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What are magnetic island lattices?

What properties can be studied?

How do their magnetic dipoles interact?

Ground state vs. excited states and metastable states.

A 1D model vs.a 2D model.
Possible technological applications.
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A real 3D spin-ice.

A rare-earth
pyrochlore compound.

Pr spins at
corners of tetrahedrons.

The interesting properties of Pr2lroO7 are rooted in its crystal structure,
called a pyrochlore lattice: four praseodymium (Pr) ions, each of which
carries a magnetic ‘spin’, form a tetrahedral cage around an oxygen (O)
lon. At low temperatures, the spins of materials with this structure often
‘freeze’ into what is called a ‘spin ice’ (Fig. 1) because of its similarity to
the way hydrogen ions form around oxygen in water ice. (phys.org/news/)



https://phys.org/tags/crystal+structure/
https://phys.org/tags/water+ice/
http://phys.org/news/

Realization of Rectangular Artificial
Spin Ice and Direct Observation of
High Energy Topology

I. R. B. Ribeiro™5, F. S. Nascimento?, S. O. Ferreiral, W. A. Moura-Melo?, C. A. R. Costa?,
J. Borme(®*, P. P. Freitas*, G. M. Wysin®, C. I. L. de Araujo(®* & A. R. Pereira’
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Atomic force microscope topography,
300 x 100 x 20 nm islands.

Artificial 2D spin-ice. Arrays
of elongated magnetic islands,
dominated by anisotropy &
dipole-dipole interactions.
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Magnetic force microscope image showing
N (bright) and S (dark) poles.



Artificial spin ice mimics the behavior of 3D spin ices of rare earths in
lattice of corner sharing tetrahedra of a pyrochlore structure.

in Review article: Advances in artificial spin ice,
Sandra Skjeervg et al. Nat. Rev. Phys. 11/08/19:

Artificial spin ices are metamaterials made up of coupled hanomagnets arranged
on different lattices that exhibit a number of interesting phenomena, such as
emergent magnetic monopoles, collective dynamics and phase transitions.

Signatures of the magnetic configurations are given by the specific spin-wave
resonances in artificial spin ice, which offer a platform for programmable spin-wave
devices, in particular magnonic crystals.

The established artificial spin ices are arranged on square and kagome lattices.
New geometries include both periodic and aperiodic, different magnet shapes
and anisotropies, and 3D structures.

Future work involves the development of applications including computation,
data storage, encryption and reconfigurable microwave circuits.



Another aspect:

Easily generated metastable states above the ground state, that
might be manipulated by outside control forces.

Metastable states could be useful as detectors or controllable oscillators.

Their oscillation frequencies can change rapidly vs some parameter when at
a critical value of that parameter.



A 1D island chain with metastability
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Thin elliptical islands. 2 sublattices, A,B.

They have shape anisotropy and dipole-dipole interactions.



Magnetic Nano-Islands
(elements of artificial spin-ice) @ @ @

Approx. 50 nm - 5 ym wide but only 10 nm thick.

Individual & in arrays, high-permeability soft magnetic materials.
Grown with techniques of epitaxy & lithography on a non-magnetic substrate.
Form arrays of particles that can interact with each other or applied fields.

Primary physics effects - O
magnetostatics controlled by island geometry.
discrete energy states for data storage. | —_ | —
spintronics controlled by current injection.
magnetic oscillators controlled by applied fields. O

frustration in ordered arrays of islands (artificial spin-ice).

Several principle states of a nano-island:
(1) quasi-single domain; (2) vortex; (3) multi-domains & domain walls.

~ Increasing size ~



Typical magnetic island features:

|) Vortices. The static and dynamic properties of single vortices
that behave as particles with charges (==> micro-oscillators).

2) Magnetostatic anisotropy of the islands themselves.

Also known as shape anisotropy because it depends mostly
on the surfaces.

isotropic elliptic Ising-like

3) Spin-ices, frustration. Especially for elongated islands with Ising-
like states, interactions within their arrays, that lead to frustrated
statics and dynamics.



Quasi-single-domain state. Magnetization M determines an

effective surface charge density:

N pole, =
o)\, >0. Oy =M -7,

The poles produce
large stray-field energy.

4+ But ferromagnetic
exchange energy is
small.
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Very little magnetic surface charge density.

Vortex state Stable only above a minimum radius

—

/ e \ Has small poles
/ / M<=— K\

(O =tM.) only

l/ / / S K\ X R in the core. @
: [ﬁ The stray-field
energy is small.
/ But the ferromagnetic
/ exchange energy is

= / large.




Elongated islands -
Highly anisotropic.

Heisenberg-like net
magnetic dipole.
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Quasi-single domain.
Poles greatly prefer the ends.

FM exchange dominates.

A vortex state is less likely.



Model for magnetic anisotropy of_elliptical islands.
Total magnetic dipole moment = U. Single domain is

assumed and Whas a fixed magnitude.
F—=F 4+ K. 1= (7. %) Kaolil - 2)2 Include also applied
0+ £ [ (/- 2) ] + K (/- 2) field energy: -M Hex
= A
u Z

hard axis

Lx* Lyx Lz island

X

>

easy axis

u direction = (c|>n,6n)

/

angle in xy-plane angle from Xy-plane
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dipolar interactions on a 1D island chain

Lo L2 [3(u, Fij) (L 1ij) — [

Y —

4 a3 (rij/a)’

1

high energy (D)
l

medium energy (0)

1

low energy (-D)

ﬂj] D — Mo /'Lz
4 a’
# @
highest energy (2D)
#

medium energy (0)

##

lowest energy (-2D)
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Interactions =  dipolar + shape anisotropy
N

H =3 {D[Sy Snt1—3(8n-2)(Snsr - #)] —K1 (S1) + Kz (8})°}

n=1 \

’ easy axis hard axis
energy scale D = Ho K
4rr a’
y I\ y-alternating state energyl/island = -Ki-D

s this always the lowest energy state!

Note that the system is frustrated! The anisotropy energies are low,
but not even the nearest-neighbor dipolar interactions are minimized.

Consider how changing D and K; affects the states.

|5



A state that does minimize all the dipolar interactions:

y/% x-parallel state energyl/island = -2D

But now the K1 anisotropy energy is high. ==> Frustration.

A 3rd state, that only minimizes the anisotropy energy:

y/|\ y-parallel state energyl/island = -K1+D

|6



Comparing these uniform states: u = energylisland.

le\x-parallelstate B e e e L
(nearest neighbor model)
(A —B A B A x-parallel
0 1 2 5 6 Xxla
le\ y-parallel state
T T T T T
| A B A B A
0 I 2 5 6 xla
)% y-alternating state
T l T l T
A B A B A
0 1 2 5 6 xla

z-parallel: u(0,0

)= —2D. K, < D,
,%)Z—I{1+D, Ky, > 3D,

y-parallel: u (
( ,—%):—Kl—D, K, > D.

(] ] B

y-alternating: u

|7



Stability verification.
Imagine small angular deviations in the spins, away from the current state.
How does system energy change for small sublattice deviations!?

y/\ y-parallel state deviations=®a,0a ®g,08

LLL LA LA LY

0 1

Energy changes are decoupled to quadratic order:

) | | | D+ K, —2D PA
— b M b — ) *
Hy =Y Mppy = ( YA @B ) ( —92D —D + K, ) ( OB )

—D+ K, + K5 D ) ( 6 A )

Hyg = {YyMotpg = ( 04 0B ) ( D —D + K, + K3

|18



—D + K, —2D

- ..",T A2y, — 'y / P A
Hy =Y Mphg ( PA OB ) ( _9D _D+ K, ) ( b )

Need the matrix eigenvalues > 0 for stability.

O';:D-I-Kl

o, =—3D+ K,

Hy = -’l;"..*gf\‘*fg"l,ﬁ?g = ( s 0Op ) (

U;_=K1+K3, 0'9

Requires K; > 3D

— D+ K+ K4 6 4
D —D+ K+ Ky OB
—2D + K1 + K3 Requires K1 +K3 > 2D

Conclusion: y-parallel state requires Ki > 3D for stability.
X-parallel state requires Ki < D for stability.

y-alternating state requires K; > D for stability.
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How does the system energy change for a traveling wave deviation!?

y\ y-parallel state  deviations=®,, 8, ~ exp(igna-wt)

1 “# “# “ﬁ * “# * “# i

0 3 x/a

Time dynamics:

1. OH .
ol A T or S=SxF.

/

Becomes Hamiltonian dynamics, for small deviations:

. OH . OH
n = A a0, On = Oy,

®,=coordinate, B,=momentum




Deviations: @03; = (01,02, 03, ...0N), w; = (01,602,053, ...0N)
The energy: H = T,DJ;,Mqﬂqu -+ ngm/Je

Nearest neighbors only:

H= ) [Myoo,+2Mp16ndns+1 + Mpob;, +2Mo 10,01 11]

. oH
¢n = 9 = 2M9,09n + 2M9,1(0n—1 + en—i—l)
: OH
O, = 9o —2My 00n —2My 1(Pn—1 + Gny1)

Solved by 1D traveling waves,

&, = © exp[i(qna- wt)] On = 0 exp[i(gna-wt)].

AN /A

amplltudes wave vector  frequency




dispersion relations: wm — ol \/)\(m))\(m)
NN\

m-th eigenvalues of Mo and Mg

eigenvalues determined by wave vector:

Ao (q ) = My + 2My 1 cos qa,
No(q) = My o+ 2My 1 cos qa.

[~

Constants determined by the state,
are functions of D, K1, K.
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y ¢ x-parallel state

0 1 > 3 4 5 6 xla
w — D
1 \/(l—l-—cosqa— )(l—l——cosqa—i-K" 01 = 1
1

6: I | | 1 I | ] | | I | | | | I 1 | | l‘ lll ll tl tl | : Oscillations On
: Qo-/oO (x-parallel state) : top of an
s 1 x-parallel state.
4 .
oS Lt :
= 3+ —
3 I ]
2 -
1 — near —
: instability :
0 i 1 1 ] 1 | 1 1 L 1 | 1 1 L 1 | 1 1 1 L | L 1 1 1 -
0 0.2 0.4 0.6 0.8 1
gal/m
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y 4\ y-parallel state

T

A

T T T

B A B

0

2% = \/(1+2cosqa— %) (1 — cosqa —

(nearest neighbor dipole interactions)

/9,
p— (N W -~ N (@)

-

i 2 3

Ki3

).
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oscillations on top
of a y-parallel state.



/0,

)% y-alternating state

T l T l T l T

A B A B A B A

2

12

10

0 i 2 3 4 5 6

x/a

(nearest neighbor dipole interactions)

5 — \/ 1-|—2cosqa+—1-) (1+cosqa—|——1-3-)
1

I | 1 | I I | | I I L | 1 I I I | 1 | I I | 1 I

(y-alternating state)

l]ll]lilllllll

I]li]llllll

instability

LI

N\
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But dipole interactions are long range. Hdq ~ 1/r3

< » -D/53

> > +D/43

< » -D/33

< » +D/23 \

> > -D This raises this state’s energy.

The sums can be done to get energies with all long-range dipole interactions.

The dynamics can also be analyzed with all long-range dipole interactions!
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Dynamic oscillations with long-range dipole interactions.

(nearest-neighbor dipole interactions)

12—

| I I 1 I I I I 1 I I I I 1 I I I
(y-alternating state)

instability

A%
N I RS B RN S

0.2 0.4 0.6 08 1
qalm

Long-range dipole interactions necessitate larger K; for its stability.
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(infinite-range dipole interactions)

(8
T 1 rrTrT

] l ] 1 1 1 I ) T T ) I ] L L] L] I 1 Ll 1 1 i
(y-alternating state, LRD)

near
instability

L l 1 1 1 | l 1 1 1 1 I 1 1 1

3

.
0.2 04 0.6 0.8

qalm
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With long-range dipole interactions:

y IT\ x-parallel state

_— s —

LA B A B A B A
0 ! 2 3 4 5 6 xla
yIT\ y-parallel state
Q
PR R R R =
| A B A B A B A =
0 ! 2 3 4 5 6 xla
)% y-alternating state
T i T l T | T
1A B A B A B A
0 1 2 3 4 5 6 xla

— —2D
x-parallel: u=)" e
k=1
.. D
y-parallel: u=—Kq+ Z F
k=1
. .~ (=1FD
y-alternating: uw=—K;+) ( A)*
k=1

u = energyl/island.

(with infinite-range dipole interactions)

x-parallel

|
—
9
T 1

~ —K; —0.9015D.
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Application of metastable y-parallel state?

y |\ y-parallel state

T T T T T T Apply and then
A B A B A B A turn off B.

L} I L 1 T I LI I LI l LA B I LI I LI

(with infinite-range dipole interactions) ; __— Set S)’Ste m h ere.

It is marginally stable.

An increase in D could destabilize it and
drop system to the y-alternating state.

aQ0f 3 | Some other small perturbation could have
Db ] the same result. ==> event detector.

Use a B-field to go back to y-parallel.
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Metastability of a remanent state of square spin-ice is similar.

N N .
B lD B lD fﬁ \fé \fﬁ \fﬁ ;7
C A C A 3 NAST AT NAST N A
0o & o > o0 £ o > 6o _——"0 _—7 0 _—7 0 _——7>
A A ERYEC YR YT YN
D B D B B B B
v A C v A C NASTNASTNAS T NAS
6o — > 0 &——— 0 —> 0 €&— e _——0 _— o0 _— o0 __——7
R N N y fﬁ \fé \fé \f§ \
c vy C v A NA Ny TN AT NAS
0o < o > 0 < o > o __—7 o A o __—7 o0 _—7
/N SN N
D B! D! B B B B B
A C A C NASTNATNASNAS
6 — S 0 €E—— 0 ——> 0o &—— o _—7 0 _——7 0 _—7 0 __——7
X X
A square ice ground state. A square ice remanent state.
There are four sublattices. There are two sublattices.
Difficult to achieve, due to frustration. Easy to achieve by applied B along x’.

nn energyl/island = €gs = -3D nn energyl/island = &rs = -D?/K; > &gs
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Oscillations of a remanent state of square spin-ice.

(nearest-neighbor dipole interactions)

LI I LI | I LI l UL I LINNRL L D (L AL N A
1

solid: 0),:.\

O (91,0)

-
o=’
a®

| dashed: oy Ow(0.q) |
~  NN-model |
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| K,=2947D o
stable
| B 1 L1 1 l L1 1 l | l L1 1 l 1 1 l | l | lll\ l\l
0 01 02 03 04 05 06 0.7 08 09 1
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(infinite-range dipole interactions)

anI/ U

Long-range dipole interactions help to
stabilize the remanent state. Less
anisotropy is needed.
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SUMMARY:

Lattices of magnetic islands offer a wide range of possible geometries,
including chains and spin-ices.

Competing interactions, determined by geometry, imply frustration:
not all interaction energies can be minimized.

Models for these systems are used to find some of the uniform states.
Stability is related to eigenvalues for the deviations from a state.

Some small-amplitude oscillation frequency goes to zero at a stability limit.

See publications 91 (1D model), 92 (2D remanent state) at:
https://www.phys.ksu.edu/personal/wysin/publist.htm
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