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The $1.1 million prize awarded October 4, 2016

one half to:
David J. Thouless, 82, Univ. of Washington, Seattle
Born: 1934, Bearsden, United Kingdom

the other half to:
J. Michael Kosterlitz, 73, Brown University, Providence

Born: 1942, Aberdeen, United Kingdom

and

F. Duncan M. Haldane, 65, Princeton University
Born: 1951, London, United Kingdom

The prize goes for theories of condensed matter — materials composed from large numbers of
atoms or molecules, whose organized behavior leads to new properties that change in steps.
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The headline in Wired Magazine.
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The most recent preV|OUS phyS|CS NObel prlzes: ].OOsciI]ation probabilities for an initial electron neutrino

Probability

2015 - for the discovery of neutrino oscillations, which
shows that neutrinos have mass, to Kajita and McDonald.

2014 - for the invention of efficient blue LEDs which has
enabled bright and energy-saving white light sources,
to Akasaki, Amano and Nakamura.

— Higgs Highway —
proton

lepton

2013 - for the theoretical discovery of a mechanism that 4 o

contributes to our understanding of the origin of mass of . .
subatomic particles, and which recently was confirmed

through the discovery of the predicted fundamental particle, :
by the ATLAS and CMS experiments at CERN'’s Large v >
Hadron Collider, to Englert and Higgs. 0 G

»
neutrino

anti-proton




Other notable Nobel prizes in physics related to the 2016 prize:

2003 - for pioneering contributions to the theory of superconductors and

superfluids, to Abrikosov, Ginzburg and Leggett. ,
(coherent macroscopic quantum states)

2001 - for the achievement of Bose-Einstein condensation in dilute gases
of alkali atoms, and for early fundamental studies of the properties of the
condensates, to Cornell, Ketterle and Wieman. (phase transitions)

1985 - for the discovery of the quantized Hall effect, to Klaus von Kilitzing.
(coherent macroscopic quantum states)

1962 - for his pioneering theories for condensed matter, especially liquid

helium, to Lev D. Landau. (phase transitions)



What is the importance of:

“theoretical discoveries of topological phase transitions and topological phases of matter” ?7?

» Understanding of how phase transitions take place in two dimensions.
(applications to superconductors, superfluids and magnets in 2D)

» Many condensed materials have topological phases: states of matter
where some important properties only change in integer steps, even
when dirty or disorganized.

» Results will lead to new electronic materials (better, faster, smaller)
with special topological properties.

Example = topological insulators, sheet materials that conduct strongly
on their edges but are insulating in their interiors.



“theoretical discoveries of topological phase transitions

and topological phases of matter” ??
“phases” — determined by how the atoms
are correlated to their neighbors.
plasma = rapid separated ions + electrons
gas = nearly independent fast molecules

liquid = cohesion among nearby atoms or
molecules and strong correlations

solid = atoms have small motions around
well-defined locations (crystals)

quantum condensate = a large number of
atoms or molecules very strongly correlated,
maybe even in the same quantum state, with
unusual properties.

_J

-+

temperature or other parameter

Fig. 1 Phases of matter.



exotic states of matter

> very cold, not more than a few degrees above absolute zero (-273 C)
so there is little disturbance due to thermal motion of atoms.

» “flatlands”. two or even one-dimensional systems,
where the geometry limits atomic interactions and liberty.

» very large number of indistinguishable atoms, molecules, or
electrons whose quantum waves overlap on top of each other.

> the quantum waves W=A exp(i®P) have amplitude A and phase angle ®.
exotic behaviors are due mainly to variations of the phase angle.

Y = arrow T\ /-\ m

>

®=0°or O 90° or 11/2 225° or 511/4 270° or 311/2



Three problems where exotic states emerge

1. Two-dimensional quantum fluids. Phase transitions in two-dimensional
superfluids, superconductors or magnets — are driven by “vortex unbinding”.

2. Quantum Hall effect -- in a flat conductor exposed to a magnetic field
the conductivity changes in integer steps.

3. Chains of magnetic atoms — the lowest energy excitations are different
depending on whether the quantum spins are half-integer (S=1/2, 3/2,...) or
integer (S=1, 2,...). “Haldane phase”.




Problem 1. Two-dimensional guantum fluids.

elum was |no a

superfluid helium (*He)

each atom has (2 protons + 2 neutrons) + 2 electrons

’-g‘ 40~

)

> |
superfluidity at T < 2.17 K 2 ol
viscosity = 0, super-flow! =

bar. Bartender says,
"We don't serve noble
gasses here!"

He doesn't react.

Solid He

Upper A point
(T = 1.76°K, 29.8 atm.)

B Liquid Hel
10/=  Liquid Hell Critical point
X point (T = 5.200K, 2.264 atm.)
(T = 2.1729K, 0.0497 atm)
0 l l / [ e e 900 O]
0 1.0 2.0 3.0 4.0 5.0 6.0
AL T(9K)
liquid He-ll
The phase diagram of He*.
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About elementary particles — two types.

Fermions. Half-integer quantum spin S=1/2, 3/2, etc., where 2S+1 counts
the number of values its angular momentum may take around any axis.

Fermions are prohibited from occupying identical quantum states. @
(known as the Pauli exclusion principle!)

Protons, neutrons, electrons are all fermions because they have S=1/2.

Bosons. Integer quantum spin S=0, 1, 2, etc., also with 25+1 values of
angular momentum around any axis.

Any number of bosons may occupy the identical quantum state! G@

Photons (S=1), Higgs particle (S=0), and “He atoms (S=0) are bosons.

4He atom = made from 6 fermions.
“He atoms are bosons, they can occupy identical quantum states.

11



specific heat of helium vs. Temperature, at atmospheric pressure

lambda point T,=2.17 K % (critical temperature)
30 The helium is 3-dimensional (3D),
id unless it flows on surfaces.
25
} In 3D, this phase transition is a form of

20 Bose-Einstein condensation for T < T, ,
g f where many of the He atoms fall down
3 19 5 into the same lowest possible quantum
o / state for an atom. They can do that

10 // . because they are bosons.

05 {/ ot ole—a o ° The superfluid phase is a

(J/ macroscopic quantum state.
01.2 1.4 1.6 18 2.0 2.2 24 26 2.8 3.0

There is a “quantum order parameter”
(like a wave function) for a macroscopic
superfluid normal fluid number of atoms in the condensate!

T(°K) ——

{ W = A exp(i®) = amplitude X phase factor}

This is a phase transition. @
phase angle 12




bosons VS S=1/2 fermions

(a) BEC (b) Fermi sea
\ / \ /
‘ /
!
Y
Bose-Einstein condensate, Pauli exclusion,
described by order parameter: fermions avoid each other

[ W = A exp(iP) = amplitude X phase factor }

energy
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Quantum fluid -- condensate order parameter =[ Y = A exp(id) = amplitude x phase factor]

In Landau’s theory for phase transitions (Nobel prize 1962!).

a free energy F = a|W|2+ 4B|W|* = aAZ2+ 5BA* = (superfluid phase potential energy)

F

=0
* A= || superfluid density pg= A?

o <0 a=a(T-T,)

5 i : superfluid
\L/ A (a<0)
N=a/

i ner ﬁ
T TN 0 T) T

Local maxima

No mass /

normal fluid
(a>0)

T<T,
Aymere <: Spontaneous symmetry breaking!

s The phase angle ® (0—360°) is
)Y arbitrary! It can choose any value,
/4 all at the SAME ENERGY.

: =5 Same as Higgs mechanism (Nobel prize 2013!)
— L .‘ ;__‘."«—- = 14




What makes the condensate become a super fluid!?

4 free
energy

T>T, Any change in @ costs energy.

There are two “gapped or massive modes”.

Needs energy input to move this normal fluid.

T<T, Changing A (related to superfluid density) costs energy *
(a gapped or massive mode).

Changing ® costs very little energy!
(an un-gapped or massless mode). O

Changing @ slowly over a distance corresponds to
the superfluid velocity!

add KE=% mv.? [ v, = (h/m) gradient(®P) }

h = Planck’s constant/2x, m = mass of He-atom
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What about flatlands?? (2D quantum fluids)

Arrows show W (amplitude A and phase angle @) at points in the fluid.
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What about flatlands?? (2D quantum fluids)

ALL ®=60°.

Arrows show W (amplitude A and phase angle @) at points in the fluid.
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What about flatlands?? (2D quantum fluids)

Arrows show W (amplitude A and phase angle ®) at points in the fluid. A wave in ©.
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(2D quantum fluids in a thermal bath)

OLD THEORY before V. Berezinskii & Kosterlitz & Thouless:

NO PHASE TRANSITION in a 1D or 2D system.

Thermal fluctuations in ® (random small waves) are large, in A are small.

The O fluctuations would destroy the superfluid state at any temperature!

System would always be “normal” with A=0 at all temperatures.

Also, correlation function from small fluctuations has wrong form for high temperature:

-n
<1/J*(O)w(r)> = AZ(L) , n= -kBTg 2;:;" (should be exponential at high T).

T

19



(2D quantum fluids in a thermal bath)

New BKT theory: The superfluid transition CAN take place in 2D films because there are ALSO
TOPOLOGICAL EXCITATIONS that cost large energy BUT once formed, are extremely stable.
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ANTI-VORTEX, q=-1 (winding

For low temperature (T<T,), a superfluid state with A> 0 is possible.

Berezinskii & K&T found that vortices and antivortices form bound pairs at low temperature.

Thermal fluctuations break up the VA-pairs, which destroys the superfluid state!
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(2D quantum fluids in a thermal bath)

N R R I A A A T rPrrrASSAA ST
TEENNNNN | Y A S S s PIPIPASAT AL
——=>—=>N\\\ | | /e~ T A A A A A B B |
7 r s NN\ | ) Y e s pPA P ppAAATAA AN PN
g7~ \ | =SSR\ AV P s g s O O AV A B Y
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NNSs<sy Y | \\x>>7777 VUNARS S s m RN
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2 VORTICES, (winding # q = +2) VORTEX-ANTIVORTEX-PAIR, (winding # q = 0)

The influence of the excitations extends to the boundary. They act GLOBALLY.
Addition of 1 vortex or antivortex changes the Boundary.
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Energetics -- energy unit = J = p, (h/m)?, quantized circulation = 21r v, = gh/m
Yt S S N NANANA N VA N WL T A A A A A A A Y |
i e eSS N X XN NN N PP AASTAAT ]S
VY e~ NXNNKXNANAKNN P pppa AT ATTA TSNP
/////«$\\\\\\F\\\N VA A G A |
VAV SN L N S T O S L R S e A A L L
AN LR R RS R B R R RS Pt WA SRR
Vbbb g N 0 .
I N A N A B LN 20 S T
VANNNS A PEANAScrraes RV
N PUUANAS === R A
NNNNS—s> T T g J AN YARNRNRNRNS S sssxRXNNKNANAA
NNNNS—>> T A A AN AAN R R R RUTURUROR R RN N AN AR

VORTEX, (winding # = +1) VA-PAIRS, (winding # = 0)

large energy smaller energy, easier to form

E =E.et TJ 9% In(R/ry), (ry=vortex core size) Epair= 2Eqoret 211J 949, In(d/rp)

_1 |

single vortex e Er/ksT R\ 2n aumber of b

s - ~ O R 217
probability = p, ,,02 r, vortices = N, ~ P1R2 ~ (_)

A |
The phase transition! 2 N,=LARGE when n >1/4
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Entropy arguments

CecTTTTTITI o § E E E # of vortex locations N = (R/r,)?

Y ¥ r e eSO NN NN N R vortex entropy = S = kg In(N)

VL <N XNXNXNNNANARN

////Kk$\\\\\‘\§q,\\\N

A A== XX NN AN AR

SIS e~ "ARARA AR A free energy = F = E-TS
N = (TrJ- 27

RN I R F = (mJd-2kgT) In(R/ry) < 0?4

NNN NNz g g p A

NI N e A A A A |

NNNNw—>> T TSNS

vortex production becomes

o favorable when F <0 or
VORTEX, (winding # = +1)

large energy

[ kgT > Y2 11J 1

E=E,.*+1TJ g?2In(R/ry),  (r,=vortex core size)

J = p. (A/m)? (approximate estimate of T).
= pS m

At high enough temperature, entropy (many allowed vortex positions) makes it
favorable to produce vortices or anti-vortices even though they cost high energy.
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Really K&T did an analysis of the
probability to create VA-pairs.

Close pairs renormalize or interfere
with the interactions of distant vortices.

K&T (1973) used renormalization group

theory (see the 1982 Nobel Prize!) to
get the “flow” equations that lead to T,.

1.0

08

06 |-

7 point
i (217 K)

0.4

Fractional densities

02 [

0.0 . - : . .
00 05 10 15 20 25

Temperature (K)
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eSS S S S SN S S S S

v
v
eSS NN XN NN NN NN Sy
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NN L
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NN N N A L B A e N
Vv e~ NXANNKNX\NY 1 /777 ms—a
P 2 N N T T T T N B B L e
R R —
A R L L N Y e

p.=A? = density of the superfluid part
T<T,, vortices are bound in pairs.

T>T,, vortices become unbound!
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Carlo and Dynamics

\ a.out - Spin Monte

2D Magnets

XY model

| S e

low T.

kgT/J = 0.1
No vortices.
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\ a.out - Spin Monte Carlo and Dynamics

2D Magnets

XY model
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\ a.out - Spin Monte Carlo and Dynamics

XY model

T nearT,

kgT/J =0.70

A few close pairs.

ANy T T Some disorder.

A 7;.\7“ ) —c /'f'f A

pa Ay \;\1—7‘:-»/7,7

TR = ANk
A NN
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\ a.out - Spin Monte Carlo and Dynamics

XY model

T just above T,
kgT/J = 0.80
Pairs and more.

Disorder and
free vortices.

o
|

N H’\-S‘;-'-'":? -"T'. 71 ”“"l‘ _\«i R ‘\]

3N ri‘ l x} -_v;‘-‘y .-F":')' ‘..TL vj;“-u,
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\ a.out - Spin Monte Carlo and Dynamics

XY model
high T.

kgT/J =1.0
Free vortices.

Disordered.
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Problem 2. Quantum Hall Effect — electrical conduction in a 2D electron gas
with a magnetic field.

Electrons experience a Lorentz magnetic force
which causes circular cyclotron motion. B=magnetic field = z-axis

Fmagnetic= 9 vV B =m* vZ/r, q=-e

m* = electron effective mass.
cyclotron frequency:

w = 2mrf = eB/m*

Minimum kinetic energy:

om* v2 =% hw

Minimum orbital radius:

7 ( h = Planck’s constant/2x )
Iy = W/_B = 25.7 x 102 m when B = 1.0 tesla.
e

\ does not depend on mass! 30



Problem 2. Quantum Hall Effect — electrical conduction in a 2D electron gas
with a magnetic field.

Analyze Classical Hall Effect first.
B=magnetic field = z-axis

<
\jy

Electron current along +x
due to electron drift velocity v4 along —x.

F = q E to the right

electric

F =q vy B tothe left

magnetic™

Then E=v B

Transverse (Hall) voltage is

-\% ’ e o

electrons/area

Transverse resistance: R, = V,,/I= -B/ne (ohms) width

current 1= nw (-e) (-vy)

Hall coefficient = Ry =R,,/B =-1 h I f)
cliEeille izl H = R/ /e (ohms/tesla) electron charge

31



Resistance is R =p L/A, where p is called resistivity,

L=length, A=cross-sectional area.

In 2D, transverse R, =p,, because L=L,=w and A=A,> w.

classical results:

resistivity

Py, = B/ne
P, = M*/(ne?t)=constant

ko §

quantized Hall effect.
note the steps!

10 H

low-T experiments, (T < 4 K)
2D electron gas in a MOSFET,
Klaus von Kilitzing,1985 Nobel Prize
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von Klitzing found quantization! with a natural unit of resistance that is

(h = Planck’s constant) a universal resistance standard:
el h
Py = o2 v 6_2 = 25812.8075 Q = Ry
v=1,2,3... = filling factor”

Thouless found a theoretical explanation. The integer v is a topological number.
It is connected to the state of the electrons in a magnetic field.

Landau levels (quantum states)

E = (ngt'2) hw cyclotron
ne=0,1,2,... (energy quantum number) frequency
w=eB/m*
Very similar to a 2D harmonic oscillator.
All states have the same degeneracy N.
N = (area of system) / (211r,?) = B_A h (electron
hle = 2|— waves)

eB

(No spin degeneracy here for large B) 33



quantum of magnetic flux:

\[q,

Landau level degeneracy = N = BA/®,

h
, = —=4.1357x1015 T-mﬂ

e

At B=1.0 tesla,
Landau orbital radius ry=25.7 nm (r,decreases with increasing B).

For area of 1000 nm x 1000 nm, degeneracy N = A/(21r,?) = 240.
( )-

THEORY. Why are there steps to plateaus in p,,?

Electrons occupy the lowest available energy states, consistent with the Pauli
exclusion principle. Each Landau level can hold up to N electrons.
Suppose a total of v levels are completely filled, each with N electrons.

Then [total electrons/area =n= vN/A= vB/CDO}
B @, hl

which leads to the Hall resistivity | > | Py = =2
ne ve e v

Each STEP in p,, empties out another Landau level.
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Why the effects on p,, and p,,?

Due to disorder in the samples (dirt, impurities, etc.),

Many states are “localized” -- their electrons don’t move through the sample.
The other states are “extended” — their electrons contribute to conduction.

The energy levels E = (ng+’2)hw get spread out in energy

yellow bands = extended conducting states

Increasing B V=2
o @ . ©)

T

Density of States

1.0}

0.8 |

0.6

0.0

— ., (h/e?)
—  p,, (@rb units) (
v=2
0 2 4 6 8 10 12

Magnetic Field (T)




At T< 4K, see the Fractional QHE where for example v=1/2, 1/3, etc.
The electrons interact with each other to form new types of quasi-particles.

R, (hl/e?)

J.P. Eisenstein
& H.L. Stormer,
Science 1990
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QHE. Where’s the topology?! Electrons pair with the quantized flux vortices.

Integer QHE ( v=1,2,3...).
One electron pairs with each quantized magnetic flux vortex.

Fractional QHE (v=1/2, 1/3, etc.).
The electrons interact with each other and the flux quanta
to form new types of quasi-particles.

For v=1/2, an electron pairs with the two flux vortices.

(half-filling). This is fermion-like. Each vortex charge = -e/2.

For v=1/3, an electron pairs with three flux vortices.

(1/3-filling).  This is boson-like. Each vortex charge = -e/3.

But this is oversimplified! Electrons interact strongly.
The more general theory is that of “anyons”,
quasi-particles that are neither bosons nor fermions.

&

@



ground state (v=3).
electrons paired with
flux lines.

removing an electron makes

three quasi-particles, each q = e/3.
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QM in 2D, large B. fermions, bosons, anyons?! Look at two particles.

1 — 2 y 2 —— 1

L|Ja l'pb Lpa L|Jb

Y(a,,b,) exchange the particles W(a,,b,) =e® W¥(a,,b,)

leads to a phase change Q

Suppose the particles are indistinguishable.
Schrodinger says: “The probability of the state = |p|? is not affected by the phase change.”

Let 8=21S (angle in radians, 21 same as 360°). el9=gm25=(-1)2S
Fermions: S=1/2, 3/2, 5/2.... then el®=-1

T adequate for 3D.
Bosons: S=0,1, 2, .... then ei®=+1

Anyons: S=other numbers, then e®=complex numbers! Needed for 2D.
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In 2D, a 180° rotation of particles is not the same as a -180° rotation!
@ o @ - O - - @
- © - © Q@ @ o °

the world lines are braided differently. they can get entangled, or not.

A

time

With more particles it is easy to see that different particle exchanges lead to
complicated quantum states of indistinguishable particles.

These braids form the mathematical braid group By. Basis for “anyon statistics”
The particles being exchanged are the FQHE quasiparticles with charges like e/3.
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Another topological effect: edge modes.

cyclotron speed > drift speed.

electrons scatter from edges but move along at little energy cost (un-gapped modes).

—

leads to:
“topological insulators”

which can conduct mainly
on the edges but are
insulating in the interior.

E bulk excitations = gapped.

chiral electric current at edges. edge excitations = ungapped.
direction is determined by B.
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Problem 3. Chains of magnetic atoms.

Duncan Haldane, Princeton Univ. article: discussing his brief career in
chemistry as a student,

"After a few experiences in the chemical or biology lab, | decided | should not
let myself near any kind of nasty chemicals or radioactive materials, so after
having a few spills on myself | decided | was going to be a theorist."

P. Anderson & D. Haldane

S Y S Y S S N S Y S O S Y S S I S Y S Y S Y W
rviviviviviviviviviviviviyvl1ly

Classical Heisenberg antiferromagnetic chain (ground state = alternating up/down spins).
A small-amplitude wave costs little energy. No energy gap to the first excited state.

3.0 | isotropic point ‘ _1
Quantum S=1/2 Heisenberg antiferromagnetic chain.
(quantum ground state is not up/down ordered).

. 20}

Small changes from ground state cost little energy. =
Lowest excitations are spinons (domain-wall pairs), S
massless, with a wide spectrum but no energy gap. = . |
This can be solved exactly (see Bethe Ansatz).

0'00 T 2n 42

wave vector q




Haldane (1983) — quantum spin S=1 Heisenberg antiferromagnetic chain. Ground state is a
“valence bond solid”. There is an Energy Gap (0.41 J) to first excited state. It was not expected.
Haldane offered his theory as a “conjecture” (very good educated guess!), until it was proven.

valence bond solid o—0
ground state. @ @ S=" spin singlets = (AW)-(¥ )

\ (triplets, S,=-1,0,+1) (S,=0)
\ fractionalized

Haldane’s theory: Mapped the large-S quantum spin model to the spi:ws,
O(3) nonlinear sigma model in 1 space + 1 (imaginary) time dimension! S=72 at ends!
It corresponds to 3D unit vectors living in a 2D plane.

It includes a nonlocal “topological term” or “Berry phase” that depends on the
spin S value =74, 1, 3/2, 2, etc., which adds a mechanical action = 2th S Q,

integer 1
topological charge = Q) = = /d2513 - (0ol x O1l), | = # of times the vector £ covers
T a unit sphere in a configuration.
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Quantum theory used by Haldane.
QM statesgeta = phase factor= e 2™ Q = +1 or -1

S=1/2, 3/2, etc.: configurations with different Q interfere destructively!
e'27SQ = +1 or-1. - no energy gap from ground state to excited states.

S=1, 2, etc.: configurations with different Q interfere constructively.
e '27SQ = +1 only. = energy gap from ground state to excited states.

The gap gets smaller as S gets larger. “Haldane phase”.

S=1 system has spin disorder, but a hidden topological (string) order:
z-components of spins prefer neighboring +1,-1, separated by strings of 0’s.
Also known as diluted antiferromagnetic order!

The O’s are diluting the alternating +1-1 antiferromagnetic order.
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Summary & Future.

Topological excitations are common objects in quantum
condensed matter, that are involved in phase transitions
and the energy spectrum.

One example is vortices and anti-vortices, whose
unbinding in 2D quantum fluids (superfluids, Q=1 magnetic skyrmion
superconductors, magnets) produces the KT-phase

transition. Another is fractionalized quasi-particles

such as in quantum Hall effects. E

Quantum mechanics depends greatly on phase angles
(interference!) that are themselves determined by

hidden topological charges Q as in the Haldane phase Surfac\ Band
of magnets. States lT ‘
\‘; Kk
. Bulk
Deeper understanding of effects such as edge modes \  Valence
leads to new materials such as “topological insulators”, \ Band

whose conduction takes place mainly on the edges or
surfaces.

topological insulator energy levels
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