Quantum Faraday Rotation in

Metallic Nanoparticles

Condensed Matter Seminar Kansas State University

November 8, 2013
Gary Wysin
collaboration with
Viktor Chikan, chemistry

wysin@phys.ksu.edu www.phys.ksu.edu/personal/wysin

Why Study Nanoparticle Electromagnetics?

- NPs can be made much smaller than λ of the light \rightarrow Rayleigh limit \& collective electron motion.
- Experiment will measure the combined response of a collection of particles in a medium (composite system).
- The dielectric function $\epsilon(\omega)$ determines all EM responses, like absorption, scattering, and Faraday rotation and other polarization effects \Rightarrow better knowledge of the quantum electron physics.
- Faraday rotation can be affected by plasmon modes.
- It's fun. You get to use a lot of physics theory you learned in grad school.

Today's topics

- plasmon oscillations in NPs
- light polarization, Faraday rotation, and $\epsilon(\omega)$
- Classical (Drude model) and quantum theory for the dielectric function $\epsilon(\omega)$
- the importance of bound electrons in $\epsilon(\omega)$
- how $B_{D C}$ enters $\epsilon(\omega)$ in quantum vs. classical theory
- why electrons in NPs don't have Landau levels due to $B_{D C}$

EM

scattering

incident plane waves,
spherical dielectric or conducting particles
frequency ω, wave vector k

A nearly uniform polarization is induced in the NP. Its amplitude depends on the dielectric function $\epsilon(\omega)$. How to describe effects on the light?

Viktor Chikan's core particles

Figure 2 (a) TEM image of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticles used in the experiment.

gold-shell on maghemite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ cores (from Viktor Chikan's lab)

Figure 3 (b) Variation of color change when the thickness of gold onto the surface of the nanoparticles is increased.

Viktor Chikan's core/shell particles

Figure 3 (a) UV-vis absorption spectrum of $3^{\text {rd }}$ batch synthesis of gold coated $\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticles. The initial peak position is indicated by an arrow at 606 nm and shifts to 532 nm with increasing thickness of gold shell.

Bulk Plasma oscillations

$$
\omega_{p}=\sqrt{\frac{n e^{2}}{m \epsilon_{0}}}
$$

$\mathrm{n}=$ electron number density $\mathrm{z}=$ electron gas displacement
newtonian mechanics:

$$
\begin{gathered}
-(e n V)\left(-\frac{\sigma}{\epsilon_{0}}\right)=(m n V) \ddot{z} \\
-\left(\frac{n e^{2}}{\epsilon_{0}}\right) z=m \ddot{z} \\
\ddot{z}=-\frac{n e^{2}}{m \epsilon_{0}} z=-\omega_{p}^{2} z
\end{gathered}
$$

About electric polarization P

$A=$ top/bottom surface area

Spherical conductor, plasma oscillations

$$
\omega_{s}=\sqrt{\frac{n e^{2}}{3 m \epsilon_{0}}}=\frac{\omega_{p}}{\sqrt{3}}
$$

$z=$ electron gas displacement

$$
\begin{array}{r}
\sigma=-n e z \cos \theta \quad p_{z}=\int \sigma(a \cos \theta) d A=-\frac{4 \pi a^{3}}{3}(n e z) \\
\text { Polarization: } \quad \vec{P}=-(n e z) \hat{z}
\end{array}
$$

newtonian mechanics: $Q E=M \ddot{z}$

$$
\begin{aligned}
& (-e n V) \frac{n e z}{3 \epsilon_{0}}=(m n V) \ddot{z} \\
& \ddot{z}=-\frac{n e^{2}}{3 m \epsilon_{0}} z=-\omega_{s}^{2} z
\end{aligned}
$$

Therefore, Geometry affects the resonance frequency:
bulk gold:

$$
\begin{aligned}
& \mathrm{n}=5.90 \times 10^{28} / \mathrm{m}^{3} \\
& \omega_{p}=1.36 \times 10^{16} \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
\lambda_{p}=138.5 \mathrm{~nm}(\text { very short })
$$

spherical gold:

$$
\mathrm{n}=5.90 \times 10^{28} / \mathrm{m}^{3}
$$

$$
\omega_{\mathrm{s}}=7.85 \times 10^{15} \mathrm{rad} / \mathrm{s}
$$

$$
\lambda_{s}=240 \mathrm{~nm}(\text { still too short })
$$

Sphere in a host medium, dielectric response

$E_{0}=$ field in surroundings

$$
\begin{aligned}
& \Phi_{\text {inside }}=-\left(\frac{3 \epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}}\right) E_{0} r \cos \theta \\
& \vec{E}_{\text {inside }}=\frac{3 \epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}} \vec{E}_{0}=\text { uniform }
\end{aligned}
$$

$$
\epsilon_{\mathrm{a}}=\text { host }
$$

$\Phi_{\text {outside }}=-\left[r-\left(\frac{\epsilon_{b}-\epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}}\right) \frac{a^{3}}{r^{2}}\right] E_{0} \cos \theta$
$\vec{E}_{\text {outside }}=\vec{E}_{0}+\frac{\vec{p} \cdot \vec{r}}{4 \pi \epsilon_{a} r^{3}}$
induced electric dipole:

$$
\vec{p}=\left(\frac{\epsilon_{b}-\epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}}\right)\left(4 \pi a^{3} \epsilon_{a} \vec{E}_{0}\right)
$$

Resonance of a conducting sphere

$$
\epsilon_{\mathrm{b}} \int \vec{E}_{\text {inside }}=\frac{3 \epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}} \vec{E}_{0}
$$

divergence when: $\quad 2 \epsilon_{a}+\epsilon_{b}=0$
Drude model, free electron gas:

$$
\epsilon_{b}(\omega)=\epsilon_{0}\left[1-\frac{\omega_{p}^{2}}{\omega^{2}}\right]
$$

resonance: $\Longrightarrow 2 \frac{\epsilon_{a}}{\epsilon_{0}}+1-\frac{\omega_{p}^{2}}{\omega^{2}}=0 \quad \Longrightarrow \quad \omega_{\mathrm{SP}}=\frac{\omega_{p}}{\sqrt{2 \frac{\epsilon_{a}}{\epsilon_{0}}+1}}$
for gold surrounded by $\mathrm{H}_{2} \mathrm{O}$:

$$
\begin{aligned}
\mathrm{n}= & \left(\epsilon_{\mathrm{a}} / \epsilon_{0}\right)^{1 / 2} \\
& =\mathrm{I} .33
\end{aligned}
$$

$$
\omega_{\mathrm{SP}}=\frac{\omega_{p}}{\sqrt{2(1.33)^{2}+1}} \approx 0.47 \omega_{p}
$$

$$
\lambda_{\mathrm{sp}}=295 \mathrm{~nm}
$$

What about electron response and Faraday rotation?
Use circular polarization, and magnetic field \mathbf{B} along $\mathbf{k}=k \boldsymbol{n}$.
EM waves approaching you, the observer:

© ${ }^{B}$

LEFT circular polarization CCW rotation
positive helicity $\mathrm{V}=\boldsymbol{\sigma} \cdot \boldsymbol{n}=+1$

$$
\hat{u}_{L}=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{y}) e^{-i \omega t}
$$

RIGHT circular polarization CW rotation
negative helicity $V=\boldsymbol{\sigma} \cdot \boldsymbol{n}=-1$

$$
\hat{u}_{R}=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{y}) e^{-i \omega t}
$$

Faraday Rotation angle:

waves towards observer

Why is there Faraday rotation, and how large is it?

Incident linear polarization, at a single frequency ω :
$\vec{E}_{\mathrm{inc}}=E_{\mathrm{inc}} \hat{x}=E_{\mathrm{inc}} \frac{1}{\sqrt{2}}\left(\hat{u}_{R}+\hat{u}_{L}\right)$

$B \Longrightarrow$
$k \Longrightarrow$
$\mathrm{z} \longrightarrow$
After propagation through z:

$$
\begin{aligned}
\vec{E}(z) & =\frac{E_{\text {inc }}}{\sqrt{2}}\left[\hat{u}_{R} e^{i k_{R} z}+\hat{u}_{L} e^{i k_{L} z}\right] \\
\vec{E}(z) & =E_{\text {inc }}\left[\hat{x} \cos \left(\frac{\Delta k}{2} z\right)+\hat{y} \sin \left(\frac{\Delta k}{2} z\right)\right] e^{i \bar{k} z}
\end{aligned}
$$

Faraday rotation:

$$
\psi=\frac{\Delta k}{2} z
$$

$$
\begin{aligned}
& \bar{k} \equiv \frac{1}{2}\left(k_{R}+k_{L}\right) \\
& \Delta k \equiv k_{R}-k_{L}
\end{aligned}
$$

Classical electron response, at frequency ω :

LEFT circular polarization

$F_{\text {net }}=e E_{0}+e v B_{z}=m \omega^{2} r$
$r=\frac{e E_{0}}{m \omega^{2}-e \omega B_{z}}=\frac{e E_{0}}{m \omega\left(\omega-\omega_{B}\right)}$
cyclotron
frequency:

$$
\omega_{B}=\frac{e B_{z}}{m}
$$

RIGHT circular polarization

$$
\begin{aligned}
& F_{\text {net }}=e E_{0}-e v B_{z}=m \omega^{2} r \\
& r=\frac{e E_{0}}{m \omega^{2}+e \omega B_{z}}=\frac{e E_{0}}{m \omega\left(\omega+\omega_{B}\right)}
\end{aligned}
$$

LEFT polarization produces larger orbit,
larger induced electric dipole

Effect on electric permittivity ϵ
permittivity ϵ : polarization:
$\vec{P}=n \vec{p}$
$\epsilon \vec{E}=\vec{D}=\epsilon_{0} \vec{E}+\vec{P}$
$\epsilon=\frac{D_{0}}{E_{0}}=\frac{\epsilon_{0} E_{0}+P}{E_{0}}=\epsilon_{0}+\frac{P}{E_{0}}$
$\Longrightarrow \quad \epsilon=\epsilon_{0}-\frac{n e^{2}}{m \omega\left(\omega \pm \omega_{B}\right)}$

$$
\epsilon=\epsilon_{0}\left[1-\frac{\omega_{p}^{2}}{\omega\left(\omega \pm \omega_{B}\right)}\right]
$$

+ for RIGHT circular $\quad \lambda_{R}=\frac{2 \pi}{k_{R}}$
- for LEFT circular
$\lambda_{L}=\frac{2 \pi}{k_{L}}$
wave vectors:

$$
k=\frac{2 \pi}{\lambda}=\sqrt{\epsilon \mu} \omega
$$

$$
k=\frac{\omega}{c} \sqrt{1-\frac{\omega_{p}^{2}}{\omega\left(\omega \pm \omega_{B}\right)}}
$$

$$
\Longrightarrow \quad \lambda_{R}<\lambda_{L}
$$

Classical Faraday rotation: dielectric matrix ϵ
An electron is affected by several forces:

$$
\vec{F}=-\underset{\text { binding }}{-m \omega_{0}^{2} \vec{r}-e \vec{E}-e \underset{\text { electric }}{e \dot{\vec{r}} \times \vec{B}-m \gamma \dot{\vec{r}}}=m \ddot{\vec{r}} \text { Lorentz damping }}
$$

harmonic motion:

$$
\vec{r}(t)=\vec{r}_{0} e^{-i \omega t}
$$

> incident waves
$m\left(\omega^{2}-\omega_{0}^{2}+i \omega \gamma\right) \vec{r}-i \omega e \vec{B} \times \vec{r}=e \vec{E}$
electron response
$\left(\begin{array}{cc}m\left(\omega^{2}-\omega_{0}^{2}+i \omega \gamma\right) & i \omega e B_{z} \\ -i \omega e B_{z} & m\left(\omega^{2}-\omega_{0}^{2}+i \omega \gamma\right)\end{array}\right)\binom{x}{y}=\binom{e E_{0 x}}{e E_{0 y}}$
form is:

$$
M \cdot \vec{r}=e \vec{E}
$$

solution is: $\vec{r}=\binom{x}{y}=M^{-1}\binom{e E_{0 x}}{e E_{0 y}}$

Result for electric permittivity ϵ

$$
\epsilon \vec{E}=\epsilon_{0} \vec{E}+\vec{P} \quad \vec{P}=-n e \vec{r}, \quad \vec{r}=M^{-1}\binom{e E_{0 x}}{e E_{0 y}}
$$

Then magic happens and

$$
\epsilon=\left(\begin{array}{cc}
\epsilon_{x x} & \epsilon_{x y} \\
-\epsilon_{x y} & \epsilon_{x x}
\end{array}\right)
$$

$$
\begin{aligned}
& \epsilon_{x x}=\epsilon_{0}-\frac{\left(n e^{2} / m\right)\left(\omega^{2}-\omega_{0}^{2}+i \omega \gamma\right)}{\left(\omega^{2}-\omega_{0}^{2}+i \omega \gamma\right)^{2}-\left(\omega e B_{z} / m\right)^{2}} \\
& -i \epsilon_{x y}=\frac{\left(n e^{2} / m\right)\left(\omega e B_{z} / m\right)}{\left(\omega^{2}-\omega_{0}^{2}+i \omega \gamma\right)^{2}-\left(\omega e B_{z} / m\right)^{2}}
\end{aligned}
$$

What's important: The eigenstates of ϵ are the RIGHT/LEFT circular polarization states!

$$
\begin{array}{lll}
\lambda_{1}=\epsilon_{R}=\epsilon_{x x}-i \epsilon_{x y} & \hat{u}_{1}=\hat{u}_{R}=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{y}) & \text { RIGHT circular } \\
\lambda_{2}=\epsilon_{L}=\epsilon_{x x}+i \epsilon_{x y} & \hat{u}_{2}=\hat{u}_{L}=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{y}) & \text { LEFT circular }
\end{array}
$$

for the propagating eigenstates:

$$
\epsilon_{R / L}=\epsilon_{0}\left(1-\frac{\omega_{p}^{2}}{\omega^{2}-\omega_{0}^{2}+i \omega \gamma \pm \omega \omega_{B}}\right)
$$

$$
\Rightarrow \begin{aligned}
& k_{R}=\sqrt{\epsilon_{R} \mu_{0}} \omega \\
& k_{L}=\sqrt{\epsilon_{L} \mu_{0}} \omega
\end{aligned}
$$

Complex Faraday rotation:

$$
\psi=1 / 2\left(k_{\mathrm{R}}-\mathrm{k}_{\mathrm{L}}\right) \mathrm{z}
$$

$$
\psi=-i \frac{\omega}{2 c} \frac{\epsilon_{x y}}{\sqrt{\epsilon_{x x}}} z
$$

Real and Imag parts:

$$
\begin{aligned}
& \boldsymbol{\varphi}=\operatorname{Real}\left\{-i \frac{\omega}{2 c} \frac{\epsilon_{x y}}{\sqrt{\epsilon_{x x}}} z\right\}=\text { rotation } \\
& \boldsymbol{X}=\operatorname{Imag}\left\{-i \frac{\omega}{2 c} \frac{\epsilon_{x y}}{\sqrt{\epsilon_{x x}}} z\right\}=\text { ellipticity }
\end{aligned}
$$

waves approaching observer

Scattering is from a collection of NPs. Use effective medium theory. (Maxwell-Garnet theory)
What are this sample's averaged $\epsilon_{R}, \epsilon_{L}$? $N=\#$ of NPs

Find this for RIGHT/LEFT polarizations

Classical (Drude) model for pure gold NPs response: (what we really do)

For $v=-1 /+1$, right/left circular polarizations

$$
\epsilon_{\nu}(\omega)=1-\frac{\omega_{p}^{2}}{\omega^{2}+i \omega \gamma_{p}+\nu \omega \omega_{B}}-\frac{g_{0}^{2}}{\text { (free electrons) }_{\omega^{2}-\omega_{0}^{2}+i \omega \gamma_{0}+\nu \omega \omega_{B}}^{\text {(bound electrons) }}}
$$

Fit parameters from absorption of a solution of gold particles:

$$
\alpha=2 \operatorname{Im}\left\{k_{\mathrm{eff}}\right\}=2 \frac{\omega}{c} \operatorname{Im}\left\{\sqrt{\mu \epsilon_{\mathrm{eff}}}\right\}
$$

for volume fraction of NPs

$$
\mathrm{f}_{\mathrm{s}}=3.36 \times 10^{-6}
$$

Drude fitting, gold NPs, bound electron part:

negative real part below
505 nm probably is unphysical

Faraday rotation at $\omega_{B} \ll \omega$

cyclotron frequency at $\mathrm{B}=1.0 \mathrm{~T}$

$$
\omega_{B}=\mathrm{eB} / \mathrm{m}=1.8 \times 10^{11} \mathrm{rad} / \mathrm{s}
$$

optical frequency at $\lambda=600 \mathrm{~nm}$ $\omega=2 \pi c / \lambda=3.1 \times 10^{15} \mathrm{rad} / \mathrm{s}$

Then the Faraday rotation is proportional to B:

$$
v=\varphi /(B z)=\text { Verdet constant }
$$

Also the Faraday rotation is proportional to volume fraction f_{s} :

$$
\Upsilon=\varphi /\left(\text { Bzf }_{s}\right)=\text { Verdet constant per volume fraction }
$$

$$
\mathrm{Z}=x /\left(\mathrm{Bzf}_{\mathrm{s}}\right)=\text { ellipticity constant per volume fraction }
$$

scaled rotation
\& ellipticity

Drude theory, I7 nm diameter gold NPs

Drude theory result is much smaller than experiment.

Fig. 13-26 Giancoli 7th ed. Nova Viçosa, Brazil

What about quantum electron dynamics with a DC magnetic field and the AC optical field?

$$
\mathrm{A}=\mathrm{A}_{0}+\mathrm{A}_{1} \quad \hat{H}=\frac{1}{2 m_{o}}[\hat{\mathbf{p}}-e \hat{\mathbf{A}}(\hat{\mathbf{r}}, t)]^{2}+e \hat{\phi}(\hat{\mathbf{r}}, t)+\hat{U}(\hat{\mathbf{r}})
$$

Apply perturbation theory to $H=H_{0}+H_{1}$
The potential \& A_{0} determine the stationary states:

$$
\hat{H}_{0}=\frac{1}{2 m_{o}}\left(\hat{\mathbf{p}}-e \hat{\mathbf{A}}_{0}\right)^{2}+U(\mathbf{r})
$$

At weak enough DC magnetic field:

$$
\hat{H}_{0}=\frac{\hat{\mathbf{p}}^{2}}{2 m_{o}}+U(\mathbf{r})-\vec{\mu} \cdot \mathbf{B}
$$

This depends on the electron orbital magnetic dipole moment:

$$
\vec{\mu}=\frac{e}{2 m_{o}} \vec{L}
$$

The optical field is a perturbation:

$$
\hat{H}_{1}=-\frac{e}{m_{o}} \hat{\mathbf{A}}_{1} \cdot\left(\hat{\mathbf{p}}-e \hat{\mathbf{A}}_{0}\right)
$$

Perturbation theory* in thermal equilibrium ... we want to find $\epsilon(\omega)$.
$\begin{array}{ll}\text { Use density operator, in equilibrium: } & \hat{\rho}_{0}=\sum_{i} w_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \\ \text { (determined by states } \Psi . \text { of } H_{0} \text {) } & \end{array}$
(determined by states Ψ_{i} of H_{0})

$$
w_{i}=\frac{1}{N} f_{0}\left(E_{i}\right), \quad f_{0}\left(E_{i}\right)=\frac{1}{e^{\beta\left(E_{i}-E_{F}\right)}+1}
$$

The perturbation.

Let light shine on the sample:

$$
\begin{aligned}
& \hat{\rho}=\hat{\rho}_{0}+\hat{\rho}_{1} \\
& \quad \text { due to optical field } \sim \mathrm{e}^{-\mathrm{i} \omega \mathrm{t}}
\end{aligned}
$$

quantum Liouville equation \Rightarrow dynamics:

$$
\frac{\partial \hat{\rho}}{\partial t}=\frac{1}{i \hbar}[\hat{H}, \hat{\rho}]
$$

leads to the time-dependence of the density operator:

$$
\hat{\rho}_{1}=\sum_{i f} \frac{\left(w_{i}-w_{f}\right)|f\rangle\langle f| \hat{H}_{1}|i\rangle\langle i|}{\hbar(\omega+i \gamma)+\left(E_{i}-E_{f}\right)}
$$

*Approach used by Boswarva, Howard and Lidiard (1962); Adler (I962); Prange (2009).

Find permittivity $\epsilon(\omega)=1+\mathcal{X}(\omega)$, from thermal averages, something like this:
electron's electric dipole operator:

$$
\hat{\mathbf{d}}(\mathbf{r})=e \hat{\mathbf{r}}|\mathbf{r}\rangle\langle\mathbf{r}|
$$

averaged electric dipole at position $\mathrm{r}: \quad \mathbf{d}(\mathbf{r})=\operatorname{Tr}\{\hat{\rho} \hat{\mathbf{d}}(\mathbf{r})\}$

$$
\begin{aligned}
& \begin{array}{l}
\text { volume average } \Rightarrow \\
\text { electric polarization: }
\end{array}
\end{aligned} \quad \mathbf{P}=N \overline{\mathbf{d}}=\frac{N}{V} \int d^{3} r \mathbf{d}(\mathbf{r})=\operatorname{Tr}\{\hat{\rho} n e \hat{\mathbf{r}}\}
$$

E\&M theory says:

$$
\mathbf{P}=n\langle\mathbf{d}\rangle=\tilde{\chi} \cdot \epsilon_{0} \mathbf{E}
$$

get susceptibility from:

$$
\chi_{a b}=\frac{n e^{2}}{\epsilon_{0} \hbar(\omega+i \gamma)} \sum_{i f} \frac{\left(w_{i}-w_{f}\right)\langle i| \hat{v}_{a}|f\rangle\langle f| \hat{v}_{b}|i\rangle}{\omega_{i f}\left(\omega+i \gamma+\omega_{i f}\right)}
$$

velocity operator:

$$
\hat{\mathbf{v}}=\frac{\vec{\pi}}{m_{o}}=\frac{1}{m_{o}}(\hat{\mathbf{p}}-e \hat{\mathbf{A}})
$$

transition frequencies:

$$
\hbar \omega_{i f}=E_{i}-E_{f}
$$

What kinds of transitions are considered?

$$
\chi_{a b}=\frac{n e^{2}}{\epsilon_{0} \hbar(\omega+i \gamma)} \sum_{i f} \frac{\left(w_{i}-w_{f}\right)\langle i| \hat{v}_{a}|f\rangle\langle f| \hat{v}_{b}|i\rangle}{\omega_{i f}\left(\omega+i \gamma+\omega_{i f}\right)}
$$

Zeeman split states, $\Delta E=1 / 2 \hbar \omega_{B}$

$$
\omega_{B}=\frac{e B_{z}}{m}
$$

$$
E_{i}=E_{h}=-\frac{\hbar^{2} \mathbf{k}_{i}^{2}}{2 m_{h}^{*}}-\frac{1}{2} m_{i} \hbar \omega_{B}
$$

under electric dipole transition rules like:

$$
\Delta l= \pm 1, \Delta m= \pm 1 . \quad \Delta m \equiv m_{f}-m_{i}
$$

Why don't Landau levels appear as modifications of the band states?

For a free charge in a B-field:

$$
\begin{array}{r}
H_{0}=\frac{1}{2 m_{e}} \vec{\pi}^{2}, \quad \vec{\pi}=\mathbf{p}-\frac{e}{c} \mathbf{A} . \quad \Rightarrow \quad H_{0}=\hbar \omega_{B}\left(a^{\dagger} a+\frac{1}{2}\right) \\
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega_{B}, \quad n=0,1,2,3, \ldots \\
\text { Landau ground state, } \mathrm{n}=0: \quad \psi_{0}=\frac{1}{\sqrt{\pi} r_{0}} \exp \left\{-\frac{r^{2}}{2 r_{0}^{2}}\right\}, \quad r_{0}=\sqrt{\frac{2 \hbar}{e B}}
\end{array}
$$

The size of wavefunction depends on B.
At $B=0.1$ tesla, $r_{0}=115 \mathrm{~nm}$.

The Landau states do not fit into $\sim 10 \mathrm{~nm}$ radius NBs!

A geometric confinement effect.

Why left/right circular polarizations couple differently to the medium.
matrix element / selection rules: $\left\langle l^{\prime} m^{\prime}\right| \hat{v}_{y}|l m\rangle=-i \Delta m\left\langle l^{\prime} m^{\prime}\right| \hat{v}_{x}|l m\rangle, \quad \Delta m= \pm 1$.
diagonal susc. elements:

$$
\left.\chi_{x x} \sim \sum_{f i} g_{f i}\left|\langle f| \hat{v}_{x}\right| i\right\rangle\left.\right|^{2},
$$

off-diagonal susc. elements:

$$
\left.\chi_{x y} \sim \sum_{f i}(-i \Delta m) g_{f i}\left|\langle f| \hat{v}_{x}\right| i\right\rangle\left.\right|^{2} .
$$

for right circular light (helicity $V=-1$):

$$
\left.\chi_{R}=\chi_{x x}-i \chi_{x y} \sim \sum_{f i}(1-\Delta m) g_{f i}\left|\langle f| \hat{v}_{x}\right| i\right\rangle\left.\right|^{2}
$$

requires:

$$
\Delta m=-1
$$

for left circular light (helicity $V=+1$):
requires:

$$
\left.\chi_{L}=\chi_{x x}+i \chi_{x y} \sim \sum_{f i}(1+\Delta m) g_{f i}\left|\langle f| \hat{v}_{x}\right| i\right\rangle\left.\right|^{2}
$$

$$
\Delta m=+1
$$

*As applied to 17 nm diameter gold NPs. $\quad \chi_{\nu}=Q T_{\nu}(\omega), \quad \mathrm{v}=-1 /+1$ for R / L
\Rightarrow Integra* for interband transitions:

$$
\begin{aligned}
T_{\nu}=\frac{\omega_{2 \nu}}{\omega+i \gamma} \sum_{m_{f}} \int_{\omega_{g}}^{x_{F}} d x \frac{g_{m_{f}}(x) x \sqrt{x-\omega_{g}}}{\left(x^{2}-\frac{1}{4} \omega_{B}^{2}\right)\left(x^{2}-\omega_{\nu}^{2}\right)} & \omega_{\mathbf{v}}=\omega+i \gamma+\frac{1}{2} \nu \omega_{B} \\
& x=\omega_{g}+\frac{\hbar^{2} k^{2}}{2 m^{*}}
\end{aligned}
$$

$$
|f\rangle=\mathrm{P}\rangle=\square=E_{f}=E_{g}+\frac{\hbar^{2} \mathbf{k}_{f}^{2}}{2 m_{e}^{*}}-\frac{1}{2} m_{f} \hbar \omega_{B}
$$

$$
\operatorname{gap}=\hbar \omega_{\mathrm{g}} \approx 2 \mathrm{eV}
$$

d-band, $\quad E_{i}=E_{h}=-\frac{\hbar^{2} \mathbf{k}_{i}^{2}}{2 m_{h}^{*}}-\frac{1}{2} m_{i} \hbar \omega_{B}$
$\Delta E=1 / 2 \hbar \omega_{B}$
(along L-direction in k-space)
*Generalized from approach of Inouye et al. and Scaffardi and Tocho, to add ω_{B}.

Using the quantum theory to fit parameters.
plasmon peak location \& uv response is affected by the bound electrons.

Fit parameters from absorption of a solution of gold particles:
$\alpha=2 \operatorname{Im}\left\{k_{\text {eff }}\right\}=2 \frac{\omega}{c} \operatorname{Im}\left\{\sqrt{\mu \epsilon_{\text {eff }}}\right\}$
for volume fraction of NPs

$$
\mathrm{f}_{\mathrm{s}}=5.95 \times 10^{-7}
$$

I7nm diameter gold NPs.

From Integral for interband transitions:

scaled rotation

QM theory result is now closer to the experiment.
The tails of Υ go more quickly to zero.
scaled rotation
\& ellipticity

From the Drude theory for bound electrons, 17 nm diameter gold NPs

Drude theory result is much smaller than experiment.

If you did an approximation of an unoccupied upper band:
dotted curves \Rightarrow peak at $\hbar \omega_{\mathrm{g}}=2.02 . \mathrm{eV}$
unoccupied
upper band.

Values of $\hbar \omega_{\mathrm{g}}$ and E_{F} strongly control the bound electron responses.

Summary

- EM response $[\epsilon(\omega)]$ in NPs is strongly affected by bound electrons.
- The plasmons are controlled by geometry and by $\epsilon(\omega)$, so avoid using a Drude approximation for the bound electrons if you want to get the correct plasmon frequencies.
- Applied DC magnetic field for typical NPs will not lead to Landau levels, but rather, Zeeman splittings that give a limited number of sub-states.
"Effects of interband transitions on Faraday rotation in metallic nanoparticles,"
G.M.Wysin,Viktor Chikan, Nathan Young and Raj Kumar Dani,
J. Phys.: Condens. Matter 25, 325302 (2013). http://iopscience.iop.org/0953-8984/25/32/325302/

