, with wave vector k = kẑ. Then the elec-
tric field in the waves has only xy components; only the
transverse part of the dielectric tensor is needed. In this
situation it has the following symmetry27

ε̃ =

[
εxx εxy

−εxy εxx

]
=

[
εxx iExy

−iExy εxx

]
. (11)

The off-diagonal elements are determined by the DC
magnetic field; they vanish when B = 0. The vari-
able Exy = −iεxy is convenient later; it is real in the
absence of electron damping. The EM waves that prop-
agate without any change in polarization are those with
polarization vectors that are eigenvectors of ε̃. These
eigenstates are the usual states of right and left circu-
lar polarization. Thus, solving the eigenvector problem,
ε̃ · ûi = εiûi, i = 1, 2, with eigenvalues εi and eigen-
vectors ûi, one finds the right circular polarization state
(negative helicity) with Ey = −iEx:

εR = εxx + Exy , ûR = 1√
2
(x̂ − iŷ) , (12)

and the left circular polarization state (positive helicity)
with Ey = +iEx:

εL = εxx − Exy , ûL = 1√
2
(x̂ + iŷ) . (13)

Each mode has a different wave vector for propagation,
according to expression (4). Then starting from a lin-
early polarized wave at position z = 0, its right and
left circular components get out of phase by the time it

E&M theory says:
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are obtained from the usual definition, say, for the charge
density (the overbar indicates volume average) due to N
electrons in a volume V ,

ρe =
N

V

∫
d3r ρe(r) =

Ne

V

∑
i

wi

∫
d3r |ψi(r)|2 . (69)

The individual electron states ψi are unit normalized and
the probabilities sum to one. This recovers an obvious
result,

ρ = Nρe =
N

V
Tr {ρ̂e} = ne . (70)

For the current density and the electric polarization,
there are similar expressions,

J = N j =
N

V

∫
d3r j(r) = Tr {ρ̂nev̂} , (71)

P = Nd =
N

V

∫
d3r d(r) = Tr {ρ̂ner̂} . (72)

For the most part, we use the averaging of the operator,

P̂ = ner̂ , (73)

to determine the volume-averaged polarization response.

C. Averaged electric polarization response

The perturbation oscillates at frequency ω and there-
fore we get the response in the electric polarization P
that oscillates at the same frequency, using only the
change ρ̂1 in the density matrix,

P = Tr
{
ρ̂1P̂

}
= ne

∑
if

〈f |ρ̂1|i〉〈i|r̂|f〉 . (74)

This requires matrix elements of the position operator
in the unperturbed basis states. Those can be obtained

from the equation of motion in the unperturbed system,

i! ˙̂r = i!v̂ = [r̂, Ĥ0] . (75)

Then the needed matrix elements can be expressed using
the velocity,

〈i|r̂|f〉 =
i!

(Ef − Ei)
〈i|v̂|f〉 . (76)

The optical electric field is E = −(∂Â1/∂t) = i(ω +
iγ)Â1, including the turning on of the perturbation. The
perturbation can be expressed now as

Ĥ1 = −eÂ1 · v̂ =
−e

i(ω + iγ)
E · v̂ , (77)

The operator v̂ need include only the DC vector poten-
tial, Â0. Then the matrix elements of both ρ̂ and Ĥ1

come from the velocity. The result for the averaged elec-
tric polarization is expressed as

P =
ne2!

(ω + iγ)

∑
if

(wi − wf )〈i|v̂ |f〉〈f |E · v̂ |i〉
[!(ω + iγ) + Ei − Ef ] (Ei − Ef )

.

(78)
As E is assumed to oscillate at frequency ω, this is indeed
the response oscillating at that same frequency. The
damping γ is necessary so that an appropriate limit gives
the classical damped responses found earlier.

With the transition frequencies given by

!ωif = Ei − Ef , (79)

the susceptibility components that result from (78) are

χab =
ne2

ε0!(ω + iγ)

∑
if

(wi − wf )〈i|v̂a|f〉〈f |v̂b|i〉
ωif (ω + iγ + ωif )

. (80)

We apply this to find only the effects from interband
transitions. The free electron response in (34) is still
applied for the quantum model.

The result can be symmetrized by labeling some states as occupied states (o) and the rest as unoccupied (u). All
terms correspond to transitions from occupied to unoccupied states. In this way the expression becomes

χab =
ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif

{ 〈i|v̂a|f〉〈f |v̂b|i〉
ω + iγ + ωif

+
〈i|v̂b|f〉〈f |v̂a|i〉
ω + iγ − ωif

}
(81)

D. Application to band models

To apply this result, we need to use the energy levels
appropriate for the bands under consideration. The dis-

cussion is restricted to a parabolic two-band model, with
the bands separated by some gap energy Eg. There are
effective masses m∗

h and m∗
e for the occupied (lower) and

unoccupied (higher) bands, respectively. Each band is
affected by the Zeeman shift in the same direction; there

get susceptibility from:
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the state probabilities wi is

ρ̂0 =
∑

i

wi|ψi〉〈ψi| . (52)

For the equilibrium distribution, the weights are taken
as proportional to the Fermi-Dirac occupation numbers,

wi =
1

N
f0(Ei), f0(Ei) =

1

eβ(Ei−EF ) + 1
, (53)

where β is the inverse temperature and EF is the Fermi
level. This is a density matrix normalized to one for N
electrons in the system. The time derivative of a general
ρ̂ follows from the quantum Liouville equation:

∂ρ̂

∂t
=

1

i!
[Ĥ, ρ̂] . (54)

To apply this, we consider the leading perturbation
term in the Hamiltonian, which is the electric force from
the optical field (Â1). The optical magnetic force is ig-
nored. Then the perturbation is described by the Hamil-
tonian

Ĥ1 = − e

mo
Â1 ·

(
p̂ − eÂ0

)
. (55)

Now the total density operator is assumed to be a sum
of the equilibrium operator plus some change caused by
the perturbation:

ρ̂ = ρ̂0 + ρ̂1 . (56)

As the total Hamiltonian also is a sum of unper-
turbed and perturbation parts, we can use the fact
that [Ĥ0, ρ̂0] = 0, and ignore the small nonlinear term
[Ĥ1, ρ̂1] ≈ 0, then the equation of motion for the pertur-
bation is

i!
∂ρ̂1

∂t
≈ [Ĥ0, ρ̂1] + [Ĥ1, ρ̂0] . (57)

Now assume expansions of Ĥ1 and of ρ̂1 in the unper-
turbed basis states,

Ĥ1 =
∑
if

|f〉〈f |Ĥ1|i〉〈i|, ρ̂1 =
∑
if

cfi|f〉〈i|. (58)

The constants cfi = 〈f |ρ̂1|i〉 are just the matrix elements
of ρ̂1, in the H0 basis states. After evaluation of the
commutators, and assuming e−iωt time dependence for
ρ̂1, the constants cfi are found, and the change in the
density operator is found to be

ρ̂1 =
∑
if

(wi − wf )|f〉〈f |Ĥ1|i〉〈i|
!(ω + iγ) + (Ei − Ef )

. (59)

A small imaginary part γ has been added to the fre-
quency to effect the turning on of the perturbation. This

constant can be considered a phenomenological damping
constant, or, it can be let to go to zero if the results with-
out damping are of interest. This expression has been
used in various problems by Adler21 and in the thesis
of M. Prange.32 Ei and Ef are energies of two states of
the unperturbed Hamiltonian. One can think that the
expression involves transitions between pairs of states.
Obviously the oscillatory time behavior of the perturba-
tion Hamiltonian must be reflected in a similar behavior
in this part of the density matrix. Thus, we are inter-
ested only in the response in the density matrix at the
same frequency as the perturbation.

B. Thermal and volume averages

To find the dielectric function, statistical averages of
the polarization or the current density are necessary.
This can be done by first defining a local quantum op-
erator, ρ̂e(r) for the one-electron charge density,

ρ̂e(r) = e|r〉〈r| , (60)

and another, ĵ(r), for the one-electron current density,

ĵ(r) =
e

2
{|r〉〈r|v̂ + v̂|r〉〈r|} . (61)

The current density operator is defined in terms of the
electron velocity,

v̂ =
'π

mo
=

1

mo

(
p̂− eÂ

)
. (62)

The statistically averaged values of these operators are
found from the trace with the density operator,

ρe(r) = 〈ρ̂e(r)〉 = Tr {ρ̂ρ̂e(r)} , (63)

j(r) = 〈ĵ(r)〉 = Tr
{
ρ̂ĵ(r)

}
. (64)

In a pure state |ψ〉, with density operator ρ̂ = |ψ〉〈ψ|,
these produce the usual expressions for the quantum
charge and current densities at point r,

ρe(r) = e|ψ(r)|2 , (65)

j(r) = Re {ψ∗(r)ev̂ψ(r)} . (66)

We can also define the local polarization operator using
the electron position,

d̂(r) = er̂|r〉〈r| , (67)

which is statistically averaged by the same procedure,

d(r) = Tr
{

ρ̂d̂(r)
}

. (68)

At some point in the calculation the volume averages
are desired, to describe ε(ω) for the whole sample. These
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are obtained from the usual definition, say, for the charge
density (the overbar indicates volume average) due to N
electrons in a volume V ,

ρe =
N

V

∫
d3r ρe(r) =

Ne

V

∑
i

wi

∫
d3r |ψi(r)|2 . (69)

The individual electron states ψi are unit normalized and
the probabilities sum to one. This recovers an obvious
result,

ρ = Nρe =
N

V
Tr {ρ̂e} = ne . (70)

For the current density and the electric polarization,
there are similar expressions,

J = N j =
N

V

∫
d3r j(r) = Tr {ρ̂nev̂} , (71)

P = Nd =
N

V

∫
d3r d(r) = Tr {ρ̂ner̂} . (72)

For the most part, we use the averaging of the operator,

P̂ = ner̂ , (73)

to determine the volume-averaged polarization response.

C. Averaged electric polarization response

The perturbation oscillates at frequency ω and there-
fore we get the response in the electric polarization P
that oscillates at the same frequency, using only the
change ρ̂1 in the density matrix,

P = Tr
{
ρ̂1P̂

}
= ne

∑
if

〈f |ρ̂1|i〉〈i|r̂|f〉 . (74)

This requires matrix elements of the position operator
in the unperturbed basis states. Those can be obtained

from the equation of motion in the unperturbed system,

i! ˙̂r = i!v̂ = [r̂, Ĥ0] . (75)

Then the needed matrix elements can be expressed using
the velocity,

〈i|r̂|f〉 =
i!

(Ef − Ei)
〈i|v̂|f〉 . (76)

The optical electric field is E = −(∂Â1/∂t) = i(ω +
iγ)Â1, including the turning on of the perturbation. The
perturbation can be expressed now as

Ĥ1 = −eÂ1 · v̂ =
−e

i(ω + iγ)
E · v̂ , (77)

The operator v̂ need include only the DC vector poten-
tial, Â0. Then the matrix elements of both ρ̂ and Ĥ1

come from the velocity. The result for the averaged elec-
tric polarization is expressed as

P =
ne2!

(ω + iγ)

∑
if

(wi − wf )〈i|v̂ |f〉〈f |E · v̂ |i〉
[!(ω + iγ) + Ei − Ef ] (Ei − Ef )

.

(78)
As E is assumed to oscillate at frequency ω, this is indeed
the response oscillating at that same frequency. The
damping γ is necessary so that an appropriate limit gives
the classical damped responses found earlier.

With the transition frequencies given by

!ωif = Ei − Ef , (79)

the susceptibility components that result from (78) are

χab =
ne2

ε0!(ω + iγ)

∑
if

(wi − wf )〈i|v̂a|f〉〈f |v̂b|i〉
ωif (ω + iγ + ωif )

. (80)

We apply this to find only the effects from interband
transitions. The free electron response in (34) is still
applied for the quantum model.

The result can be symmetrized by labeling some states as occupied states (o) and the rest as unoccupied (u). All
terms correspond to transitions from occupied to unoccupied states. In this way the expression becomes

χab =
ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif

{ 〈i|v̂a|f〉〈f |v̂b|i〉
ω + iγ + ωif

+
〈i|v̂b|f〉〈f |v̂a|i〉
ω + iγ − ωif

}
(81)

D. Application to band models

To apply this result, we need to use the energy levels
appropriate for the bands under consideration. The dis-

cussion is restricted to a parabolic two-band model, with
the bands separated by some gap energy Eg. There are
effective masses m∗

h and m∗
e for the occupied (lower) and

unoccupied (higher) bands, respectively. Each band is
affected by the Zeeman shift in the same direction; there



What kinds of transitions are considered?

10

are obtained from the usual definition, say, for the charge
density (the overbar indicates volume average) due to N
electrons in a volume V ,

ρe =
N

V

∫
d3r ρe(r) =

Ne

V

∑
i

wi

∫
d3r |ψi(r)|2 . (69)

The individual electron states ψi are unit normalized and
the probabilities sum to one. This recovers an obvious
result,

ρ = Nρe =
N

V
Tr {ρ̂e} = ne . (70)

For the current density and the electric polarization,
there are similar expressions,

J = N j =
N

V

∫
d3r j(r) = Tr {ρ̂nev̂} , (71)

P = Nd =
N

V

∫
d3r d(r) = Tr {ρ̂ner̂} . (72)

For the most part, we use the averaging of the operator,

P̂ = ner̂ , (73)

to determine the volume-averaged polarization response.

C. Averaged electric polarization response

The perturbation oscillates at frequency ω and there-
fore we get the response in the electric polarization P
that oscillates at the same frequency, using only the
change ρ̂1 in the density matrix,

P = Tr
{
ρ̂1P̂

}
= ne

∑
if

〈f |ρ̂1|i〉〈i|r̂|f〉 . (74)

This requires matrix elements of the position operator
in the unperturbed basis states. Those can be obtained

from the equation of motion in the unperturbed system,

i! ˙̂r = i!v̂ = [r̂, Ĥ0] . (75)
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Ĥ1 = −eÂ1 · v̂ =
−e

i(ω + iγ)
E · v̂ , (77)

The operator v̂ need include only the DC vector poten-
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We apply this to find only the effects from interband
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D. Application to band models

To apply this result, we need to use the energy levels
appropriate for the bands under consideration. The dis-

cussion is restricted to a parabolic two-band model, with
the bands separated by some gap energy Eg. There are
effective masses m∗

h and m∗
e for the occupied (lower) and

unoccupied (higher) bands, respectively. Each band is
affected by the Zeeman shift in the same direction; there

|i>

|f >

Zeeman split states, ΔE=½ћωB
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are not Landau level shifts. One can measure energies
from the top of the lower band. Then the energies Ei for
the occupied band (Eh, valence band) and the energies
Ef for the unoccupied band (Ee, conduction band) are
assumed to be

Ei = Eh = −!2k2
i

2m∗
h

− 1
2mi!ωB , (82)

Ef = Ee = Eg +
!2k2

f

2m∗
e
− 1

2mf!ωB , (83)

(84)

These Zeeman shifts apply to positive charges; they are
reversed in sign for negative charges, taking ωB < 0.
The azimuthal quantum numbers are mi and mf . They
are restricted by the orbital angular momentum num-
bers for each band, li and lf , respectively. Assuming
vertical transitions that conserve linear momentum !k
(negligible photon momentum), the transition energies
are

!ωif = −Eg − !2k2

2m∗ − 1
2 (mi − mf )!ωB , (85)

where the reduced mass m∗ is defined by

1

m∗ =
1

m∗
e

+
1

m∗
h

. (86)

We write the transition frequencies in the following man-
ner:

ωif = −ωg − s2 + 1
2∆m ωB , (87)

where the gap frequency ωg, scaled wave vector s, and
change in azimuthal quantum number ∆m are

ωg ≡ Eg

!
, s ≡

√
!

2m∗ k, ∆m ≡ mf − mi. (88)

Only momentum-conserving transitions between two
selected bands at some wave vector k are considered.
The matrix elements needed are approximated in a form

〈k′l′m′|v̂x|klm〉 =
!kx

mo
M(k)δk′,kδl′,l±1δm′,m±1 . (89)

The last Kronecker deltas reflect the electric dipole se-
lection rules, ∆l = ±1, ∆m = ±1. The dimensionless
matrix element M(k) is assumed to be some constant
for the transitions of interest.

These velocity matrix elements are proportional to
corresponding position matrix elements, see (76), or even
the matrix elements of the #π operator. We only need the
components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑
fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑
fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
izations vary like

χR = χxx − iχxy ∼
∑
fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑
fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)

In these expressions, only ∆m = −1 (∆m = +1) con-
tributes to χR (χL). Each factor is a Kronecker delta,
i.e., (1 ± ∆m) = 2δmf=mi±1. The following expressions
result for integration in the band model expressed us-
ing the transitions between occupied (lower band) and
unoccupied (higher band) states:

χR =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi−1

ω + iγ + ωif
+

δmf =mi+1

ω + iγ − ωif

}
, (95)

χL =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}
. (96)

11

are not Landau level shifts. One can measure energies
from the top of the lower band. Then the energies Ei for
the occupied band (Eh, valence band) and the energies
Ef for the unoccupied band (Ee, conduction band) are
assumed to be

Ei = Eh = −!2k2
i

2m∗
h

− 1
2mi!ωB , (82)

Ef = Ee = Eg +
!2k2

f

2m∗
e
− 1

2mf!ωB , (83)

(84)

These Zeeman shifts apply to positive charges; they are
reversed in sign for negative charges, taking ωB < 0.
The azimuthal quantum numbers are mi and mf . They
are restricted by the orbital angular momentum num-
bers for each band, li and lf , respectively. Assuming
vertical transitions that conserve linear momentum !k
(negligible photon momentum), the transition energies
are

!ωif = −Eg − !2k2

2m∗ − 1
2 (mi − mf )!ωB , (85)

where the reduced mass m∗ is defined by

1

m∗ =
1

m∗
e

+
1

m∗
h

. (86)

We write the transition frequencies in the following man-
ner:

ωif = −ωg − s2 + 1
2∆m ωB , (87)

where the gap frequency ωg, scaled wave vector s, and
change in azimuthal quantum number ∆m are

ωg ≡ Eg

!
, s ≡

√
!

2m∗ k, ∆m ≡ mf − mi. (88)

Only momentum-conserving transitions between two
selected bands at some wave vector k are considered.
The matrix elements needed are approximated in a form

〈k′l′m′|v̂x|klm〉 =
!kx

mo
M(k)δk′,kδl′,l±1δm′,m±1 . (89)

The last Kronecker deltas reflect the electric dipole se-
lection rules, ∆l = ±1, ∆m = ±1. The dimensionless
matrix element M(k) is assumed to be some constant
for the transitions of interest.

These velocity matrix elements are proportional to
corresponding position matrix elements, see (76), or even
the matrix elements of the #π operator. We only need the
components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑
fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑
fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
izations vary like

χR = χxx − iχxy ∼
∑
fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑
fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)
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χL =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}
. (96)

Now in presence of the DC B out of page, ie, !B = Bz ẑ, there are both magnetic and electric

forces acting. The electron is dragged around in the same circular sense as the EM waves,

frequecy ω. It is forced to move at ω.

CCW rotation =⇒ left circular polarization (positive helicity). Net centripetal

force towards center causes centripetal acceleration:

Fnet = eE0 + evBz = mω2r v = ωr (24)

Solving for the orbital radius in response to applied waves amplitude E0,

r =
eE0

mω2 − eωBz
=

eE0

mω(ω − ωB)
ωB =

eBz

m
(25)

CW rotation =⇒ right circular polarization (negative helicity). Net centripetal

force towards center causes centripetal acceleration:

Fnet = eE0 − evBz = mω2r v = ωr (26)

Solving for the orbital radius in response to applied waves amplitude E0,

r =
eE0

mω2 + eωBz
=

eE0

mω(ω + ωB)
ωB =

eBz

m
(27)

The size of the orbit is larger for right circular polarization. This affects how the wave

propagates thru the medium by changing the effective dielectric constant. Get electric

dipole moment, then find epsilon.

!p = −e!r ε !E = !D = ε0
!E + !P !P = n!p (28)

So we get the effective diagonal permittivity for each circular polarization via

ε =
D0

E0
=

ε0E0 + P

E0
= ε0 +

P

E0
ε = ε0 + n

p

E0
(29)

So the resulting dielectric permittivities are expressed by a single formula

ε = ε0 − ne2

mω(ω ± ωB)
ε = ε0

[
1− ne2

mε0ω(ω ± ωB)

]
(30)

Usually this is re-expressed using the bulk plasma frequency,

ε = ε0

[
1− ω2

p

ω(ω ± ωB)

]
+ /− for right/left polarization (31)
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1

m∗ =
1

m∗
e

+
1

m∗
h

. (86)

We write the transition frequencies in the following man-
ner:

ωif = −ωg − s2 + 1
2∆m ωB , (87)

where the gap frequency ωg, scaled wave vector s, and
change in azimuthal quantum number ∆m are

ωg ≡ Eg

!
, s ≡

√
!

2m∗ k, ∆m ≡ mf − mi. (88)

Only momentum-conserving transitions between two
selected bands at some wave vector k are considered.
The matrix elements needed are approximated in a form

〈k′l′m′|v̂x|klm〉 =
!kx

mo
M(k)δk′,kδl′,l±1δm′,m±1 . (89)

The last Kronecker deltas reflect the electric dipole se-
lection rules, ∆l = ±1, ∆m = ±1. The dimensionless
matrix element M(k) is assumed to be some constant
for the transitions of interest.

These velocity matrix elements are proportional to
corresponding position matrix elements, see (76), or even
the matrix elements of the #π operator. We only need the
components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑
fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑
fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
izations vary like

χR = χxx − iχxy ∼
∑
fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑
fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)

In these expressions, only ∆m = −1 (∆m = +1) con-
tributes to χR (χL). Each factor is a Kronecker delta,
i.e., (1 ± ∆m) = 2δmf=mi±1. The following expressions
result for integration in the band model expressed us-
ing the transitions between occupied (lower band) and
unoccupied (higher band) states:

χR =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi−1

ω + iγ + ωif
+

δmf =mi+1

ω + iγ − ωif

}
, (95)

χL =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}
. (96)



Why don’t Landau levels appear as modifications of the band states?

Note that in fact, the combination eB/mec is the classical cyclotron frequency,

ωB =
eB

mec
(4.9)

So the basic commutator here is
[πx, πy ] = ih̄meωB. (4.10)

This is curiously very much like the fundamental canonical commutator [x, px] = ih̄, except for
the scale proportional to the applied magnetic field. Further, this Hamiltonian bears a very close
mathematical resemblance to that of a simple harmonic oscillator:

H0 =
1

2me
(π2

x + π2
y); HSHM =

1

2me
(p2

x + m2
eω

2x2). (4.11)

This means that the electron in Bz can be quantized just the same way that a harmonic oscillator
is quantized. The easiest and best approach is to re-arrange H0 so it can be written in terms of
creation and annihilation operators. Based on the structure, try the following (operator version of
taking the square root):

H0 =
1

2me
· 1

2
[(πx + iπy)(πx − iπy) + (πx − iπy)(πx + iπy)] (4.12)

Then this is symmetrized, and introduce creation and annihilation operators that must be scaled
correctly to give a unit commutator,

a = N0(πx + iπy), a† = N0(πx − iπy), [a, a†] = 1. (4.13)

N0 is the normalization factor, and is found by applying (4.8):

[a, a†] = N2
0 [πx + iπy, πx − iπy] = N2

0 (−i[πx, πy] + i[πy, πx]) = N2
0 (−2i)

(
ih̄

e

c
Bz

)
= 1. (4.14)

This gives

N0 =

√
c

2h̄eB
=⇒ a =

√
c

2h̄eB
(πx + iπy), a† =

√
c

2h̄eB
(πx − iπy). (4.15)

The factors on the creation/annihilation operators involve the cyclotron frequency and take the same
form as those on the momentum in the SHO.

a =

√
1

2meh̄ωB
(πx + iπy), a† =

√
1

2meh̄ωB
(πx − iπy). (4.16)

The inverse relations are

πx =

√
meh̄ωB

2
(a + a†), πy =

1

i

√
meh̄ωB

2
(a − a†), (4.17)

Then the Hamiltonian is

H0 =
1

4me
· (2meh̄ωB)(aa† + a†a) =

1

2
h̄ωB(aa† + a†a). (4.18)

It can also be expressed in terms of the usual number operator, a†a, via the commutation relation,
as

H0 = h̄ωB

(
a†a +

1

2

)
. (4.19)

The quantized states of this Hamiltonian are the Landau levels. Since the eigenvalues of the number
operator are positive integers (and 0), the energy levels are just like those of a harmonic oscillator,

En =

(
n +

1

2

)
h̄ωB, n = 0, 1, 2, 3, ... (4.20)
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4 Quantum electron dynamics with a DC magnetic field

An electron in a uniform DC magnetic field plus an applied optical field will have a Hamiltonian as
discussed previously

H =
1

2me

[
p − e

c
Atot(r, t)

]2
+ eφ(r, t) + U(r). (4.1)

Now, however, the vector potential must include both that due to the optical field and that due
to the DC magnetic field. Further, for simplicity, we take the scalar potential as zero (Coulomb
gauge for the optical field). The crystal potential U(r) leads to states in bands, however, we try to
ignore that for the time being. This will lead to something analogous to the classical treatment just
discussed (quasi-free electrons).

I can consider the vector potential as a sum of DC part A plus AC part Ã:

Atot = A + Ã (4.2)

Then each of these can interact with the momentum operator, as well as with each other when the
square is taken. I’ll ignore those quadratic interaction terms, but keep the term due to squaring
the DC vector potential. The reason is, we suppose the DC magnetic field is much much stronger
than that in the light waves. The DC field leads to the so-called Landau levels which can resemble
classical cyclotron motion. They have an energy scaled dependent on B̄ and we really want to take
them into account. The optical field here will be first treated as a classical time-dpendent field. So
the Hamiltonian to currently consider is

H =
1

2me

(
p− e

c
A

)2
− e

mec
Ã · p. (4.3)

The first term is considered the original Hamiltonian H0, the second term is a perturbation.

4.1 Landau Levels

One wants to understand the eigen states of the system before the optical field is applied. It is
assumed that the DC magnetic field B points along the z-axis. Then its vector potential only needs
to depend on x and y coordinates, at most. It makes sense to write H0 using the dynamic momentum
operator,

H0 =
1

2me
"π2, "π = p− e

c
A. (4.4)

This operator is very interesting because its components do not commute with each other! That is
because the vector potential depends on position. One gets commutators

[πx, πy] = [px − e

c
Ax, py − e

c
Ay] = −e

c
([px, Ay] + [Ax, py]) (4.5)

In the coordinate represention, the momentum operator is p = −ih̄"∇, so the action on some arbitrary
wave function ψ is

[px, Ay]ψ = (−ih̄∂x)(Ayψ) − (Ay)(−ih̄∂xψ)

= (−ih̄) [(∂xAy)ψ + Ay(∂xψ) − Ay(∂xψ)] = −ih̄(∂xAy)ψ (4.6)

The other one is

[Ax, py]ψ = Ax(−ih̄∂yψ) − (−ih̄∂y)(Axψ)

= (−ih̄) [Ax(∂yψ) − (∂yAx)ψ − Ax(∂yψ)] = ih̄(∂yAx)ψ (4.7)

Then the commutator of two components of "π is

[πx, πy] = −e

c
(−ih̄)[∂xAy − ∂yAx] =

ieh̄

c
("∇× A)z = ih̄

eB

c
(4.8)
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⇒
For a free charge in a B-field:
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Landau ground state, n=0:

The size of wavefunction depends on B.

Using polar coordinates, this is fairly simple, because

px + ipy = −ih̄(∂x + i∂y) = −ih̄eiφ

(
∂r +

i

r
∂φ

)
(4.94)

Now with the vector potential of the symmetric gauge applied, there also is

Ax + iAy =
−B

2
(y − ix) =

iB

2
(x + iy) =

iB

2
reiφ. (4.95)

So the destruction operator can be written some different ways, for instance,

a =
1√

2meh̄ωB

{
px + ipy − ieB

2c
(x + iy)

}
=

eiφ

√
2meh̄ωB

{
−ih̄

(
∂r +

i

r
∂φ

)
− ieB

2c
r

}
(4.96)

4.1.8 Ground state wave functions

The last is not so pretty, however, consider it applied to a wave function ψ, which gives zero. The
ground states are its solutions: {

∂r +
i

r
∂φ +

eB

2h̄c
r

}
ψ(r, φ) = 0. (4.97)

A circularly symmetric solution would be a good place to start, with ∂φψ = 0. Then the equation
is easy to integrate,

dψ

dr
= − eB

2h̄c
rψ =⇒ dψ

ψ
= − eB

2h̄c
r dr =⇒ ψ(r) = Ce−

eB
4h̄c r2

. (4.98)

That is a beautiful solution that is localized over a radius of the order of r0 =
√

2h̄c/eB. With greater
magnetic field, ψ gets more strongly localized, as was suggested earlier based on the degeneracy
arguments. Another way to write this length scale is

√
2h̄/meωB, it is the same as the scale r0 that

determines the squared radius operator ∆2. Because ψ is circularly symmetric, it has zero angular
momentum. Get the constant for normalization:∫

d2r |ψ|2 = C2

∫ ∞

0
2πr dr e

− r2

r2
0 = C2πr2

0

∫ ∞

0
d(

r2

r2
0

)e
− r2

r2
0 = C2πr2

0 = 1 =⇒ C =
1√
π r0

.

(4.99)
So this normalized ground state is

ψ0 =
1√
π r0

exp

{
− r2

2r2
0

}
, r0 =

√
2h̄c

eB
. (4.100)

Based on the differential equation (4.97) for aψ = 0, there should also be solutions with az-
imuthal dependence on φ varying as eilφ, where l is an integer (the quantum number for the angular
momentum). So with the separation of ψ(r, φ) = eilφψl(r), other ground states must satisfy{

d

dr
− l

r
+

eB

2h̄c
r

}
ψl(r) = 0, or

{
d

dρ
− l

ρ
+ ρ

}
ψl(ρ) = 0, ρ =

r

r0
. (4.101)

Luckily, this equation is very easy to solve! Since we know the solution when l = 0, try a slight
modification with an unknown power s:

ψl(ρ) = Cρse−ρ2/2, then
dψl

dρ
=

(
s

ρ
− ρ

)
ψl. (4.102)

Inserted into the ODE, the function works exactly if s = l. Now get the normalization also,∫
d2r |ψ|2 = C2

∫ ∞

0
2πr2

0 ρ dρ ρ2le−ρ2

= C2πr2
0

∫ ∞

0
du ule−u = C2πr2

0(l!) = 1 (4.103)
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At B=0.1 tesla,  r0 = 115 nm.

Before proceeding on that program, let me consider the degeneracy of the Landau levels–how
large is it, typically, in an experimental situation where Faraday rotation might be measured? How
many electrons can occupy each level? This is important for the counting of state occupancy, when
given a certain number density of electrons as in an electron gas.

Let’s suppose the DC magnetic field strength is 1.0 tesla. Then the cyclotron frequency in SI
units is

ωB =
eB

me
=

(1.602 × 10−19C)(1.0 T)

9.11 × 10−31kg
= 1.76 × 1011 rad/s. (4.163)

This corresponds to a frequency f = ωB/2π = 28 GHz, well below optical frequencies. Then the
Landau length scale r0 is

r0 =

√
2h̄

meωB
=

√
6.626 × 10−34Js/π

(9.11 × 10−31kg)(1.76 × 1011 rad/s)
= 36 nm. (4.164)

This is much larger than I expected! If the magnetic field were smaller, this size would be even
bigger. For instance, at B = 0.1 T, using the alternative form in SI units,

r0 =

√
2h̄

eB
=

√
6.626× 10−34Js/π

(1.602× 10−19C)(0.1 T)
= 115 nm. (4.165)

This is much larger than the typical size of nanoparticles that I might be interested in.
The degeneracy of any Landau level is nb,max ≈ (R/r0)2, for a system of radius R. Suppose the

system is a particle with a radius of 1000 nm, in the 1.0 T field. The degeneracy is then about
(1000/36)2 ≈ 800. Many electrons could squeeze into each level. On the other hand, suppose the
system is a nanoparticle with a radius of only 10 nm, then, the degeneracy comes out (10/36)2 ≈ 0.08;
what does that mean?? It could only mean that the system constrains the electrons so much, that
the effects of the boundaries are important. The sense of Landau levels as discussed in these notes
would not really apply, it seems. Then what? Further, the size of r0 is much much greater than
the electron displacements expected due to moderate sized electric fields in an optical pulse (on the
order of 10−14 m for 500 nm wavelength light of electric field amplitude 1.0 MV/m). If the Landau
level wavefunction does not fit into the system, then these solutions are incorrect. So there has to
be some different theory for the effects of the DC magnetic field in this situation.

4.3 Magnetic states in confined cylindrical geometry

So for the moment consider this situation of a nanometer-sized system, much smaller than r0 for
the given applied DC magnetic field. Then the Landau ground state wavefunction does not fit into
the system, it does not apply. Instead, what are the states when the boundary condition is that the
wave function goes to zero at the boundary of the system? Let me assume a circular system of radius
R. Essentially, this is a cylindrical particle. It could still have a long dimension along the z-axis,
parallel to the magnetic field. That may not be totally realistic, however, it can give some idea of
the differences encountered, compared to using the Landau levels in an unconstrained geometry.

One can start from the differential equation (4.135) used to find the excited Landau levels. The
critical assumption to make is that the scaled radius ρ = r/r0 # 1. Then the term in r2 in the
potential an be ignored. Taking the wave function in the separated form, ψ(ρ, φ) = eilφψ(ρ), the
angular momentum is L = lh̄, and the radial equation is reduced to[−h̄2

2me

(
∂2

r +
1

r
∂r +

(il)2

r2

)
− eBlh̄

2mec

]
ψ = Eψ (4.166)

With some re-arranging this becomes Bessel’s equation, following these steps,

−h̄2

2me

(
∂2

r +
1

r
∂r − l2

r2

)
ψ =

(
E +

eBlh̄

2mec

)
ψ (4.167)
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At B=1.0 tesla,  r0 = 36 nm.

At B=4.0 tesla,  r0 = 18 nm.

The Landau states do 
not fit into ~10 nm 

radius NPs!

A geometric 
confinement effect.



Why left/right circular polarizations couple differently to the medium. 
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are not Landau level shifts. One can measure energies
from the top of the lower band. Then the energies Ei for
the occupied band (Eh, valence band) and the energies
Ef for the unoccupied band (Ee, conduction band) are
assumed to be

Ei = Eh = −!2k2
i

2m∗
h

− 1
2mi!ωB , (82)

Ef = Ee = Eg +
!2k2

f

2m∗
e
− 1

2mf!ωB , (83)

(84)

These Zeeman shifts apply to positive charges; they are
reversed in sign for negative charges, taking ωB < 0.
The azimuthal quantum numbers are mi and mf . They
are restricted by the orbital angular momentum num-
bers for each band, li and lf , respectively. Assuming
vertical transitions that conserve linear momentum !k
(negligible photon momentum), the transition energies
are

!ωif = −Eg − !2k2

2m∗ − 1
2 (mi − mf )!ωB , (85)

where the reduced mass m∗ is defined by

1

m∗ =
1

m∗
e

+
1

m∗
h

. (86)

We write the transition frequencies in the following man-
ner:

ωif = −ωg − s2 + 1
2∆m ωB , (87)

where the gap frequency ωg, scaled wave vector s, and
change in azimuthal quantum number ∆m are

ωg ≡ Eg

!
, s ≡

√
!

2m∗ k, ∆m ≡ mf − mi. (88)

Only momentum-conserving transitions between two
selected bands at some wave vector k are considered.
The matrix elements needed are approximated in a form

〈k′l′m′|v̂x|klm〉 =
!kx

mo
M(k)δk′,kδl′,l±1δm′,m±1 . (89)

The last Kronecker deltas reflect the electric dipole se-
lection rules, ∆l = ±1, ∆m = ±1. The dimensionless
matrix element M(k) is assumed to be some constant
for the transitions of interest.

These velocity matrix elements are proportional to
corresponding position matrix elements, see (76), or even
the matrix elements of the #π operator. We only need the
components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑
fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑
fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
izations vary like

χR = χxx − iχxy ∼
∑
fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑
fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)

In these expressions, only ∆m = −1 (∆m = +1) con-
tributes to χR (χL). Each factor is a Kronecker delta,
i.e., (1 ± ∆m) = 2δmf=mi±1. The following expressions
result for integration in the band model expressed us-
ing the transitions between occupied (lower band) and
unoccupied (higher band) states:

χR =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi−1

ω + iγ + ωif
+

δmf =mi+1

ω + iγ − ωif

}
, (95)

χL =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}
. (96)

matrix element / selection rules:
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components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑
fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑
fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
izations vary like

χR = χxx − iχxy ∼
∑
fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑
fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)

In these expressions, only ∆m = −1 (∆m = +1) con-
tributes to χR (χL). Each factor is a Kronecker delta,
i.e., (1 ± ∆m) = 2δmf=mi±1. The following expressions
result for integration in the band model expressed us-
ing the transitions between occupied (lower band) and
unoccupied (higher band) states:

χR =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi−1

ω + iγ + ωif
+

δmf =mi+1

ω + iγ − ωif

}
, (95)

χL =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}
. (96)

diagonal susc. elements: off-diagonal susc. elements:

11

are not Landau level shifts. One can measure energies
from the top of the lower band. Then the energies Ei for
the occupied band (Eh, valence band) and the energies
Ef for the unoccupied band (Ee, conduction band) are
assumed to be

Ei = Eh = −!2k2
i

2m∗
h

− 1
2mi!ωB , (82)

Ef = Ee = Eg +
!2k2

f

2m∗
e
− 1

2mf!ωB , (83)

(84)

These Zeeman shifts apply to positive charges; they are
reversed in sign for negative charges, taking ωB < 0.
The azimuthal quantum numbers are mi and mf . They
are restricted by the orbital angular momentum num-
bers for each band, li and lf , respectively. Assuming
vertical transitions that conserve linear momentum !k
(negligible photon momentum), the transition energies
are

!ωif = −Eg − !2k2

2m∗ − 1
2 (mi − mf )!ωB , (85)

where the reduced mass m∗ is defined by

1

m∗ =
1

m∗
e

+
1

m∗
h

. (86)

We write the transition frequencies in the following man-
ner:

ωif = −ωg − s2 + 1
2∆m ωB , (87)

where the gap frequency ωg, scaled wave vector s, and
change in azimuthal quantum number ∆m are

ωg ≡ Eg

!
, s ≡

√
!

2m∗ k, ∆m ≡ mf − mi. (88)

Only momentum-conserving transitions between two
selected bands at some wave vector k are considered.
The matrix elements needed are approximated in a form

〈k′l′m′|v̂x|klm〉 =
!kx

mo
M(k)δk′,kδl′,l±1δm′,m±1 . (89)

The last Kronecker deltas reflect the electric dipole se-
lection rules, ∆l = ±1, ∆m = ±1. The dimensionless
matrix element M(k) is assumed to be some constant
for the transitions of interest.

These velocity matrix elements are proportional to
corresponding position matrix elements, see (76), or even
the matrix elements of the #π operator. We only need the
components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑
fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑
fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
izations vary like

χR = χxx − iχxy ∼
∑
fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑
fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)

In these expressions, only ∆m = −1 (∆m = +1) con-
tributes to χR (χL). Each factor is a Kronecker delta,
i.e., (1 ± ∆m) = 2δmf=mi±1. The following expressions
result for integration in the band model expressed us-
ing the transitions between occupied (lower band) and
unoccupied (higher band) states:

χR =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi−1

ω + iγ + ωif
+

δmf =mi+1

ω + iγ − ωif

}
, (95)

χL =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}
. (96)
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are not Landau level shifts. One can measure energies
from the top of the lower band. Then the energies Ei for
the occupied band (Eh, valence band) and the energies
Ef for the unoccupied band (Ee, conduction band) are
assumed to be

Ei = Eh = −!2k2
i

2m∗
h

− 1
2mi!ωB , (82)

Ef = Ee = Eg +
!2k2

f

2m∗
e
− 1

2mf!ωB , (83)

(84)

These Zeeman shifts apply to positive charges; they are
reversed in sign for negative charges, taking ωB < 0.
The azimuthal quantum numbers are mi and mf . They
are restricted by the orbital angular momentum num-
bers for each band, li and lf , respectively. Assuming
vertical transitions that conserve linear momentum !k
(negligible photon momentum), the transition energies
are

!ωif = −Eg − !2k2

2m∗ − 1
2 (mi − mf )!ωB , (85)

where the reduced mass m∗ is defined by

1

m∗ =
1

m∗
e

+
1

m∗
h

. (86)

We write the transition frequencies in the following man-
ner:

ωif = −ωg − s2 + 1
2∆m ωB , (87)

where the gap frequency ωg, scaled wave vector s, and
change in azimuthal quantum number ∆m are

ωg ≡ Eg

!
, s ≡

√
!

2m∗ k, ∆m ≡ mf − mi. (88)

Only momentum-conserving transitions between two
selected bands at some wave vector k are considered.
The matrix elements needed are approximated in a form

〈k′l′m′|v̂x|klm〉 =
!kx

mo
M(k)δk′,kδl′,l±1δm′,m±1 . (89)

The last Kronecker deltas reflect the electric dipole se-
lection rules, ∆l = ±1, ∆m = ±1. The dimensionless
matrix element M(k) is assumed to be some constant
for the transitions of interest.

These velocity matrix elements are proportional to
corresponding position matrix elements, see (76), or even
the matrix elements of the #π operator. We only need the
components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑
fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑
fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
izations vary like

χR = χxx − iχxy ∼
∑
fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑
fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)

In these expressions, only ∆m = −1 (∆m = +1) con-
tributes to χR (χL). Each factor is a Kronecker delta,
i.e., (1 ± ∆m) = 2δmf=mi±1. The following expressions
result for integration in the band model expressed us-
ing the transitions between occupied (lower band) and
unoccupied (higher band) states:

χR =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi−1

ω + iγ + ωif
+

δmf =mi+1

ω + iγ − ωif

}
, (95)

χL =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}
. (96)

for right circular light (helicity ν=-1):

11

are not Landau level shifts. One can measure energies
from the top of the lower band. Then the energies Ei for
the occupied band (Eh, valence band) and the energies
Ef for the unoccupied band (Ee, conduction band) are
assumed to be

Ei = Eh = −!2k2
i

2m∗
h

− 1
2mi!ωB , (82)

Ef = Ee = Eg +
!2k2

f

2m∗
e
− 1

2mf!ωB , (83)

(84)

These Zeeman shifts apply to positive charges; they are
reversed in sign for negative charges, taking ωB < 0.
The azimuthal quantum numbers are mi and mf . They
are restricted by the orbital angular momentum num-
bers for each band, li and lf , respectively. Assuming
vertical transitions that conserve linear momentum !k
(negligible photon momentum), the transition energies
are

!ωif = −Eg − !2k2

2m∗ − 1
2 (mi − mf )!ωB , (85)

where the reduced mass m∗ is defined by

1

m∗ =
1

m∗
e

+
1

m∗
h

. (86)

We write the transition frequencies in the following man-
ner:

ωif = −ωg − s2 + 1
2∆m ωB , (87)

where the gap frequency ωg, scaled wave vector s, and
change in azimuthal quantum number ∆m are

ωg ≡ Eg

!
, s ≡

√
!

2m∗ k, ∆m ≡ mf − mi. (88)

Only momentum-conserving transitions between two
selected bands at some wave vector k are considered.
The matrix elements needed are approximated in a form

〈k′l′m′|v̂x|klm〉 =
!kx

mo
M(k)δk′,kδl′,l±1δm′,m±1 . (89)

The last Kronecker deltas reflect the electric dipole se-
lection rules, ∆l = ±1, ∆m = ±1. The dimensionless
matrix element M(k) is assumed to be some constant
for the transitions of interest.

These velocity matrix elements are proportional to
corresponding position matrix elements, see (76), or even
the matrix elements of the #π operator. We only need the
components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑
fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑
fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
izations vary like

χR = χxx − iχxy ∼
∑
fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑
fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)

In these expressions, only ∆m = −1 (∆m = +1) con-
tributes to χR (χL). Each factor is a Kronecker delta,
i.e., (1 ± ∆m) = 2δmf=mi±1. The following expressions
result for integration in the band model expressed us-
ing the transitions between occupied (lower band) and
unoccupied (higher band) states:

χR =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi−1

ω + iγ + ωif
+

δmf =mi+1

ω + iγ − ωif

}
, (95)

χL =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}
. (96)

requires:

for left circular light (helicity ν=+1): requires:
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are not Landau level shifts. One can measure energies
from the top of the lower band. Then the energies Ei for
the occupied band (Eh, valence band) and the energies
Ef for the unoccupied band (Ee, conduction band) are
assumed to be

Ei = Eh = −!2k2
i

2m∗
h

− 1
2mi!ωB , (82)

Ef = Ee = Eg +
!2k2

f

2m∗
e
− 1

2mf!ωB , (83)

(84)

These Zeeman shifts apply to positive charges; they are
reversed in sign for negative charges, taking ωB < 0.
The azimuthal quantum numbers are mi and mf . They
are restricted by the orbital angular momentum num-
bers for each band, li and lf , respectively. Assuming
vertical transitions that conserve linear momentum !k
(negligible photon momentum), the transition energies
are

!ωif = −Eg − !2k2

2m∗ − 1
2 (mi − mf )!ωB , (85)

where the reduced mass m∗ is defined by

1

m∗ =
1

m∗
e

+
1

m∗
h

. (86)

We write the transition frequencies in the following man-
ner:

ωif = −ωg − s2 + 1
2∆m ωB , (87)

where the gap frequency ωg, scaled wave vector s, and
change in azimuthal quantum number ∆m are

ωg ≡ Eg

!
, s ≡

√
!

2m∗ k, ∆m ≡ mf − mi. (88)

Only momentum-conserving transitions between two
selected bands at some wave vector k are considered.
The matrix elements needed are approximated in a form

〈k′l′m′|v̂x|klm〉 =
!kx

mo
M(k)δk′,kδl′,l±1δm′,m±1 . (89)

The last Kronecker deltas reflect the electric dipole se-
lection rules, ∆l = ±1, ∆m = ±1. The dimensionless
matrix element M(k) is assumed to be some constant
for the transitions of interest.

These velocity matrix elements are proportional to
corresponding position matrix elements, see (76), or even
the matrix elements of the #π operator. We only need the
components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑
fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑
fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
izations vary like

χR = χxx − iχxy ∼
∑
fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑
fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)

In these expressions, only ∆m = −1 (∆m = +1) con-
tributes to χR (χL). Each factor is a Kronecker delta,
i.e., (1 ± ∆m) = 2δmf=mi±1. The following expressions
result for integration in the band model expressed us-
ing the transitions between occupied (lower band) and
unoccupied (higher band) states:

χR =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi−1

ω + iγ + ωif
+

δmf =mi+1

ω + iγ − ωif

}
, (95)

χL =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}
. (96)

11

are not Landau level shifts. One can measure energies
from the top of the lower band. Then the energies Ei for
the occupied band (Eh, valence band) and the energies
Ef for the unoccupied band (Ee, conduction band) are
assumed to be

Ei = Eh = −!2k2
i

2m∗
h

− 1
2mi!ωB , (82)

Ef = Ee = Eg +
!2k2

f

2m∗
e
− 1

2mf!ωB , (83)

(84)

These Zeeman shifts apply to positive charges; they are
reversed in sign for negative charges, taking ωB < 0.
The azimuthal quantum numbers are mi and mf . They
are restricted by the orbital angular momentum num-
bers for each band, li and lf , respectively. Assuming
vertical transitions that conserve linear momentum !k
(negligible photon momentum), the transition energies
are

!ωif = −Eg − !2k2

2m∗ − 1
2 (mi − mf )!ωB , (85)

where the reduced mass m∗ is defined by

1

m∗ =
1

m∗
e

+
1

m∗
h

. (86)

We write the transition frequencies in the following man-
ner:

ωif = −ωg − s2 + 1
2∆m ωB , (87)

where the gap frequency ωg, scaled wave vector s, and
change in azimuthal quantum number ∆m are

ωg ≡ Eg

!
, s ≡

√
!

2m∗ k, ∆m ≡ mf − mi. (88)

Only momentum-conserving transitions between two
selected bands at some wave vector k are considered.
The matrix elements needed are approximated in a form

〈k′l′m′|v̂x|klm〉 =
!kx

mo
M(k)δk′,kδl′,l±1δm′,m±1 . (89)

The last Kronecker deltas reflect the electric dipole se-
lection rules, ∆l = ±1, ∆m = ±1. The dimensionless
matrix element M(k) is assumed to be some constant
for the transitions of interest.

These velocity matrix elements are proportional to
corresponding position matrix elements, see (76), or even
the matrix elements of the #π operator. We only need the
components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑
fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑
fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
izations vary like

χR = χxx − iχxy ∼
∑
fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑
fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)

In these expressions, only ∆m = −1 (∆m = +1) con-
tributes to χR (χL). Each factor is a Kronecker delta,
i.e., (1 ± ∆m) = 2δmf=mi±1. The following expressions
result for integration in the band model expressed us-
ing the transitions between occupied (lower band) and
unoccupied (higher band) states:

χR =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi−1

ω + iγ + ωif
+

δmf =mi+1

ω + iγ − ωif

}
, (95)

χL =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}
. (96)

Δm=ν



*As applied to 17nm diameter gold NPs.
⇒ Integral* for interband transitions:

|i>

|f >

ΔE=½ћωB
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are not Landau level shifts. One can measure energies
from the top of the lower band. Then the energies Ei for
the occupied band (Eh, valence band) and the energies
Ef for the unoccupied band (Ee, conduction band) are
assumed to be

Ei = Eh = −!2k2
i

2m∗
h

− 1
2mi!ωB , (82)

Ef = Ee = Eg +
!2k2

f

2m∗
e
− 1

2mf!ωB , (83)

(84)

These Zeeman shifts apply to positive charges; they are
reversed in sign for negative charges, taking ωB < 0.
The azimuthal quantum numbers are mi and mf . They
are restricted by the orbital angular momentum num-
bers for each band, li and lf , respectively. Assuming
vertical transitions that conserve linear momentum !k
(negligible photon momentum), the transition energies
are

!ωif = −Eg − !2k2

2m∗ − 1
2 (mi − mf )!ωB , (85)

where the reduced mass m∗ is defined by

1

m∗ =
1

m∗
e

+
1

m∗
h

. (86)

We write the transition frequencies in the following man-
ner:

ωif = −ωg − s2 + 1
2∆m ωB , (87)

where the gap frequency ωg, scaled wave vector s, and
change in azimuthal quantum number ∆m are

ωg ≡ Eg

!
, s ≡

√
!

2m∗ k, ∆m ≡ mf − mi. (88)

Only momentum-conserving transitions between two
selected bands at some wave vector k are considered.
The matrix elements needed are approximated in a form

〈k′l′m′|v̂x|klm〉 =
!kx

mo
M(k)δk′,kδl′,l±1δm′,m±1 . (89)

The last Kronecker deltas reflect the electric dipole se-
lection rules, ∆l = ±1, ∆m = ±1. The dimensionless
matrix element M(k) is assumed to be some constant
for the transitions of interest.

These velocity matrix elements are proportional to
corresponding position matrix elements, see (76), or even
the matrix elements of the #π operator. We only need the
components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑
fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑
fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
izations vary like

χR = χxx − iχxy ∼
∑
fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑
fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)

In these expressions, only ∆m = −1 (∆m = +1) con-
tributes to χR (χL). Each factor is a Kronecker delta,
i.e., (1 ± ∆m) = 2δmf=mi±1. The following expressions
result for integration in the band model expressed us-
ing the transitions between occupied (lower band) and
unoccupied (higher band) states:

χR =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi−1

ω + iγ + ωif
+

δmf =mi+1

ω + iγ − ωif

}
, (95)

χL =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}
. (96)
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are not Landau level shifts. One can measure energies
from the top of the lower band. Then the energies Ei for
the occupied band (Eh, valence band) and the energies
Ef for the unoccupied band (Ee, conduction band) are
assumed to be

Ei = Eh = −!2k2
i

2m∗
h

− 1
2mi!ωB , (82)

Ef = Ee = Eg +
!2k2

f

2m∗
e
− 1

2mf!ωB , (83)

(84)

These Zeeman shifts apply to positive charges; they are
reversed in sign for negative charges, taking ωB < 0.
The azimuthal quantum numbers are mi and mf . They
are restricted by the orbital angular momentum num-
bers for each band, li and lf , respectively. Assuming
vertical transitions that conserve linear momentum !k
(negligible photon momentum), the transition energies
are

!ωif = −Eg − !2k2

2m∗ − 1
2 (mi − mf )!ωB , (85)

where the reduced mass m∗ is defined by

1

m∗ =
1

m∗
e

+
1

m∗
h

. (86)

We write the transition frequencies in the following man-
ner:

ωif = −ωg − s2 + 1
2∆m ωB , (87)

where the gap frequency ωg, scaled wave vector s, and
change in azimuthal quantum number ∆m are

ωg ≡ Eg

!
, s ≡

√
!

2m∗ k, ∆m ≡ mf − mi. (88)

Only momentum-conserving transitions between two
selected bands at some wave vector k are considered.
The matrix elements needed are approximated in a form

〈k′l′m′|v̂x|klm〉 =
!kx

mo
M(k)δk′,kδl′,l±1δm′,m±1 . (89)

The last Kronecker deltas reflect the electric dipole se-
lection rules, ∆l = ±1, ∆m = ±1. The dimensionless
matrix element M(k) is assumed to be some constant
for the transitions of interest.

These velocity matrix elements are proportional to
corresponding position matrix elements, see (76), or even
the matrix elements of the #π operator. We only need the
components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑
fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑
fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
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χR = χxx − iχxy ∼
∑
fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑
fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)

In these expressions, only ∆m = −1 (∆m = +1) con-
tributes to χR (χL). Each factor is a Kronecker delta,
i.e., (1 ± ∆m) = 2δmf=mi±1. The following expressions
result for integration in the band model expressed us-
ing the transitions between occupied (lower band) and
unoccupied (higher band) states:

χR =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi−1

ω + iγ + ωif
+

δmf =mi+1

ω + iγ − ωif

}
, (95)

χL =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

{
δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}
. (96)
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The only difference between these is the swapping of the
Kronecker deltas. Then the two cases can be written
in terms of a single expression, replacing the ±1 in the
Kronecker deltas with the helicity index:

χν =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

×
{

δmf=mi+ν

ω + iγ + ωif
+

δmf=mi−ν

ω + iγ − ωif

}
. (97)

To proceed further, it is necessary to evaluate the sums.
This can be facilitated by converting them to integrals
over the allowed transitions, which depends slightly on
the dimensionality of the bands under consideration.

E. Interband transitions between
three-dimensional bands

The band structure of interest could be effectively
isotropic and three-dimensional, say, for the case of some
semiconductors near the Γ point (k = 0). Therefore it
is interesting to consider the IBT contribution for this
model, before doing a similar analysis of the reduced
one-dimensional band model for metals.

Converting from a sum to an integral with
∑

k
→

V
(2π)3

∫
dk, using the assumed form for the matrix ele-

ments, and then changing to s =
√

!/2m∗ k as the vari-
able of integration, the interband susceptibility can be
written

χν = Q Tν(ω) , (98)

where Q contains all the constant normalization factors,
and the interband transition integral Tν(ω) contains all
of the frequency and temperature dependence:

Q =
2ne2|M |2!

m2
oε0

V

(2π)3
4π

3

(
2m∗

!

)5/2

, (99)

Tν =
1

ω + iγ

∑
mi

∑
mf

∫ sF

0
ds

wi − wf

ωif
s4

×
{

δmf=mi+ν

ω + iγ + ωif
+

δmf=mi−ν

ω + iγ − ωif

}
, (100)

To arrive at this,
∫

dΩ k2
x = 4π

3 k2 was used for the an-
gular part of the integration. The upper limit is a Fermi
wave vector sF =

√
!/2m∗ kF needed to sum over all the

states of the occupied initial band. We can let wi = 1 for
the lower band, but keep the the temperature-dependent
occupation probability wf > 0 for the upper band. In
this way, any thermal effects due to an initial population
in the final band will be included.

The first integral in (100) uses ∆m = +ν and the
second uses ∆m = −ν. These choices enter in the ex-
pression for ωif (∆m). In terms of the scaled wave vector

s or a related excitation variable x = ωg + s2, one has

ωif (+ν) = −ωg − s2 + ν
ωB

2
= −x + ζν , (101)

ωif (−ν) = −ωg − s2 − ν
ωB

2
= −x − ζν . (102)

The variable x is the excitation energy above the lower
band, and ζν = 1

2νωB is the polarization-dependent Zee-
man splitting. Then the denominators in (100) in the
two terms are (ω + iγ + ζν − x) and (ω + iγ + ζν + x),
respectively. This suggests introducing notation for a
Zeeman-shifted complex optical frequency, for the two
circular polarizations:

ων ≡ ω + iγ + ζν = ω + iγ + 1
2νωB . (103)

Thus, most of the polarization-dependent effects will be
carried by this shifted frequency.

To include the Fermi occupation factor wi − wf , the
sum over mi in (100) can be done first, holding mf fixed.
Then both terms will have the same occupation factor,
taken to be 1−wf . The first term in (100) uses only mi =
mf − ν, the second uses only mi = mf + ν, assuming
those states exist in the lower band. The final state
energy, however, depends on the effective mass m∗

e in the
upper band, whereas the transition energy depends on
the reduced mass m∗. If these are nearly the same, i.e.,
m∗

e ≈ m∗
h ≈ m∗, then the final state energy measured

relative to the top of the lower band can be taken as

Ef ≈ !
(
ωg + s2 − 1

2mfωB

)
= !

(
x − 1

2mfωB

)
. (104)

This will lead to an occupation factor wi − wf for each
term determined from the Fermi energy EF ,

gmf
(x) ≈ 1 − F (Ef − EF ) = 1 − F (x; mf ). (105)

Inouye et al.14 and also Scaffardi and Tocho15 have
discussed bound electron response in a 1D band model
without B, applying an expression which is an integral
over the excitation variable x. We can transform the
integral Iν into an integration over x to compare with
those results. In the simplest case, when the lower band
has a higher angular momentum li than the upper band
value, lf , then both states mi = mf ± ν are available for
all the allowed mf . In this case, Eq. (100) becomes

Tν =
ω2ν

ω + iγ

∑
mf

∫ xF

ωg

dx
gmf

(x)x (x − ωg)
3/2

(x2 − 1
4ω2

B)(x2 − ω2
ν)

. (106)

The function gmf
= wi −wf includes the magnetic field

effects on the final state occupation probabilities, which
are slightly different for each mf level. The upper limit is
determined by the scaled wave vector at the Fermi level,
xF = ωg+s2

F . Although this is the a 3D band model, the
similarity to the corrected expression from Scaffardi and
Tocho15 is clear. When reduced to one dimension (use

ν=-1/+1 for R/L
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When the angular momentum lf of the upper band is
less than that of the lower band, li, both the choices
mi = mf ± ν always exist for any mf , and this can be
written instead as

Tν =
ω2ν

ω + iγ

∑
mf

∫ xF

ωg

dx
gmf

(x)x
√

x − ωg

(x2 − 1
4ω2

B)(x2 − ω2
ν)

. (113)

As mentioned earlier, the only change from the 3D ex-
pression is that the power is now 1

2 instead of 3
2 in the

numerator. That is a complex integrand. If the real and
imaginary parts are needed, it can be written in terms
of real quantities, better for comparison with the B = 0
equations:

Tν =
ω2ν

ω + iγ

∑
mf

∫ xF

ωg

dx gmf
(x)

x
√

x − ωg

x2 − 1
4ω2

B

×
(
x2 + γ2 − ω2

F

)
+ 2iγωF

(x2 + γ2 − ω2
F )

2
+ 4γ2ω2

F

. (114)

Here a notation for a real shifted Faraday frequency is
used,

ωF ≡ ω + 1
2νωB , (115)

that is dependent on the polarization index ν. In the ap-
plication of this to gold nanoparticles, we assume transi-
tions from the lower d-band to the upper p-band, hence
there are values mf = −1, 0, 1 to be summed over.

The last result also has an approximate expression
that applies if the Fermi energy falls well within the band
gap. Then, the Fermi occupation factors can be approx-
imated with wi − wf = 1, removing all the temperature
dependence. The integral for Tν can be done exactly in
this case, see the Appendix. There results

Tν =
π(li + lf )

2(ω + iγ)2
{
i
√

ων − ωg − √
ων + ωg

+
√

ωg − ζν +
√

ωg + ζν

}
. (116)

Obviously the expression is similar to that for the 3D
band model, but now the powers are 1

2 instead of 3
2 . A

comparison of the full integral (114) and this approxi-
mation (116), as functions of the photon energy, can be
seen in the Appendix in Figure 7.

G. Interband parameters for gold

Following Inouye et al.14 and also Scaffardi and
Tocho15, the 1D band model was applied here for the di-
electric response of gold nanoparticles. As for the Drude
model, we can fit the 1D interband permittivity, Eq.
(114) for B = 0 to the absorption of a solution of 17
nm diameter gold particles in water. The absorption
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FIG. 4: (Color online) Fitting of the absorption of 17 nm
diameter gold particles in water solution, according to the
1D band model for the interband dielectric response. Fit was
made via a Monte Carlo search, allowing both the bound
electron and free electron parameters to be varied. Their
final adjusted values, for T = 300 K, are indicated on the
Figure. The fitted gold volume fraction is fs = 5.95 × 10−7.
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FIG. 5: (Color online) The IBT contribution to the permit-
tivity, from the 1D band model, Eq. (114), using the param-
eters of Figure 4. In this model both the real and imaginary
parts remain positive for all frequencies.

data from 350 nm – 900 nm were fit to Eq. (114) (using
also the MG theory presented earlier) while allowing the
gap energy !ωg, Fermi energy EF , bound electron damp-
ing γ, and normalization constant Q to be varied. We
also allow the gold volume fraction fs and free electron
plasma frequency ωp and damping γp to be varied.

This is a multi-parameter search, which was carried
out via a Metropolis Monte Carlo algorithm. For the
effective energy function to be minimized, it was found
practical to use the sum of the absolute differences be-
tween the experimental data αi at each frequency and
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The only difference between these is the swapping of the
Kronecker deltas. Then the two cases can be written
in terms of a single expression, replacing the ±1 in the
Kronecker deltas with the helicity index:

χν =
2ne2

ε0!(ω + iγ)

o∑
i

u∑
f

wi − wf

ωif
|〈f |v̂x|i〉|2

×
{

δmf=mi+ν

ω + iγ + ωif
+

δmf=mi−ν

ω + iγ − ωif

}
. (97)

To proceed further, it is necessary to evaluate the sums.
This can be facilitated by converting them to integrals
over the allowed transitions, which depends slightly on
the dimensionality of the bands under consideration.

E. Interband transitions between
three-dimensional bands

The band structure of interest could be effectively
isotropic and three-dimensional, say, for the case of some
semiconductors near the Γ point (k = 0). Therefore it
is interesting to consider the IBT contribution for this
model, before doing a similar analysis of the reduced
one-dimensional band model for metals.

Converting from a sum to an integral with
∑

k
→

V
(2π)3

∫
dk, using the assumed form for the matrix ele-

ments, and then changing to s =
√

!/2m∗ k as the vari-
able of integration, the interband susceptibility can be
written

χν = Q Tν(ω) , (98)

where Q contains all the constant normalization factors,
and the interband transition integral Tν(ω) contains all
of the frequency and temperature dependence:

Q =
2ne2|M |2!

m2
oε0

V

(2π)3
4π

3

(
2m∗

!

)5/2

, (99)

Tν =
1

ω + iγ

∑
mi

∑
mf

∫ sF

0
ds

wi − wf

ωif
s4

×
{

δmf=mi+ν

ω + iγ + ωif
+

δmf=mi−ν

ω + iγ − ωif

}
, (100)

To arrive at this,
∫

dΩ k2
x = 4π

3 k2 was used for the an-
gular part of the integration. The upper limit is a Fermi
wave vector sF =

√
!/2m∗ kF needed to sum over all the

states of the occupied initial band. We can let wi = 1 for
the lower band, but keep the the temperature-dependent
occupation probability wf > 0 for the upper band. In
this way, any thermal effects due to an initial population
in the final band will be included.

The first integral in (100) uses ∆m = +ν and the
second uses ∆m = −ν. These choices enter in the ex-
pression for ωif (∆m). In terms of the scaled wave vector

s or a related excitation variable x = ωg + s2, one has

ωif (+ν) = −ωg − s2 + ν
ωB

2
= −x + ζν , (101)

ωif (−ν) = −ωg − s2 − ν
ωB

2
= −x − ζν . (102)

The variable x is the excitation energy above the lower
band, and ζν = 1

2νωB is the polarization-dependent Zee-
man splitting. Then the denominators in (100) in the
two terms are (ω + iγ + ζν − x) and (ω + iγ + ζν + x),
respectively. This suggests introducing notation for a
Zeeman-shifted complex optical frequency, for the two
circular polarizations:

ων ≡ ω + iγ + ζν = ω + iγ + 1
2νωB . (103)

Thus, most of the polarization-dependent effects will be
carried by this shifted frequency.

To include the Fermi occupation factor wi − wf , the
sum over mi in (100) can be done first, holding mf fixed.
Then both terms will have the same occupation factor,
taken to be 1−wf . The first term in (100) uses only mi =
mf − ν, the second uses only mi = mf + ν, assuming
those states exist in the lower band. The final state
energy, however, depends on the effective mass m∗

e in the
upper band, whereas the transition energy depends on
the reduced mass m∗. If these are nearly the same, i.e.,
m∗

e ≈ m∗
h ≈ m∗, then the final state energy measured

relative to the top of the lower band can be taken as

Ef ≈ !
(
ωg + s2 − 1

2mfωB

)
= !

(
x − 1

2mfωB

)
. (104)

This will lead to an occupation factor wi − wf for each
term determined from the Fermi energy EF ,

gmf
(x) ≈ 1 − F (Ef − EF ) = 1 − F (x; mf ). (105)

Inouye et al.14 and also Scaffardi and Tocho15 have
discussed bound electron response in a 1D band model
without B, applying an expression which is an integral
over the excitation variable x. We can transform the
integral Iν into an integration over x to compare with
those results. In the simplest case, when the lower band
has a higher angular momentum li than the upper band
value, lf , then both states mi = mf ± ν are available for
all the allowed mf . In this case, Eq. (100) becomes

Tν =
ω2ν

ω + iγ

∑
mf

∫ xF

ωg

dx
gmf

(x)x (x − ωg)
3/2

(x2 − 1
4ω2

B)(x2 − ω2
ν)

. (106)

The function gmf
= wi −wf includes the magnetic field

effects on the final state occupation probabilities, which
are slightly different for each mf level. The upper limit is
determined by the scaled wave vector at the Fermi level,
xF = ωg+s2

F . Although this is the a 3D band model, the
similarity to the corrected expression from Scaffardi and
Tocho15 is clear. When reduced to one dimension (use

ων=

The averaged permittivity of the composite medium is

〈εeff〉 = εa +
fαs

1 − f + fFs
(87)

(One could argue for a factor of (1 − f) on εa, but it would be a small correction.)

Another needed equation:

x = ωg +
!2k2

2m∗ (88)

∗ Electronic address: wysin@phys.ksu.edu; URL: http://www.phys.ksu.edu/personal/wysin
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gap=ħωg≈2 eV

p-band,

d-band,

(along L-direction
in k-space)

*Generalized from approach of Inouye et al. 
and Scaffardi and Tocho, to add ωB.
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When the angular momentum lf of the upper band is
less than that of the lower band, li, both the choices
mi = mf ± ν always exist for any mf , and this can be
written instead as

Tν =
ω2ν

ω + iγ

∑
mf

∫ xF

ωg

dx
gmf

(x)x
√

x − ωg

(x2 − 1
4ω2

B)(x2 − ω2
ν)

. (113)

As mentioned earlier, the only change from the 3D ex-
pression is that the power is now 1

2 instead of 3
2 in the

numerator. That is a complex integrand. If the real and
imaginary parts are needed, it can be written in terms
of real quantities, better for comparison with the B = 0
equations:

Tν =
ω2ν

ω + iγ

∑
mf

∫ xF

ωg

dx gmf
(x)

x
√

x − ωg

x2 − 1
4ω2

B

×
(
x2 + γ2 − ω2

F

)
+ 2iγωF

(x2 + γ2 − ω2
F )

2
+ 4γ2ω2

F

. (114)

Here a notation for a real shifted Faraday frequency is
used,

ωF ≡ ω + 1
2νωB , (115)

that is dependent on the polarization index ν. In the ap-
plication of this to gold nanoparticles, we assume transi-
tions from the lower d-band to the upper p-band, hence
there are values mf = −1, 0, 1 to be summed over.

The last result also has an approximate expression
that applies if the Fermi energy falls well within the band
gap. Then, the Fermi occupation factors can be approx-
imated with wi − wf = 1, removing all the temperature
dependence. The integral for Tν can be done exactly in
this case, see the Appendix. There results

Tν =
π(li + lf )

2(ω + iγ)2
{
i
√

ων − ωg − √
ων + ωg

+
√

ωg − ζν +
√

ωg + ζν

}
. (116)

Obviously the expression is similar to that for the 3D
band model, but now the powers are 1

2 instead of 3
2 . A

comparison of the full integral (114) and this approxi-
mation (116), as functions of the photon energy, can be
seen in the Appendix in Figure 7.

G. Interband parameters for gold

Following Inouye et al.14 and also Scaffardi and
Tocho15, the 1D band model was applied here for the di-
electric response of gold nanoparticles. As for the Drude
model, we can fit the 1D interband permittivity, Eq.
(114) for B = 0 to the absorption of a solution of 17
nm diameter gold particles in water. The absorption
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FIG. 4: (Color online) Fitting of the absorption of 17 nm
diameter gold particles in water solution, according to the
1D band model for the interband dielectric response. Fit was
made via a Monte Carlo search, allowing both the bound
electron and free electron parameters to be varied. Their
final adjusted values, for T = 300 K, are indicated on the
Figure. The fitted gold volume fraction is fs = 5.95 × 10−7.
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FIG. 5: (Color online) The IBT contribution to the permit-
tivity, from the 1D band model, Eq. (114), using the param-
eters of Figure 4. In this model both the real and imaginary
parts remain positive for all frequencies.

data from 350 nm – 900 nm were fit to Eq. (114) (using
also the MG theory presented earlier) while allowing the
gap energy !ωg, Fermi energy EF , bound electron damp-
ing γ, and normalization constant Q to be varied. We
also allow the gold volume fraction fs and free electron
plasma frequency ωp and damping γp to be varied.

This is a multi-parameter search, which was carried
out via a Metropolis Monte Carlo algorithm. For the
effective energy function to be minimized, it was found
practical to use the sum of the absolute differences be-
tween the experimental data αi at each frequency and

Fit parameters from absorption 
of a solution of gold particles:

4

travels to position z, leading to the rotation of the polar-
ization through the angle ϕ given in expression (3). One
might also mention, that in general, the dielectric tensor
elements are complex, then there is also a change in el-
lipticity X of the polarization, given from the imaginary
part,

X = 1
2 Im (kR − kL) z . (14)

The two effects of Faraday rotation and change in ellip-
ticity (tanX = ratio of minor to major axis of the ellipse
swept out by the electric vector) can be combined into
one complex parameter,28

ψ = ϕ + iX = 1
2 (kR − kL) z . (15)

Usually these effects are extremely small and close to
linear in B. Then there is only a tiny difference in kR

and kL, which gives to a very good approximation, the
complex relation,

ψ = ϕ + iX ≈ ω

2c

√
µ

εxx
Exy z . (16)

This emphasizes how the components of ε̃ are needed to
describe the changes in the optical polarization.

From the experimental perspective, the measurement
of the absorption (or, attenuation) coefficient α is at least
one technique that sets a relative scale for the FR. It is
given from

α = 2 Im {keff} = 2
ω

c
Im {√µεeff} . (17)

This could use either εR or εL or their average for the
effective dielectric function εeff of the medium, as this
expression does not involve their difference, which is ex-
tremely small. Thus, measurements of α serve to set
some unknown fitting parameters, when needed.

IV. CLASSICAL PHENOMENOLOGICAL
MODEL FOR ε(ω) (DRUDE MODEL)

In this section the electron motion is assumed to be
classical. An electron of bare mass mo and charge e =
−1.602× 10−19 C has some trajectory r(t) = (x(t), y(t))
in response to all forces acting on it, and the averaging
of its induced electric dipole moment d = er lead to the
dielectric function.

To include the effect of the constant B on ε̃ it is as-
sumed that there are two primary contributions to the
dielectric response. The first is the contribution of free
electrons with number density n, and some damping pa-
rameter γp, that leads to the usual plasmon response
with a plasma frequency ω2

p = ne2/mε0. The second is a
contribution due to bound electrons, with some binding
frequency ω0 and another damping parameter γ0. The

contribution of bound electrons is essential to describe
ε(ω) correctly15 in NPs.

Any electron, whether free or bound, is acted on as
well by the electric force from the optical field, and the
Lorentz force from the DC magnetic field. The force due
to the optical magnetic field can be ignored in lowest or-
der. In this Drude approximation the equation of motion
of a bound electron is29

mor̈ = eE + eṙ× B − moω
2
0r− moγ0ṙ . (18)

Under the assumption of e−iωt time dependence of the
optical field E, which is the source field, this is[

mo(ω
2
0 − ω2 − iωγ0) − iωeB×]

r = eE . (19)

In terms of the components this is a matrix relation,[
ω2

0 − ω2 − iωγ0 +iωωB

−iωωB ω2
0 − ω2 − iωγ0

] [
x
y

]
=

e

mo

[
Ex

Ey

]
,

(20)
where the cyclotron frequency with B along ẑ is

ωB =
eB

mo
. (21)

The matrix Ω̃2 on the LHS of (20) has the same kind
of symmetry as that of ε̃ in (11), because the diagonal
elements are equal and the imaginary off-diagonal ele-
ments differ only in sign. This means Ω̃2 has the same
eigenvectors, which are the right and left circular polar-
ization states. Based on its structure, the eigenvalues
Ω2

R and Ω2
L of Ω̃2 are easy to read out. For right circular

polarization,

Ω2
R = ω2

0 − ω2 − iωγ0 + ωωB . (22)

For left circular polarization, the last term (from the
off-diagonal element) has the opposite sign,

Ω2
L = ω2

0 − ω2 − iωγ0 − ωωB . (23)

The effect of the DC magnetic field appears only in the
last factor. These two eigenvalues can be combined into
a single convenient expression in terms of the helicity
ν = −1 for right circular polarization and ν = +1 for
left circular polarization:

Ω2
ν = ω2

0 − ω2 − iωγ0 − νωωB . (24)

The helicity is the projection of the photon intrinsic an-
gular momentum (L on the direction of propagation (k
or ẑ). In this expression it multiplies the magnetic field
component along the same axis. Any physical differences
for right and left circular polarizations will become inter-
changed if the direction of the magnetic field is reversed.
In terms of a vector (ν = (L/!, the last factor in these
eigenvalues could be written most generally as ω(ν · (ωB.

for volume fraction of NPs 

fs=5.95x10-7

Using the quantum theory to fit parameters.

plasmon peak location & uv response is 
affected by the bound electrons.

ε=εfree+εbound

εfree= Drude theory

εbound= interband transitions 
integral
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When the angular momentum lf of the upper band is
less than that of the lower band, li, both the choices
mi = mf ± ν always exist for any mf , and this can be
written instead as

Tν =
ω2ν

ω + iγ

∑
mf

∫ xF

ωg

dx
gmf

(x)x
√

x − ωg

(x2 − 1
4ω2

B)(x2 − ω2
ν)

. (113)

As mentioned earlier, the only change from the 3D ex-
pression is that the power is now 1

2 instead of 3
2 in the

numerator. That is a complex integrand. If the real and
imaginary parts are needed, it can be written in terms
of real quantities, better for comparison with the B = 0
equations:

Tν =
ω2ν

ω + iγ

∑
mf

∫ xF

ωg

dx gmf
(x)

x
√

x − ωg

x2 − 1
4ω2

B

×
(
x2 + γ2 − ω2

F

)
+ 2iγωF

(x2 + γ2 − ω2
F )

2
+ 4γ2ω2

F

. (114)

Here a notation for a real shifted Faraday frequency is
used,

ωF ≡ ω + 1
2νωB , (115)

that is dependent on the polarization index ν. In the ap-
plication of this to gold nanoparticles, we assume transi-
tions from the lower d-band to the upper p-band, hence
there are values mf = −1, 0, 1 to be summed over.

The last result also has an approximate expression
that applies if the Fermi energy falls well within the band
gap. Then, the Fermi occupation factors can be approx-
imated with wi − wf = 1, removing all the temperature
dependence. The integral for Tν can be done exactly in
this case, see the Appendix. There results

Tν =
π(li + lf )

2(ω + iγ)2
{
i
√

ων − ωg − √
ων + ωg

+
√

ωg − ζν +
√

ωg + ζν

}
. (116)

Obviously the expression is similar to that for the 3D
band model, but now the powers are 1

2 instead of 3
2 . A

comparison of the full integral (114) and this approxi-
mation (116), as functions of the photon energy, can be
seen in the Appendix in Figure 7.

G. Interband parameters for gold

Following Inouye et al.14 and also Scaffardi and
Tocho15, the 1D band model was applied here for the di-
electric response of gold nanoparticles. As for the Drude
model, we can fit the 1D interband permittivity, Eq.
(114) for B = 0 to the absorption of a solution of 17
nm diameter gold particles in water. The absorption
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FIG. 4: (Color online) Fitting of the absorption of 17 nm
diameter gold particles in water solution, according to the
1D band model for the interband dielectric response. Fit was
made via a Monte Carlo search, allowing both the bound
electron and free electron parameters to be varied. Their
final adjusted values, for T = 300 K, are indicated on the
Figure. The fitted gold volume fraction is fs = 5.95 × 10−7.
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FIG. 5: (Color online) The IBT contribution to the permit-
tivity, from the 1D band model, Eq. (114), using the param-
eters of Figure 4. In this model both the real and imaginary
parts remain positive for all frequencies.

data from 350 nm – 900 nm were fit to Eq. (114) (using
also the MG theory presented earlier) while allowing the
gap energy !ωg, Fermi energy EF , bound electron damp-
ing γ, and normalization constant Q to be varied. We
also allow the gold volume fraction fs and free electron
plasma frequency ωp and damping γp to be varied.

This is a multi-parameter search, which was carried
out via a Metropolis Monte Carlo algorithm. For the
effective energy function to be minimized, it was found
practical to use the sum of the absolute differences be-
tween the experimental data αi at each frequency and

 17nm diameter gold NPs.
From Integral for interband transitions:

both parts stay positive.

Peak in Re{ε} due to Fermi energy (EF=2.52 eV).
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the theoretical expression αth, i.e.,
∑

i |αi(ωi)−αth(ωi)|,
instead of the squares (this gives a more uniform weight-
ing but looser fit to the points). A reasonable fit and
the associated parameters are shown in Figure 4. The
gap energy Eg = 2.02 eV, Fermi energy EF = 2.53 eV
and plasma frequency (!ωp = 8.59 eV) determined in
this fit are consistent with the values used in Ref. 15.
The dampings, !γp = 0.152 eV (γ−1

p = 4.33 fs) and
!γ = 0.269 eV (γ−1 = 2.45 fs), are somewhat different
from those for bulk gold, and the resulting real and imag-
inary parts of dielectric function ε(ω) are different from
those for bulk gold.33 However, γp is consistent with the
prediction from Eq. (43), as expected due to extra sur-
face scattering and other factors for the nanoscale par-
ticles. If this surface scattering effect is taken out, the
model reproduces the real and imaginary parts of ε(ω)
for bulk gold that are completely consistent with those
found by Johnson and Christy.33

A value of gold volume fraction fs = 5.95 × 10−7 was
needed in the fit. It is about half the value estimated
by the techniques in Ref. 26, see Sec. II, showing the
difficulty in estimation of fs in the lab. We might note
that this fit is not strongly constrained; it was deter-
mined only by the absorption data; other values cannot
be strongly ruled out. Unlike the Drude model presented
earlier, this model is very good at fitting the ultraviolet
end of the dielectric properties, and also fits the infrared
end better. Thus, we expect it should give more reliable
predictions for the Faraday rotation properties.

VI. FARADAY ROTATION DUE TO GOLD
NANOPARTICLES

Here we apply the 1D band model to the interband
transitions, and compare the theory to experiments for
gold NPs. Based on the fitting of parameters for 17
nm diameter gold particles in the previous section, the
results for scaled complex Faraday rotation angle Ψ =
Υ + iZ = (ϕ + iX )/(Bzfs) can be estimated using Eq.
(15) together with the MG theory for the response of a
dilute solution, Eq. (40). The real and imaginary parts
are the Verdet and ellipticity factors, respectively, scaled
by volume fraction fs of gold in the solution.

The theory results for 17 nm diameter gold NPs are
compared with experimental data for the FR spectrum
in Fig. 6. The experimental data for Υ = υ/fs has been
scaled down by a factor of 1/10 so that its negative FR
peak is similar in magnitude to the theory. Although
some details are not identical between theory and ex-
periment, the general trend in Υ as a function of wave-
length is similar. Both show a strong negative peak due
to the plasmon near 520 – 530 nm, and a zero cross-
ing in Υ near 550 nm. This peak is about ten times
stronger when using the IBT theory than the simpler
Drude approach presented in Fig. 3, but the negative

400 500 600 700 800

! (nm)

-1.5"10
4

-1.0"10
4

-5.0"10
3

0.0

5.0"10
3

1.0"10
4

1.5"10
4

#
 (

ra
d
/T

. m
)

experiment, $/10

theory, $ = %/(Bzf
s
)

theory, & = '/(Bzf
s
)

#=(%+i')/f
s
, MG theory

gold, radius a=8.5 nm

(IBT theory for
      bound electrons)

FIG. 6: (Color online) (a) The real and imaginary parts of
the scaled complex Faraday rotation Ψ = (ϕ + iX )/(Bzfs),
from experiment (points), and calculated including IBTs for
bound electrons in the 1D band model for gold particles of 17
nm diameter (lines). The real part (solid curve) is the Verdet
factor per volume fraction, Υ. The experimental data for Υ
has been scaled by a factor of 1/10, which brings its peak to
the same size as in the IBT theory. The imaginary part is the
ellipticity factor scaled by volume fraction (not measured).

FR peak in the experimental data is still much stronger
than in both theories. The experimental result for Υ,
however, is obtained by dividing raw FR data by the es-
timated gold volume fraction (using techniques of Ref.
26), fs = 1.23 × 10−6. Any error in the volume fraction
will modify the experimental value of Υ. The volume
fraction divides out in the theory for Υ. Various mul-
tiple scattering and backscattering effects11 and other
similar aggregation effects10 not included in this theory
could explain this large discrepancy.

Above 560 nm both theory and experiment indicate a
positive Faraday rotation angle. According to the theory,
there is also a strong positive peak in ellipticity expected
around a wavelength slightly larger than that due to the
plasmon (around 550 nm). Notably, both the rotation
and ellipticity tend towards zero at short wavelengths,
removing the artifact present in the classical Drude ap-
proach.

VII. DISCUSSION AND CONCLUSIONS

The interband electronic transitions are known to have
a considerable effect on dielectric properties of gold and
other metals. Although it is popular to consider only a
simple Drude model for quasi-free electrons, it is shown
here to be inadequate for describing, say, the absorption
in gold nanoparticles. A fit for the dielectric parame-
ters based on a Drude model, combining free electron

scaled rotation 
& ellipticity

Ψ
Ψ= +iZ

Using IBT integral for bound electrons,
17 nm diameter gold NPs
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QM theory result is now closer to the experiment.

The tails of go more quickly to zero. 
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FIG. 3: (Color online) Faraday rotation for 17 nm diame-
ter gold NPs, from experiment, and according to the Drude
model for the bound electrons, using the Drude fitting pa-
rameters of Figure 1. The experimental results have been
scaled by 1/100 to allow them to be plotted together with
the Drude theory. The theory result was obtained with the
MG effective medium approach. Faraday rotation angle ϕ
and ellipticity angle X have been scaled by B, z, fs, to give
Ψ = Υ + iZ.

average diameter 17 nm; the prediction for their effective
damping is then γp = 1.92× 1014 rad/s, or, a time scale
τp = γ−1

p = 5.20 fs.
The Drude theory was fitted to experimental data for

absorption through a 1 cm path of water solution of
gold particles with average diameter of 17 nm. The
fitting parameters were chosen to get a good descrip-
tion of the absorption peak present near 522 nm, at-
tributed to surface plasmon response. A good descrip-
tion can be obtained while also allowing the volume frac-
tion and free electron parameters ωp and γp to vary,
see Figure 1. The contribution from the bound elec-
trons can be represented approximately using the am-
plitude parameter g0 = 3.70 × 1015 rad/s, the binding
frequency ω0 = 3.73 × 1015 rad/s (wavelength 504 nm),
and damping frequency γ0 = 6.08 × 1015 rad/s, which
corresponds to a damping time of τ0 = 1/γ0 ≈ 1.64 fs.
To get this good fit to the peak, the free electrons are
at the same time represented using plasma frequency
ωp = 1.40 × 1016 rad/s, equivalent to λp = 134.1 nm,
and a damping γp = 1.118 × 1014 rad/s, correspond-
ing to the damping time τp = 8.94 fs. These are slightly
different than the accepted bulk values, however, we con-
sider them here only as a model that fits accurately the
absorption peak.

From these fitted dielectric parameters, the theoretical
Faraday rotation response can be obtained. Results for
the Faraday rotation and ellipticity for 17 nm gold NPs
in solution are shown in Fig. 3. The complex rotation
angle ψ is found from Eq. 15, together with applying the

Maxwell-Garnett procedure for the composite medium,
Eq. 40, for the effective dielectric function of the com-
posite solution. We have scaled the rotation angle ϕ and
ellipticity X by the product of path length z, magnetic
field B and gold volume fraction fs, to remove the lin-
ear dependence on these quantities. Thus we define the
complex rotation angle scaled by volume fraction,

Ψ ≡ Υ + iZ = ψ/fs . (44)

Then, Υ ≡ ϕ/(Bzfs) is the Verdet factor per unit vol-
ume fraction, and Z ≡ X/(Bzfs) is a corresponding
ellipticity factor per unit volume fraction. Then the re-
sults for Υ and Z do not depend on B, z, or fs in the
linear regime. The experimental data for Υ are also dis-
played in Fig. 3, scaled down by a factor of 1/100 in
order to be shown together with the theory.

One sees that the model predicts a negative peak in
the Faraday rotation near 525 nm, apparently associ-
ated with the plasmon resonance (see 28 for the dis-
tinction between positive and negative rotation angles).
The experimental data have a similar negative peak in
the same region, although its magnitude is significantly
larger than this theory predicts. The theory has a wider
positive peak around 580 nm and a long tail at longer
wavelengths, but this positive peak is rather weak in
the experimental data. For the ellipticity, the main fea-
ture predicted is a positive peak around 540 nm, slightly
above the plasmon wavelength, together with its associ-
ated negative peak and long tail at shorter wavelengths.
Unfortunately, the model exhibits an artifact at shorter
wavelengths: both ϕ and X tend to increase greatly at
short wavelengths in an unphysical behavior. This is due
to the fact that classical Drude model cannot correctly
describe the bound electron response at higher frequen-
cies.

This model is an approximate way to include the ef-
fect of B on classical bound electrons, however, it should
be replaced by the more complete calculation using the
quantum interband transitions presented later. It gives
a reasonable fit to the absorption curve from 900 nm
down to 400 nm, however, below that wavelength it pre-
dicts much more absorption than actually takes place.
Also, this Drude description of the bound electrons can-
not accurately describe the response in the wavelengths
350 – 500 nm. This model does not require any back-
ground (i.e., high-frequency) dielectric function ε∞ ∼ 10,
as has been applied in other studies to mimic the effect
of bound electrons.31 Even so, the fit to the absorption
peak due to the SP mode is very good, while the corre-
sponding negative FR peak due to the SP mode of 17
nm gold particles is about 100 times stronger than the
theory predicts.
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FIG. 7: (Color online) The IBT contribution to the permit-
tivity for the 1D band model, as functions of photon energy
in eV, using the parameters of Figure 4. The solid curves
apply the full theory, Eq. (114), including the Fermi occupa-
tion factors, for temperature 300 K. Note the peak in Re{ε}
at the Fermi energy (2.52 eV) in the full theory. The dot-
ted curves show the result of assuming a totally unoccupied
upper band, wf = 0, obtaining ε(ω) from Eq. (A21).

and for K2, reverse the overall sign and the signs on ων

and ζν ,

K2 =

∫ sF

0

ds s2

ων − ζν

[
1

s2 + ωg + ων
− 1

s2 + ωg + ζν

]
.

(A17)
The basic integral needed is

f(s) =

∫
ds s2

s2 + a2
= s − a tan−1

( s

a

)
. (A18)

Applying this to all the sub-integrals, the results are sim-
ilar to those in 1D,

K1 =
1

ω + iγ

{
−(ωg − ων)1/2 tan−1

(
s√

ωg − ων

)

+ (ωg − ζν)1/2 tan−1

(
s√

ωg − ζν

)}
, (A19)

K2 =
1

ω + iγ

{
−(ωg + ων)1/2 tan−1

(
s√

ωg + ων

)

+ (ωg + ζν)1/2 tan−1

(
s√

ωg + ζν

)}
. (A20)

Again, it will be useful to reverse the order in the radical
in the first term in K1, assuming above the gap excita-
tion. Then we apply again,

√
ωg − ων → i

√
ων − ωg.

Letting the upper limit of integration sF → ∞, and in-
serting the limiting values of the inverse tangents, there
results

Tν =
πgm

2(ω + iγ)2
{
i
√

ων − ωg −
√

ων + ωg

+
√

ωg − ζν +
√

ωg + ζν

}
. (A21)

Note that for typical values of the parameters, both the
real and imaginary parts of Tν(ω) are positive. This
function derived has a peak in its real part, for frequency
near the gap frequency ωg. Otherwise, it is very similar
to the more complete theory of (114) that includes the
varying Fermi occupation factor. That complete theory
differs primarily in that the location of the peak in its
real part is near the Fermi energy rather than the gap
energy.
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Summary

• EM response [ε(ω)] in NPs is strongly affected by bound 
electrons.

• The plasmons are controlled by geometry and by ε(ω),  so 
avoid using a Drude approximation for the bound electrons if 
you want to get the correct plasmon frequencies.

• Applied DC magnetic field for typical NPs will not lead to 
Landau levels, but rather, Zeeman splittings that give a limited 
number of sub-states.
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