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1. What are magnetic island lattices?
2. What properties can be studied?
3. How do their magnetic dipoles interact?
4. Ground state vs. excited states and metastable states.
5. A 1D model vs. a 2D model.
6. Possible technological applications.
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The interesting properties of Pr2Ir2O7 are rooted in its crystal structure, 
called a pyrochlore lattice: four praseodymium (Pr) ions, each of which 
carries a magnetic ‘spin’, form a tetrahedral cage around an oxygen (O) 
ion. At low temperatures, the spins of materials with this structure often 
‘freeze’ into what is called a ‘spin ice’ (Fig. 1) because of its similarity to 
the way hydrogen ions form around oxygen in water ice. (phys.org/news/)

A rare-earth
pyrochlore compound.

 Pr spins at 
corners of tetrahedrons.

A real 3D spin-ice.

https://phys.org/tags/crystal+structure/
https://phys.org/tags/water+ice/
http://phys.org/news/


 Artificial 2D spin-ice.  Arrays 
of elongated magnetic islands, 
dominated by anisotropy & 
dipole-dipole interactions.
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A recent theoretical proposal for vanishing the string tension was made to transform the square array into a 
rectangular one17. Inspired by this modified system, here we propose to realize an experimental study based on 
magnetic atomic force (MFM) measurements of the ground state and excited states of rectangular artificial spin 
ices (RASI). Denoting the horizontal and vertical lattice spacings of the rectangular array by a and b respectively 
(but always keeping the same dimensions for all magnetic bars), and defining a parameter (the aspect ratio) that 
controls the stretching of the lattice γ ≡ a/b, then, the theory17 predicts that the ground state suffers a transition at 

3γ =  (or equivalently at 1/ 3  by interchanging x and y axes, or make γ ≥ 1 to avoid this ambiguity). Figure 1 
shows an example of a fabricated rectangular array for 2γ = . In Fig. 1a,b, we present the sample topography 
and each island magnetic dipole (with topologies), respectively. In our investigation, we basically compare arrays 
with ratios γ < 3 and γ > 3 to the array having the critical value 3cγ γ= =  (from now, dubbed γc-array). 
For this comparison, we choose systems with lattice parameters having ratios equal to γ = 2 and γ = =4 2. 
Really, we clearly observe that such a deformation can tune the ratios of the interactions between neighboring 
elements resulting in different magnetic ordering of the system.

Before starting to discuss our work, it would be useful to describe earlier results about rectangular lattices. 
Indeed, theoretical calculations indicate that, for 1 3γ< < , the ground state (denoted GSQ) has residual mag-
netic charges (but not magnetic moments) in all vertices, alternating from positive to negative in neighboring 
vertices. Such an idea of charge excess in the vertex centers is simplified (as discussed below) since this theoretical 
approach used the dumbbell model in the context of a system containing magnets that really have a length. 
Therefore, forgetting this trouble for a while, the total magnetic charge is zero. On the other hand, for 3γ > , the 
ground state (denoted GSM) exhibits alternating residual magnetic moments (but not charges) in all vertices and, 
again, in this case, the total magnetic moment is zero. Exactly at the critical value γ γ= = 3c , these two differ-

Figure 1. Artificial spin ice in a rectangular lattice. Consistent with other types of geometry (square, kagome 
etc), the ground state of a rectangular spin ice also obeys the ice rule in all vertices, which, in the present case, 
dictates that two spins must point-in and the other two must point-out. Excited states violate of the ice rule. The 
particular array shown here has the aspect ratio γ = =a b/ 2 . (a) Atomic force microscope topography of a 
typical sample for 2γ = . (b) Picture from the magnetic force microscope of single domain permalloy 
magnetic nanoislands (300 nm × 100 nm × 20 nm). Bright and dark ends of each elongated nanoisland indicate 
the opposite poles and give the direction of the magnetic moment of the islands. (c) The five possible topologies 
in this system. The circles in some vertices represent magnetic charges. We remind that the ground state GSQ is 
formed by the topology T0, while the ground state GSM is formed by topology T1.
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Realization of Rectangular Artificial 
Spin Ice and Direct Observation of 
High Energy Topology
I. R. B. Ribeiro1,6, F. S. Nascimento2, S. O. Ferreira1, W. A. Moura-Melo1, C. A. R. Costa3,  
J. Borme  4, P. P. Freitas4, G. M. Wysin5, C. I. L. de Araujo  1 & A. R. Pereira1

In this work, we have constructed and experimentally investigated frustrated arrays of dipoles forming 
two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal 
and vertical lattice spacings denoted by a and b respectively). Arrays with three different aspect ratios 
γ = a/b = 2, 3 and 4  are studied. Theoretical calculations of low-energy demagnetized configurations 
for these same parameters are also presented. Experimental data for demagnetized samples confirm 
most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does 
not emerge in our theoretical model, while they are seen in experiments for large enough γ. Our results 
also insinuate that the string tension connecting two magnetic monopoles in a pair vanishes in rectangular 
lattices with a critical ratio γ = γc = 3, supporting previous theoretical predictions.

Recently, the study of materials with frustrated interactions has received a lot of attention in an attempt to under-
stand new states of matter1–9. The main problem concerning the experimental investigation of the properties of 
these structures is to find natural materials (in two and three dimensions), which not only clearly exhibit frus-
tration but also provide reproducible results and adequate control for measurements. It is not such a simple task. 
An alternative path was provided by techniques of nanotechnology, in which artificial materials can be built with 
desirable properties and attributes in order to permit the materialization of a large variety of different sorts of 
geometrical frustration10,11. Especially, artificial spin ices in several different lattice geometries are important exam-
ples5,8,12–14. They are two-dimensional (2d) arrays of elongated magnetic nanoislands, each containing an effective 
magnetic moment or spin (see Fig. 1) that mimics natural three-dimensional (3d) spin ice materials1–3. However, 
such an artificial system in a 2d square lattice is not completely frustrated since the ice rule (in which two-spins 
must point-in and the other two must point-out in each vertex) is not degenerate (the two topologies that obey 
the ice rule have different energies5,6) and, therefore, the ice regime is not stabilized. Despite this, as in natural spin 
ices, artificial square ice (and even other kinds of artificial lattices) also supports quasiparticle excitations that are 
similar to magnetic monopoles6,14–17. Indeed, as shown by Castelnovo et al.2, excitations in natural spin ices behave 
like a magnetic monopole-antimonopole connected by a non-energetic but observable string (it is slightly different 
from the Dirac monopoles in which the string is also non-observable18). These objects and their strings were found 
by measurements from neutron-scattering experiments19–21. On the other hand, in general, monopole like excita-
tions are of different types in artificial ice materials. For instance, the 2d artificial square ice supports excitations in 
which the oppositely charged monopoles occur connected by observable and energetic strings (a kind of Nambu 
monopole-antimonopole pair16,22,23). Therefore, it would be interesting to imagine and construct 2d artificial lattices 
whose monopole pair excitations would have a string tension that tends to vanish in such a way that, opposite mag-
netic charges would be effectively interacting only by means of the usual Coulomb law. However, in two dimensions, 
there is still additional entropic effects, which may cause some difficulties for this picture as we will remark later.
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Atomic force microscope topography,  
300 x 100 x 20 nm islands. Magnetic force microscope image showing 

N (bright) and S (dark) poles. 



in Review article: Advances in artificial spin ice,
Sandra Skjærvø et al. Nat. Rev. Phys. 11/08/19:

Artificial spin ices are metamaterials made up of coupled nanomagnets arranged 
on different lattices that exhibit a number of interesting phenomena, such as 
emergent magnetic monopoles, collective dynamics and phase transitions.

Signatures of the magnetic configurations are given by the specific spin-wave 
resonances in artificial spin ice, which offer a platform for programmable spin-wave 
devices, in particular magnonic crystals.

The established artificial spin ices are arranged on square and kagome lattices. 
New geometries include both periodic and aperiodic, different magnet shapes 
and anisotropies, and 3D structures.

Future work involves the development of applications including computation, 
data storage, encryption and reconfigurable microwave circuits.
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Artificial spin ice mimics the behavior of 3D spin ices of rare earths in 
lattice of corner sharing tetrahedra of a pyrochlore structure.
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Another aspect: 

Easily generated metastable states above the ground state, that 
might be manipulated by outside control forces.  

Metastable states could be useful as detectors or controllable oscillators.

Their oscillation frequencies can change rapidly vs some parameter when at 
a critical value of that parameter.
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A 1D island chain with metastability 

Thin elliptical islands.                            2 sublattices, A,B.             

They have shape anisotropy and dipole-dipole interactions.



Magnetic Nano-Islands
(elements of artificial spin-ice)

Approx. 50 nm - 5 μm wide but only 10 nm thick. 
Individual & in arrays, high-permeability soft magnetic materials.  
Grown with techniques of epitaxy & lithography on a non-magnetic substrate. 
Form arrays of particles that can interact with each other or applied fields. 

Primary physics effects - 
magnetostatics controlled by island geometry. 
discrete energy states for data storage. 
spintronics controlled by current injection. 
magnetic oscillators controlled by applied fields. 
frustration in ordered arrays of islands (artificial spin-ice). 

Several principle states of a nano-island:                                              
    (1) quasi-single domain;   (2) vortex;  (3) multi-domains & domain walls.

~ increasing size ~
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Typical magnetic island features:

1) Vortices. The static and dynamic properties of single vortices  
that behave as particles with charges (==> micro-oscillators).  

2) Magnetostatic  anisotropy of the islands themselves. 
 Also known as shape anisotropy because it depends mostly  
on the surfaces. 

  isotropic                    elliptic                               Ising-like 

3) Spin-ices, frustration. Especially for elongated islands with Ising-
like states, interactions within their arrays, that lead to frustrated 
statics and dynamics.  

9



62 CHAPTER 3. DEMAGNETIZATION EFFECTS IN THIN MAGNETS

which suddenly goes from some nonzero value inside the magnet to zero on the outside.

This change corresponds to an effective volume charge density that can be represented as a

delta function on the surface. Stated otherwise, Gauss’ Law used on Eq. (3.4) (the divergence

theorem applied to a pillbox at the surface) will tell us that there is a local surface charge

density, ⌅M given by
⌅M = ⇥M · n̂, (3.23)

where n̂ is the outward normal vector from the surface of the magnet. This surface charge

density is greatly responsible for generating the demagnetization field even more so that the

volume charge density, because the spatial variations in ⇥M within the volume are usually

much less drastic than the sudden change at the surface.

In a case where there is surface charge density, the element of effective charge is

dqM = ⌅MdA= ⇥M · n̂ dA (3.24)

where dA is a surface area element. The contribution to the potential only from surface

charge can be written as

ΦS
M(r) =

�

A
dA⌅ g0(r� r⌅)⌅M(r⌅) =

�

A
dA⌅

⇥M(r⌅) · n̂⌅

4⇥|r� r⌅| (3.25)

Indeed, in any real problem, if ⇥M is present, then surface charge density is present, and this

result should be combined with the fields from volume charge density, Eq. (3.10), to get the

total demagnetization field. The general solution for the potential can always be written as

ΦM(r) =
�
d3r⌅

⇤M(r⌅)
4⇥|r� r⌅| (3.26)

as long as d3r⌅⇤M(r⌅) includes both volume and surface charges in the sample.
Next the demagnetization effect is analyzed in detail for some simple geometries. A

cylinder of circular cross section is considered due to its symmetry and being a common

shape for magnets. Then a cylinder of square cross section is analyzed, because that shape

can be used as element in numerical simulations. Finally the demagnetization effects in a

thin system will be analyzed, due to the application in quasi-2D magnetic models.

3.2 The magnetic field inside a cylindrical magnet

First, consider a magnet of length L with long axis the z axis. The ends of the cylinder lie at

z = ±� , so that the length is L = 2� , and z = 0 is at the middle of the cylinder. The cross

section is initally taken to be a circle of radius R. There is no special assumption about the

size of the radius R compared to the cylinder length L. In principle, the cylinder could have

any arbitrary magnetization distribution, however, it is more practical to consider a uniform

magnetization either along its axis (longitudinal magnetization) or perpendicular to the axis

(transverse magnetization).

Magnetization M determines an 
effective surface charge density:

N pole,  
σM>0.

The poles produce 
large stray-field energy.

But ferromagnetic 
exchange energy is 

small.

+
+

+

+
+

+

+

+

S pole,  
σM<0.

-

-
-

-
-

- - - - -

M
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Quasi-single-domain state.



 Vortex state

Has small poles 
(σM=±Mz) only  

in the core. 

The stray-field 
energy is small.

Very little magnetic surface charge density. 
Stable only above a minimum radius

But the ferromagnetic 
exchange energy is 

large.
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Elongated islands -  
Highly anisotropic. 

Heisenberg-like net 
magnetic dipole.
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which suddenly goes from some nonzero value inside the magnet to zero on the outside.

This change corresponds to an effective volume charge density that can be represented as a

delta function on the surface. Stated otherwise, Gauss’ Law used on Eq. (3.4) (the divergence

theorem applied to a pillbox at the surface) will tell us that there is a local surface charge

density, ⌅M given by
⌅M = ⇥M · n̂, (3.23)

where n̂ is the outward normal vector from the surface of the magnet. This surface charge

density is greatly responsible for generating the demagnetization field even more so that the

volume charge density, because the spatial variations in ⇥M within the volume are usually

much less drastic than the sudden change at the surface.

In a case where there is surface charge density, the element of effective charge is

dqM = ⌅MdA= ⇥M · n̂ dA (3.24)

where dA is a surface area element. The contribution to the potential only from surface

charge can be written as
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dA⌅
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4⇥|r� r⌅| (3.25)

Indeed, in any real problem, if ⇥M is present, then surface charge density is present, and this

result should be combined with the fields from volume charge density, Eq. (3.10), to get the

total demagnetization field. The general solution for the potential can always be written as
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Quasi-single domain. 
Poles greatly prefer the ends.

FM exchange dominates.

A vortex state is less likely.

μnet



Model for magnetic anisotropy of elliptical  islands.          
Total magnetic dipole moment = μ. Single domain is 
assumed and μ has a fixed magnitude.

x

z

easy axis

hard axis
Lx× Ly× Lz  island

μ

μ direction = (ϕn,θn)

angle in xy-plane angle from xy-plane
13

Include also applied 
field energy:   -μ Hext
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dipolar interactions on a 1D island chain

highest energy (2D)

high energy (D)

lowest energy (-2D)
low energy (-D)

medium energy (0) medium energy (0)



Interactions     =      dipolar      +    shape anisotropy

easy axis hard axis
energy scale 
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x/a

y

0 1 2 3 4 5 6 7 8

A B A B A B A B A

Is this always the lowest energy state?

Note that the system is frustrated!  The anisotropy energies are low, 
but not even the nearest-neighbor dipolar interactions are minimized.

Consider how changing D and K1 affects the states.

y-alternating state

+      external field   

energy/island = -K1-D 
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x/a

y

0 1 2 3 4 5 6

x-parallel state

A B A B A B A

A state that does minimize all the dipolar interactions: 

But now the K1 anisotropy energy is high.   ==> Frustration.

x/a

y

0 1 2 3 4 5 6

y-parallel state

A B A B A B A

A 3rd state, that only minimizes the anisotropy energy: 

energy/island = -2D 

energy/island = -K1+D 
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Comparing these uniform states:                      u = energy/island.

x/a

y

0 1 2 3 4 5 6

y-alternating state

A B A B A B A

x/a

y

0 1 2 3 4 5 6

y-parallel state

A B A B A B A

x/a

y

0 1 2 3 4 5 6

x-parallel state

A B A B A B A

doubled lines = stable
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Stability verification.
Imagine small angular deviations in the spins, away from the current state.
How does system energy change for small sublattice deviations?

deviations=ΦA,θA  ΦB,θB

x/a

y

0 1 2 3 4 5 6 7 8

y-parallel state

A B A B A B A B A

Energy changes are decoupled to quadratic order: 
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Need the matrix eigenvalues > 0 for stability. 

Requires K1 > 3D

Requires K1 +K3 > 2D

Conclusion:  y-parallel state requires  K1 > 3D for stability. 

x-parallel state requires  K1 < D for stability. 

y-alternating state requires  K1 > D for stability. 



How does the system energy change for a traveling wave deviation?

Time dynamics: 

or

deviations=Φn, θn ~ exp(iqna-ωt)

x/a

y

0 1 2 3 4 5 6 7 8

y-parallel state

A B A B A B A B A

Becomes Hamiltonian dynamics, for small deviations:

Φn=coordinate,        θn=momentum



Solved by 1D traveling waves,   

Deviations:

The energy:

Nearest neighbors only:

 Φn = Φ exp[i(qna-ωt)],  θn = θ exp[i(qna-ωt)].

amplitudes wave vector frequency
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m-th eigenvalues of MΦ and Mθ

22

 dispersion relations:

eigenvalues determined by wave vector:

Constants determined by the state,
are functions of D, K1, K3.
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oscillations on 
top of an 
x-parallel state.

(nearest neighbor dipole interactions)

x/a

y

0 1 2 3 4 5 6

x-parallel state

A B A B A B A
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oscillations on top 
of a y-parallel state.

(nearest neighbor dipole interactions)

x/a

y

0 1 2 3 4 5 6

y-parallel state

A B A B A B A
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oscillations on top 
of a y-alternating 
state.

(nearest neighbor dipole interactions)

x/a

y

0 1 2 3 4 5 6

y-alternating state

A B A B A B A
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But dipole interactions are long range.   Hdd ~ 1/r3 

x/a

y

0 1 2 3 4 5 6 7 8

A B A B A B A B A

-D
+D/23

-D/33

+D/43

-D/53

This raises this state’s energy.

The sums can be done to get energies with all long-range dipole interactions. 

The dynamics can also be analyzed with all long-range dipole interactions! 
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(nearest-neighbor dipole interactions) (infinite-range dipole interactions)

Dynamic oscillations with long-range dipole interactions.

Long-range dipole interactions necessitate larger K1 for its stability.  
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With long-range dipole interactions:                      u = energy/island.

x/a

y

0 1 2 3 4 5 6

y-alternating state

A B A B A B A

x/a

y

0 1 2 3 4 5 6

y-parallel state

A B A B A B A

x/a

y

0 1 2 3 4 5 6

x-parallel state

A B A B A B A

doubled lines = stable

x-parallel: 

y-parallel: 

y-alternating: 



29

Application of metastable y-parallel state?

x/a

y

0 1 2 3 4 5 6

y-parallel state

A B A B A B A
Apply and then 
turn off B.

Set system here.

It is marginally stable. 

An increase in D could destabilize it and 
drop system to the y-alternating state.

Some other small perturbation could have 
the same result. ==> event detector.

Use a B-field to go back to y-parallel.
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Metastability of a remanent state of square spin-ice is similar.
2

x

y

C C

C C

C C

C C

A A

A A

A
A

A A

B B

B B

B B

B B

D D

D D

D D

D D

rxyrxy_

FIG. 1: Square spin ice in a ground state, with the identifica-
tion of the four sublattices, for the four different directions of
the islands’ dipoles. Small dots indicate the vertices, which
follow the two-in/two-out rule and carry no monopole charge
in this state. The spacing between neighboring vertices is
the lattice constant a, while the nearest neighbor island spac-
ing along the diagonal directions is a/

√
2. For one A-site its

nearest neighbors are labeled D↑, D↓, B↑ and B↓ and the
displacements rxy and rx̄y are indicated, see Eq. (6).

in Sec. IV and the details of the modes found are given.
Some excitation spectra for different model parameters
are described in Sec. V, and results are summarized and
their importance is highlighted in Sec. VI.

II. ARTIFICIAL SQUARE LATTICE SPIN-ICE
MODEL

The islands’ dipoles are assumed to have fixed magni-
tudes µ pointing along some time dependent Heisenberg-
like unit vectors µ̂i(t), where i labels a site. The di-
rections of the µ̂i(t) are affected by magnetic shape
anisotropy and by long-range dipolar interactions. Due
to the elongated form of the islands, each island has some
uniaxial anisotropy with energy constant K1 along its
longer axis ûi, which points along either x̂ or ŷ, depend-
ing on the sublattice. A sketch of the system is shown in
Fig. 1. In addition, the islands are very thin perpendic-
ular to the substrate, which makes that direction a hard
axis, producing easy-plane (xy) anisotropy with an en-
ergy constant K3 for all the islands. Typically we expect
that the easy-plane anisotropy constant K3 dominates,
followed by the easy-axis interactionsK1, and then finally
by the much weaker dipolar interactions. Also, thermal
energy scales can be expected to be rather small com-
pared to all of these couplings, which is why the system

has a complex energy landscape with many local minima
subject to frustration, typical of spin ice. The Hamilto-
nian for this model with Heisenberg-like spins µ̂i(t) is

H = −
µ0

4π

µ2

a3

∑

i>j

[3(µ̂i · r̂ij)(µ̂j · r̂ij)− µ̂i · µ̂j ]

(rij/a)
3

+
∑

i

{

K1[1− (µ̂i · ûi)
2] +K3(µ̂i · ẑ)2

}

(1)

The first term is the dipolar pair interaction, where µ0

is the magnetic permeability of space, a is the center-to-
center spacing of the islands along the x̂ or ŷ principal
directions, and r̂ij is a unit vector pointing from site
j to site i. Note, however, that the nearest neighbor
spacing of the islands, a/

√
2, lies along the directions at

±45◦ from the standard xy coordinate system, see Fig.
1. The dipolar energy scale is affected by island spacing,
such that we define a nearest neighbor dipolar energy
constant,

D ≡
µ0

4π

µ2

(

a/
√
2
)3 . (2)

The anisotropy terms have been written so that they give
zero energy when the island dipole points along its lo-
cal easy-axis ûi. Rotation of µ̂i(t) within the xy plane
only involves the K1 energy, whereas, tilting of µ̂i(t) out
of the xy-plane is characterized by the sum of the two
anisotropy constants, K1 +K3.

A. The spin-ice ground states

In a ground state, such as in Fig. 1, the shape
anisotropy energies are totally minimized. A ground
state also does its best to minimize the nearest neighbor
dipolar interactions, but those interactons are frustrated
and not globally minimized. The magnetic moments al-
ternate in direction from site to site, regardless of the
displacement direction on the lattice. We use a notation
where there are four sublattices, named A,B,C,D, as one
moves clockwise around a vertex where the ice-rule would
be applied. The A and C sites are aligned with the +x̂
and −x̂ directions, respectively, due to having in-plane
anisotropy axes ûi = x̂. The B and D sites are aligned
with the +ŷ and −ŷ directions, respectively, due to hav-
ing in-plane anisotropy axes ûi = ŷ. In a ground state,
the unit island dipoles µ̂i on the different sublattices can
be expressed as

A0 = ( 1, 0, 0), B0 = (0, 1, 0), (3a)

C0 = (−1, 0, 0), D0 = (0,−1, 0). (3b)

This pattern repeats through the whole system, which
then adheres to the ice rule throughout. The other
ground state would be obtained from this one by invert-
ing all the moments. Obviously, there is an enormous
energy barrier preventing that transition. Instead, here

A square ice ground state.  
There are four sublattices.
Difficult to achieve, due to frustration.

A square ice remanent state.  
There are two sublattices.
Easy to achieve by applied B along x’.

nn energy/island = εGS = -3D nn energy/island = εRS = -D2/K1 > εGS

x

y

x'

y' A A

A A

A A

A A

A A

A A

A
A

A A

B B

B B

B B

B B

B B

B B

B B

B B

rx'ry'

B
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(nearest-neighbor dipole interactions) (infinite-range dipole interactions)

Oscillations of a remanent state of square spin-ice.

Long-range dipole interactions help to 
stabilize the remanent state. Less 
anisotropy is needed. 
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SUMMARY:

Lattices of magnetic islands offer a wide range of possible geometries,
including chains and spin-ices.

Competing interactions, determined by geometry, imply frustration: 
not all interaction energies can be minimized.

Models for these systems are used to find some of the uniform states. 

Stability is related to eigenvalues for the deviations from a state.

Some small-amplitude oscillation frequency goes to zero at a stability limit. 

See publications 91 (1D model), 92 (2D remanent state) at: 
https://www.phys.ksu.edu/personal/wysin/publist.htm

https://www.phys.ksu.edu/personal/wysin/publist.htm

