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The $1.1 million prize awarded October 4, 2016 
 
 
“For theoretical discoveries of topological phase transitions and topological phases of matter”. 

 
one half to: 
David J. Thouless, 82, Univ. of Washington, Seattle 
Born: 1934, Bearsden, United Kingdom 
 
 
the other half to: 
J. Michael Kosterlitz, 73, Brown University, Providence 
Born: 1942, Aberdeen, United Kingdom 
 
and 
 
F. Duncan M. Haldane, 65, Princeton University 
Born: 1951, London, United Kingdom 
 
 
 
The prize goes for theories of condensed matter – materials composed from large numbers of 
atoms or molecules, whose organized behavior leads to new properties that change in steps. 
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The headline in Wired Magazine. 
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The most recent previous physics Nobel prizes: 
 
 
 
2015 - for the discovery of neutrino oscillations, which 
shows that neutrinos have mass, to Kajita and McDonald.  
 
 
 
2014 - for the invention of efficient blue LEDs which has 
enabled bright and energy-saving white light sources,  
to Akasaki, Amano and Nakamura. 
 
 
 
 
2013 - for the theoretical discovery of a mechanism that  
contributes to our understanding of the origin of mass of 
subatomic particles, and which recently was confirmed 
through the discovery of the predicted fundamental particle, 
by the ATLAS and CMS experiments at CERN’s Large 
Hadron Collider, to Englert and Higgs. 
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Other notable Nobel prizes in physics related to the 2016 prize: 
 
2003 - for pioneering contributions to the theory of superconductors and 
superfluids, to Abrikosov, Ginzburg and Leggett.  
 
 
 
2001 - for the achievement of Bose-Einstein condensation in dilute gases 
of alkali atoms, and for early fundamental studies of the properties of the 
condensates, to Cornell, Ketterle and Wieman. 
 
 
 
1985 - for the discovery of the quantized Hall effect, to Klaus von Klitzing. 
 
 
 
1962 - for his pioneering theories for condensed matter, especially liquid 
helium, to Lev D. Landau.  
 

(phase transitions) 

(coherent macroscopic quantum states) 

(phase transitions) 

(coherent macroscopic quantum states) 
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What is the importance of: 
 
“theoretical discoveries of topological phase transitions and topological phases of matter”  ?? 

•  Understanding of how phase transitions take place in two dimensions.  
(applications to superconductors, superfluids and magnets in 2D) 

•  Many condensed materials have topological phases: states of matter 
where some important properties only change in integer steps, even  
when dirty or disorganized. 
 

•  Results will lead to new electronic materials (better, faster, smaller)  
with special topological properties. 
 
Example = topological insulators, sheet materials that conduct strongly  
on their edges but are insulating in their interiors. 
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“theoretical discoveries of topological phase transitions 
 and topological phases of matter”  ?? 

“phases” – determined by how the atoms 
are correlated to their neighbors. 
 
plasma = rapid separated ions + electrons 
 
gas = nearly independent fast molecules 
 
liquid = cohesion among nearby atoms or 
molecules and strong correlations 
 
solid = atoms have small motions around 
well-defined locations (crystals)   
 
quantum condensate = a large number of 
atoms or molecules very strongly correlated, 
maybe even in the same quantum state, with 
unusual properties. 
 

“exotic states” 
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exotic states of matter 

!  very cold, not more than a few degrees above absolute zero  (-273 C)  
so there is little disturbance due to thermal motion of atoms. 
 

!  “flatlands”.  two or even one-dimensional systems,  
where the geometry limits atomic interactions and liberty. 
 
 
!  very large number of indistinguishable atoms, molecules, or 
electrons whose quantum waves overlap on top of each other. 
 
 
!  the quantum waves Ψ=A exp(iΦ) have amplitude A and phase angle Φ.   
exotic behaviors are due mainly to variations of the phase angle.  
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Φ=0° or 0 90° or π/2 225° or 5π/4 270° or 3π/2 

Ψ = arrow 



Three problems where exotic states emerge 

1. Two-dimensional quantum fluids.  Phase transitions in two-dimensional  
superfluids, superconductors  or magnets – are driven by “vortex unbinding”. 

 
2. Quantum Hall effect -- in a flat conductor exposed to a magnetic field 
the conductivity changes in integer steps. 

 
3. Chains of magnetic atoms – the lowest energy excitations are different 
depending on whether the quantum spins are half-integer (S=1/2, 3/2,…) or  
integer (S=1, 2,…).  “Haldane phase”. 
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Problem 1. Two-dimensional quantum fluids. Helium walks into a 
bar. Bartender says,  
"We don't serve noble 
gasses here!"    
He doesn't react. 

superfluid helium (4He) 
each atom has (2 protons + 2 neutrons) + 2 electrons  

liquid He-II 

superfluidity at T < 2.17 K 
viscosity = 0, super-flow! 
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4He atom = made from 6 fermions. 
4He atoms are bosons, they can occupy identical quantum states. 

About elementary particles – two types. 
 
 
Fermions. Half-integer quantum spin S=1/2, 3/2, etc., where 2S+1 counts 
the number of values its angular momentum may take around any axis. 
 
   Fermions are prohibited from occupying identical quantum states. 
   (known as the Pauli exclusion principle!) 
 
   Protons, neutrons, electrons are all fermions because they have S=1/2. 
 
 
Bosons.  Integer quantum spin S=0, 1, 2, etc., also with 2S+1 values of 
angular momentum around any axis. 
 
   Any number of bosons may occupy the identical quantum state! 
 
   Photons (S=1), Higgs particle (S=0), and 4He atoms (S=0) are bosons. 

" # 
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specific heat of helium vs. Temperature, at atmospheric pressure 

lambda point Tλ=2.17 K         (critical temperature) 
  
The helium is 3-dimensional (3D), 
unless it flows on surfaces. 
 
In 3D, this phase transition is a form of  
Bose-Einstein condensation for T < Tλ ,  
where many of the He atoms fall down  
into the same lowest possible quantum  
state  for an atom. They can do that  
because they are bosons. 
 
The superfluid phase is a  
macroscopic quantum state. 
 
There is a “quantum order parameter”  
(like a wave function) for a macroscopic  
number of atoms in the condensate!  
 
  Ψ = A exp(iΦ) = amplitude ✕ phase factor 

normal fluid superfluid 

This is a phase transition. 
phase angle 12 



bosons            vs                S=1/2  fermions 

Bose-Einstein condensate, 
described by order parameter: 

Pauli exclusion,  
fermions avoid each other 

energy 

Ψ = A exp(iΦ) = amplitude ✕ phase factor 
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Quantum fluid --  condensate order parameter =   Ψ = A exp(iΦ) = amplitude x phase factor 
 
In Landau’s theory for phase transitions (Nobel prize 1962!). 
 
   a free energy  F = α|Ψ|2 + ½β|Ψ|4 = αA2 + ½βA4  =   (superfluid phase potential energy)  
 
 
 
 
  
 
 
 
 
 
 

Ns is the total number of particles in the condensate. They then chose the complex amplitude ψ of Ψs(r) as the
order parameter, with the normalization

|ψ|2 ∝ ns. (6.4)

Thus the order parameter in this case is a complex number. They thereby neglect the spatial variation of Ψs(r)
on an atomic scale.

The free energy must not depend on the global phase of Ψs(r) because the global phase of quantum states is
not observable. Thus we obtain the expansion

F = α |ψ|2 + β

2
|ψ|4 +O(|ψ|6). (6.5)

Only the absolute value |ψ| appears since F is real. Odd powers are excluded since they are not differentiable at
ψ = 0. If β > 0, which is not guaranteed by symmetry but is the case for superconductors and superfluids, we
can neglect higher order terms since β > 0 then makes sure that F (ψ) is bounded from below. Now there are two
cases:

• If α ≥ 0, F (ψ) has a single minimum at ψ = 0. Thus the equilibrium state has ns = 0. This is clearly a
normal metal (nn = n) or a normal fluid.

• If α < 0, F (ψ) has a ring of minima with equal amplitude (modulus) |ψ| but arbitrary phase. We easily see

∂F

∂ |ψ| = 2α |ψ|+ 2β |ψ|3 = 0 ⇒ |ψ| = 0 (this is a maximum) or |ψ| =
√
−α
β

(6.6)

Note that the radicand is positive.

Re

α α

α

> 0 = 0

< 0

ψ0

F

/α β

Imagine this figure rotated around the vertical axis to find F as a function of the complex ψ. F (ψ) for α < 0
is often called the “Mexican-hat potential.” In Landau theory, the phase transition clearly occurs when α = 0.
Since then T = Tc by definition, it is useful to expand α and β to leading order in T around Tc. Hence,

α ∼= α′(T − Tc), α′ > 0, (6.7)
β ∼= const. (6.8)

Then the order parameter below Tc satisfies

|ψ| =

√

−α
′(T − Tc)

β
=

√
α′

β

√
T − Tc. (6.9)

T

ψ

Tc
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A= 

superfluid 
    (α<0) 

normal fluid 
    (α>0) 

superfluid density ρs= A2 

 A    
0 

0 

T < Tλ 
Spontaneous symmetry breaking! 
 
The phase angle Φ (0—360°) is 
arbitrary!  It can choose  any value, 
all at the SAME ENERGY. 

 Same as Higgs mechanism (Nobel prize 2013!) 

Φ 
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α=a(T-Tλ) 

Tλ 



What makes the condensate become a super fluid!? 

T>Tλ    Any change in ψ costs energy.   
 
           There are two “gapped or massive modes”.  
  
           Needs energy input to move this normal fluid.   
 
 
 
 
T<Tλ    Changing A (related to superfluid density) costs energy  
            (a gapped or massive mode). 
 
            Changing Φ costs very little energy!    
           (an un-gapped or massless mode).  
 
            Changing Φ slowly over a distance corresponds to  
            the superfluid velocity! 
 
            add   KE=½ mvs

2             vs = (ħ/m) gradient(Φ) 

Φ 

free  
energy 

free  
energy 
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A 

ħ = Planck’s constant/2π, m = mass of He-atom 
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What about flatlands??  (2D quantum fluids) 
Arrows show Ψ (amplitude A and phase angle Φ) at points in the fluid.         ALL Φ=0.   
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What about flatlands??  (2D quantum fluids) 
Arrows show Ψ (amplitude A and phase angle Φ) at points in the fluid.        ALL Φ=60°.   
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What about flatlands??  (2D quantum fluids) 
Arrows show Ψ (amplitude A and phase angle Φ) at points in the fluid.        A wave in Φ.   
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(2D quantum fluids in a thermal bath) 
 
 
 
 
OLD THEORY before V. Berezinskii & Kosterlitz & Thouless:     
 
NO PHASE TRANSITION in a 1D or 2D system. 
 
 
Thermal fluctuations in Φ (random small waves) are large, in A are small.   
 
The Φ fluctuations would destroy the superfluid state at any temperature!   
 
System would always be “normal” with A=0 at all temperatures.   
 
 
 
Also, correlation function from small fluctuations has wrong form for high temperature: 
 
 

         (should be exponential at high T).  
 
 

€ 

ψ∗(0)ψ(r) ≅ A2 r
r0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−η

, η = -kBT
β
α
2πm
h2



(2D quantum fluids in a thermal bath) 
 
New BKT theory:  The superfluid transition CAN take place in 2D films because there are ALSO  
TOPOLOGICAL EXCITATIONS  that cost large energy BUT once formed, are extremely stable.   
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For low temperature (T<Tλ), a superfluid state  with A > 0 is possible. 
 
Berezinskii & K&T found that vortices and antivortices form bound pairs at low temperature. 
 
Thermal fluctuations break up the VA-pairs, which destroys the superfluid state!  

VORTEX, q=+1 (winding #) ANTI-VORTEX, q=-1 (winding #) 
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(2D quantum fluids in a thermal bath) 
   

2 VORTICES, (winding # q = +2) VORTEX-ANTIVORTEX-PAIR, (winding # q = 0) 

The influence of the excitations extends to the boundary.  They act GLOBALLY.  
Addition of 1 vortex or antivortex changes the Boundary. 
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VORTEX, (winding # = +1) 
large energy 
 
E1=Ecore+ πJ q2 ln(R/r0),   (r0=vortex core size) 

R 

VA-PAIRS, (winding # = 0) 
smaller energy, easier to form 
 
Epair= 2Ecore+ 2πJ q1q2 ln(d/r0) 

d 

Energetics --  energy unit = J = ρs (ħ/m)2,     quantized circulation  = 2πr vs = qh/m 

single vortex  
probability =  

€ 

p1 ~
e−E1 / kBT

r0
2 ~ R

r0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−
1
2η

number of  
vortices = 

€ 

Nv ~ p1R
2 ~ R

r0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2− 1
2η

Nv = LARGE when  η >1/4 The phase transition!  
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VORTEX, (winding # = +1) 
large energy 
 
E = Ecore+πJ q2 ln(R/r0),      (r0=vortex core size) 

R 

Entropy arguments 

# of vortex locations  N = (R/r0)2 

 
vortex entropy = S = kB ln(N) 
 
 
free energy = F = E-TS 
 
F = (πJ-2kBT) ln(R/r0)  <  0 ?? 
 
 
vortex production becomes  
favorable when F < 0 or 
 
       kBT > ½ πJ    
 
(approximate estimate of Tλ). 

At high enough temperature, entropy (many allowed vortex positions) makes it 
favorable to produce vortices or anti-vortices even though they cost high energy. 

J = ρs (ħ/m)2 
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Really K&T did an analysis of the 
probability to create VA-pairs. 
 
Close pairs renormalize or interfere 
with the interactions of distant vortices. 
 
K&T (1973) used renormalization group 
theory (see the 1982 Nobel Prize!) to 
get the “flow” equations that lead to Tλ.    

ρs=A2 = density of the superfluid part 
 
T<Tλ, vortices are bound in pairs. 
 
T>Tλ, vortices become unbound! 
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2D Magnets 
 
XY model 
 
low T. 
 
kBT/J = 0.1 
 
 
No vortices. 
 
Ordered.  
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2D Magnets 
 
XY model 
 
low T. 
 
kBT/J = 0.3 
 
 
No vortices. 
 
Less ordered.  
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XY model 
 
T  near Tλ 
 
kBT/J = 0.70 
 
A few close pairs.  
 
Some disorder. 
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XY model 
 
T just above Tλ 
 
kBT/J = 0.80 
 
Pairs and more.  
 
Disorder and 
free vortices. 
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XY model 
 
high T. 
 
kBT/J = 1.0 
 
Free vortices. 
 
Disordered.  
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Problem 2. Quantum Hall Effect – electrical conduction in a 2D electron gas 
                                                                        with a magnetic field.  

B=magnetic field = z-axis 

_ _ 

F 

v 

€ 

r0 =
h
eB =  25.7 x 10-9 m  when B = 1.0 tesla. 

( ħ = Planck’s constant/2π ) 

does not depend on mass! 

Electrons experience a Lorentz magnetic force 
which causes circular cyclotron motion.  
 
    Fmagnetic= q v B  = m* v2 / r,      q = -e 
 
    m* = electron effective mass. 
 
cyclotron frequency: 
 
    ω = 2πf = eB/m* 
 
 
 
Minimum kinetic energy: 
 
   ½ m* v2 = ½ ħω
 
 
Minimum orbital radius: 



Analyze Classical Hall Effect first.    
 
Electron current along +x 
due to electron drift velocity vd along –x. 
 
Felectric = q E  to the right 
  
Fmagnetic= q vd B  to the left 
 
 
 
Then  E = vd B 
 
 
Transverse (Hall) voltage is 
 
VH = -w E = -w vd B 
 
 
Transverse resistance: Rxy = VH / I =  -B/ne  (ohms) 

Hall coefficient =           RH = Rxy/B = -1/ne   (ohms/tesla)
31 

Problem 2. Quantum Hall Effect – electrical conduction in a 2D electron gas 
                                                                        with a magnetic field.  

B=magnetic field = z-axis 

_ 

+ 
+ 

+ 

+ _ 

_ 

_ 

_ 

vd 

current  I =  n w (-e) (-vd) 

electrons/area 
      width 

electron charge 
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Resistance  is   R = ρ L/A, where ρ is called resistivity,  
L=length, A=cross-sectional area. 
 
In 2D,  transverse    Rxy = ρxy   because L=Ly=w and A=Ax$ w. 

While we’re throwing di↵erent definitions around, here’s one more. For a current Ix
flowing in the x-direction, and the associated electric field Ey in the y-direction, the

Hall coe�cient is defined by

RH = � Ey

JxB
=

⇢xy
B

So in the Drude model, we have

RH =
!B

B�DC

=
1

ne

As promised, we see that the Hall coe�cient depends only on microscopic information

about the material: the charge and density of the conducting particles. The Hall

coe�cient does not depend on the scattering time ⌧ ; it is insensitive to whatever friction

processes are at play in the material.

We now have all we need to make an experimental predic-
ρ

xy

ρ
xx

B

Figure 3:

tion! The two resistivities should be

⇢xx =
m

ne2⌧
and ⇢xy =

B

ne

Note that only ⇢xx depends on the scattering time ⌧ , and ⇢xx ! 0

as scattering processes become less important and ⌧ ! 1. If

we plot the two resistivities as a function of the magnetic field,

then our classical expectation is that they should look the figure

on the right.

1.3 Quantum Hall E↵ects

Now we understand the classical expectation. And, of course, this expectation is borne

out whenever we can trust classical mechanics. But the world is governed by quantum

mechanics. This becomes important at low temperatures and strong magnetic fields

where more interesting things can happen.

It’s useful to distinguish between two di↵erent quantum Hall e↵ects which are asso-

ciated to two related phenomena. These are called the integer and fractional quantum

Hall e↵ects. Both were first discovered experimentally and only subsequently under-

stood theoretically. Here we summarise the basic facts about these e↵ects. The goal of

these lectures is to understand in more detail what’s going on.

– 10 –

ρxy = B/ne 
ρxx = m*/(ne2τ)=constant 

1.3.1 Integer Quantum Hall E↵ect

The first experiments exploring the quantum regime of the Hall e↵ect were performed in

1980 by von Klitzing, using samples prepared by Dorda and Pepper1. The resistivities

look like this:

This is the integer quantum Hall e↵ect. For this, von Klitzing was awarded the 1985

Nobel prize.

Both the Hall resistivity ⇢xy and the longitudinal resistivity ⇢xx exhibit interesting

behaviour. Perhaps the most striking feature in the data is the that the Hall resistivity

⇢xy sits on a plateau for a range of magnetic field, before jumping suddenly to the next

plateau. On these plateau, the resistivity takes the value

⇢xy =
2⇡~
e2

1

⌫
⌫ 2 Z (1.9)

The value of ⌫ is measured to be an integer to an extraordinary accuracy — something

like one part in 109. The quantity 2⇡~/e2 is called the quantum of resistivity (with

�e, the electron charge). It is now used as the standard for measuring of resistivity.

Moreover, the integer quantum Hall e↵ect is now used as the basis for measuring

the ratio of fundamental constants 2⇡~/e2 sometimes referred to as the von Klitzing

constant. This means that, by definition, the ⌫ = 1 state in (1.9) is exactly integer!

The centre of each of these plateaux occurs when the magnetic field takes the value

B =
2⇡~n
⌫e

=
n

⌫
�

0

1K. v Klitzing, G. Dorda, M. Pepper, “New Method for High-Accuracy Determination of the Fine-
Structure Constant Based on Quantized Hall Resistance”, Phys. Rev. Lett. 45 494.

– 11 –

low-T experiments, (T < 4 K) 
2D electron gas in a MOSFET, 
Klaus von Klitzing,1985 Nobel Prize 

ρ 

B 

ρxy 

ρxx 

quantized Hall effect. 
note the steps! 

re
si

st
iv

ity
 

classical results: 
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von Klitzing found quantization! 
(h = Planck’s constant)  

€ 

ρxy =
h
e2
1
ν

ν=1,2,3… =  “filling factor” 

with a natural unit of resistance that is 
 a universal resistance standard: 

€ 

h
e2

= 25812.8075 Ω = RK 

Thouless found a theoretical explanation.   The integer ν is a topological number. 
It is connected to the state of the electrons in a magnetic field. 

Landau levels (quantum states) 

E = (nE+½) ħω   
nE=0,1,2,… (energy quantum number) 

B 

cyclotron 
frequency 
ω=eB/m* 

Very similar to a 2D harmonic oscillator. 
All states have the same degeneracy N. 
 
   N = (area of system) / (2πr0

2) = (electron  
waves)    

(No spin degeneracy here for large B) 

€ 

r0 =
h
eB

€ 

BA
h /e



THEORY.  Why are there steps to plateaus in  ρxy? 
 
 Electrons occupy the lowest available energy states, consistent with the Pauli  
 exclusion principle.   Each Landau level can hold up to N electrons.   
 Suppose a total of ν  levels are completely filled, each with N electrons.  
 
Then    total electrons/area = n =  ν N/A = νB/Φ0  
 
      which leads to  the Hall resistivity 
 
Each STEP in ρxy empties out another Landau level.     

34 

Landau level degeneracy = N = BA/Φ0 

€ 

Φ0 =
h
e

= 4.1357x10-15 T%m2 

At B=1.0 tesla, 
 
 Landau orbital radius   r0= 25.7 nm   (r0 decreases with increasing B). 
 
 For area of 1000 nm x 1000 nm, degeneracy N = A/(2πr0

2) = 240.    
                                                             (N increases as B increases). 

quantum of magnetic flux:   

€ 

ρxy =
B
ne

=
Φ0

νe
=
h
e2
1
ν
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Why the effects on ρxx and ρxy? 
 
  Due to disorder in the samples (dirt, impurities, etc.), 
 
      Many states are “localized” -- their electrons don’t move through the sample. 
      The other states are “extended” – their electrons contribute to conduction. 
      The energy levels E = (nE+½)ħω  get spread out in energy.  

ν=2 

ν=2 

yellow bands = extended conducting states 
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At T< 4K, see the Fractional QHE  where for example ν=1/2, 1/3, etc. 
The electrons interact with each other to form new types of quasi-particles.   

J.P. Eisenstein  
& H.L. Stormer,  
Science 1990 



QHE.   Where’s the topology?!       Electrons pair with the quantized flux vortices.   
 
Integer QHE ( ν=1,2,3… ). 
One electron pairs with each quantized magnetic flux vortex. 
 
 
Fractional QHE  (ν=1/2, 1/3, etc.). 
The electrons interact with each other and the flux quanta  
to form new types of quasi-particles.   
 
 
For    ν=1/2,  an electron pairs with the two flux vortices.    
(half-filling).    This is fermion-like.  Each vortex charge = -e/2. 
 
 
For   ν=1/3,  an electron pairs with three flux vortices.   
(1/3-filling).      This is boson-like.   Each vortex charge = -e/3. 
 
But this is oversimplified!  Electrons interact strongly. 
The more general theory is that of “anyons”, 
quasi-particles that are neither bosons nor fermions.               

37 
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ground state (ν=3). 
electrons paired with 
flux lines. 

removing an electron makes 
three quasi-particles, each q = e/3. 
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QM in 2D, large B.    fermions, bosons, anyons?!  Look at two particles.     

ψa ψb 

1 2

Ψ(a1,b2) exchange the particles 
 
                leads to a phase change   

ψa ψb 

2 1

Ψ(a2,b1) = eiθ Ψ(a1,b2) 

Suppose the particles are indistinguishable. 
Schrodinger says:  “The probability of the state = |ψ|2  is not affected by the phase change.”  
 
Let θ=2πS  (angle in radians, 2π same as 360°).       eiθ=eiπ2S=(-1)2S 

 
Fermions:         S=1/2, 3/2, 5/2….        then    eiθ = -1  
                                                                                             adequate for 3D. 
Bosons:          S=0, 1, 2, ….            then    eiθ = +1  
 
Anyons:           S=other numbers,        then     eiθ = complex numbers!   Needed for 2D. 
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In 2D, a 180° rotation of particles is not the same as a -180° rotation! 
tim

e 

the world lines are braided differently.                 they can get entangled, or not. 
 
With more particles it is easy to see that different particle exchanges lead to 
complicated quantum states of indistinguishable particles.  
 
These braids form the mathematical braid group BN.  Basis for “anyon statistics” 
The particles being exchanged are the FQHE quasiparticles with charges like e/3. 
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Another topological effect:  edge modes. 

& B=out 

cyclotron speed >  drift speed.  
 
electrons scatter from edges but move along at little energy cost (un-gapped modes). 

chiral electric current at edges. 
direction is determined by B. 

leads to: 
 
“topological insulators” 
 
which can conduct mainly 
on the edges but are  
insulating  in the interior. 
 
bulk excitations = gapped. 
edge excitations = ungapped. 
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Fig. 1.3. Spinon continuum for various anisotropies ∆ (reproduced from [46])

fact a general concept unifying the dynamics in the regime +∞ > ∆ > −1,
i.e. up to the transition to the ferromagnetic regime.

The one-DW dispersion as well as the appearance of a continuum with
an energy gap for ∆ > 1 agrees with the results obtained from Bethe ansatz
calculations [44, 45] taken in lowest order in 1/∆. We make use of the full
Bethe ansatz results for finite values of 1/∆ to show a a numerical evalua-
tion of these results. Figure 1.3 demonstrates that the gapped, anisotropic
two spinon continuum develops continuously from the antiferromagnetic Ising
phase into the gapless spinon continuum of the isotropic Heisenberg antifer-
romagnet. To make contact with the isotropic limit, in Fig. 1.3 spectra in the
Néel phase are presented using the extended Brillouin zone (the Bethe ansatz
excitations can be chosen as eigenfunctions under translation by one site).
Although these graphs are suggestive the precise relation between the Bethe
ansatz excitation wave functions and the lowest order domain wall ones (cf.
Fig. 1.1) is difficult to establish.

Frequency Dependence of S(q,ω)

In the XY regime (including the limit of the HAF) the asymptotic spa-
tial dependence of the static correlation function is generalized to the time-

Problem 3. Chains of magnetic atoms.   

Duncan Haldane, Princeton Univ. article: discussing his brief career in 
chemistry as a student, 
"After a few experiences in the chemical or biology lab, I decided I should not 
let myself near any kind of nasty chemicals or radioactive materials, so after 
having a few spills on myself I decided I was going to be a theorist." 

P. Anderson &  D. Haldane 

Classical Heisenberg antiferromagnetic chain (ground state = alternating up/down spins). 
A small-amplitude wave costs little energy.   No energy gap to the first excited state. 

Quantum S=1/2 Heisenberg antiferromagnetic chain. 
(quantum ground state is not up/down ordered). 
Small changes from ground state cost little energy.  
Lowest excitations are spinons (domain-wall pairs), 
massless, with a wide spectrum but no energy gap. 
This can be solved exactly (see Bethe Ansatz). 

42 
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Haldane (1983) – quantum spin S=1 Heisenberg antiferromagnetic chain. Ground state is a 
“valence bond solid”.   There is an Energy Gap (0.41 J) to first excited state. It was not expected.  
Haldane offered his theory as a “conjecture” (very good educated guess!), until it was proven.   

valence bond solid 
ground state. S=1 S=½ spin singlets = ("#)-(#") 

     (Sz=0) 

Haldane’s theory:  Mapped the large-S quantum spin model to the  
O(3) nonlinear sigma model in 1 space + 1 (imaginary) time dimension! 
It corresponds to 3D unit vectors living in a 2D plane. 
 
It includes a nonlocal “topological term” or “Berry phase” that depends on the  
spin S value = ½, 1, 3/2, 2, etc.,   which adds a mechanical action = 2πħ S Q,  
 
integer 
topological charge =  

(triplets, Sz=-1,0,+1) 

1 One-Dimensional Magnetism 27

AE = AB +
!
2g

∫ β!c

0
dx0

∫
dx1

{
(∂0l +

i

!c
l×B)2 + (∂1l)2

}
, (1.47)

where x0 = cτ , x1 = x, c = 2JSa
! , and g = 2/S. In absence of the magnetic

field the model is Lorentz invariant (c plays the role of the limiting velo-
city) and is known as the O(3) NLSM with topological term. The so-called
topological, or Berry term AB is given by

AB = i2π!SQ, Q =
1
4π

∫
d2x l · (∂0l× ∂1l), (1.48)

The integer-valued quantity Q is the so-called Pontryagin index indicating
how many times the vector l sweeps the unit sphere when x sweeps the two-
dimensional space-time.

Without the topological term, the T = 0 partition function of the quan-
tum AF spin-S chain is equivalent to that of a classical 2D ferromagnet at
the effective temperature Teff = g in the continuum approximation. For in-
teger spin S the topological term is ineffective since AB is always a multiple
of 2π!, and the properties of the 1D quantum antiferromagnet can be taken
over from the 2D classical ferromagnet. (This correspondence is in fact quite
general, connecting the behavior of a Lorentz invariant quantum system in
dimension d to that of its classical counterpart in dimension D = d + 1, and
is often referred to as the quantum-classical correspondence).

At finite temperature the 2D classical ferromagnet is known [118,119] to
have a finite correlation length ξ ∝ e2π/Teff , which, in view of the Lorentz
invariance, corresponds in the original spin chain to a finite Haldane gap

∆Hald ∝ !c/ξ = JSe−πS .

Thus, the T = 0 ground state of the integer-S isotropic Heisenberg one-
dimensional (D = 1 + 1) antiferromagnet is disordered, and the spectrum of
elementary excitations has a gap. The degeneracy of the lowest excitations
is threefold (in contrast to only double degeneracy obtained in spin wave
approximation which is absent on the Néel state with broken symmetry).
Spin correlations in real space are given by the so-called Ornstein-Zernike
correlation function

⟨l(x)l(0)⟩ ∝ e−|x|/ξ

|x|(D−1)/2 , |x|→∞. (1.49)

For half-odd-integer spins, the contribution of any field configuration into
the partition function carries a nontrivial phase factor e−i2πSQ, which leads
to the interference of configurations with different Q, and at the end to the
absence of a gap in Heisenberg spin-S chains with half-odd-integer S. There is
an argument due to Affleck [117] which connects this effect to the contribution
of merons – objects with the topological charge Q = ± 1

2 which may be

=  # of times the vector l  covers 
    a unit sphere in a configuration.  

fractionalized 
spins, 
S=½ at ends! 
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S=1/2, 3/2, etc.:   configurations with different Q interfere destructively! 
e i 2πS Q  = +1 or -1.   $  no energy gap from ground state to excited states. 
 
 
S=1, 2, etc.:  configurations with different Q interfere constructively.  
e i 2πS Q  = +1 only.   $  energy gap from ground state to excited states. 
The gap gets smaller as S gets larger.   “Haldane phase”. 
 
S=1 system has spin disorder,  but a hidden topological (string) order: 
z-components of spins prefer neighboring +1,-1, separated by strings of 0’s. 
Also known as diluted antiferromagnetic order! 
 
 
 
 
Sz =  +1            0            0            -1            +1          -1            +1            0 

Quantum theory used by Haldane. 
                             QM states get a       phase factor =  e i 2πS Q  = +1 or -1      

The 0’s are diluting the alternating +1-1 antiferromagnetic order. 
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Summary & Future. 
 
Topological excitations are common objects in quantum 
condensed matter, that are involved in phase transitions 
and the energy spectrum. 
 
 
One example is vortices and anti-vortices, whose 
unbinding in 2D quantum fluids  (superfluids, 
superconductors, magnets) produces the KT-phase 
transition. Another is  fractionalized quasi-particles  
such as in quantum Hall effects. 
 
 
Quantum mechanics depends greatly on phase angles 
(interference!) that are themselves determined by 
hidden topological charges Q as in the Haldane phase 
of magnets.   
 
 
Deeper understanding of effects such as edge modes  
leads to new materials such as “topological insulators”, 
whose conduction takes place mainly on the edges or 
surfaces. 
 

Q=1 magnetic skyrmion 
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