## Faraday Rotation Enhancement in

 Magnetic Core/Gold Shell NanoparticlesCondensed Matter Seminar
Kansas State University
October 29, 2010
Gary Wysin


collaboration with
Viktor Chikan, chemistry
wysin@phys.ksu.edu
www.phys.ksu.edu/personal/wysin

Nanoparticle Electromagnetics

- Gold plasmonic responses in spherical NPs.
- What is and what causes Faraday Rotation?
- Dielectric response, absorption, and FR.
- Gold shell effects on magnetic core.
- Response of a collection of NPs.


#### Abstract

We report enhanced optical Faraday rotation in gold-coated maghemite ( $\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$ ) nanoparticles. The Faraday rotation spectrum measured from 480-690 nm shows a peak at about 530 nm , not present in either uncoated maghemite nanoparticles or solid gold nanoparticles. This peak corresponds to an intrinsic electronic transition in the maghemite nanoparticles and is consistent with a near-field enhancement of Faraday rotation resulting from the spectral overlap of the surface plasmon resonance in the gold with the electronic transition in maghemite. This demonstration of surface plasmon resonance-enhanced magneto-optics (SuPREMO) in a composite magnetic/plasmonic nanosystem may enable design of nanostructures for remote sensing and imaging of magnetic fields and for miniaturized magneto-optical devices.


# Surface Plasmon Resonance Enhanced Magneto-Optics (SuPREMO): Faraday Rotation Enhancement in Gold-Coated Iron Oxide Nanocrystals 

Prashant K. Jain, ${ }^{\dagger}$ Yanhong Xiao, ${ }^{\ddagger}$ Ronald Walsworth, ${ }^{\ddagger, \S}$ and Adam E. Cohen ${ }^{\star, t, \S}$<br>Department of Chemistry and Chemical Biology, Department of Physics, HarVard<br>UniVersity, Cambridge, Massachusetts, 02138, and HarVard-Smithsonian Center for<br>Astrophysics, Cambridge, Massachusetts, 02138<br>Received January 1, 2009; Revised Manuscript Received March 2, 2009<br>(Nanoletters)

gold-coated $\gamma$ - $\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticles




## Surface Plasmon Resonance Enhanced Magneto-Optics (SuPREMO): Faraday Rotation Enhancement in Gold-Coated Iron Oxide Nanocrystals

Prashant K. Jain, ${ }^{\dagger}$ Yanhong Xiao, ${ }^{\ddagger}$ Ronald Walsworth, ${ }^{\ddagger, \delta}$ and Adam E. Cohen ${ }^{\star+, \uparrow, \delta}$
Department of Chemistry and Chemical Biology, Department of Physics, HarVard UniVersity, Cambridge, Massachusetts, 02138, and HarVard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, 02138

Received January 1, 2009; Revised Manuscript Received March 2, 2009

The Faraday rotation spectra of uncoated and gold-coated $\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticles are compared in Figure 3b. The goldcoated $\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticles show an overall similar Faraday rotation spectrum to the uncoated particles, with the exception of a sharp peak that appears around 530 nm . The uncoated $\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticles show only a weak shoulder in this region; no well-resolved resonant feature can be discerned. A simple "non-interacting" mixture of $\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticles and colloidal gold nanospheres (green curve in Figure 3b) with an absorbance matched to that of the goldcoated $\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticle sample also does not show the sharp Faraday rotation peak at 530 nm . This demonstrates that the rotation peak is not due merely to the presence of the gold component, but rather is a consequence of the close proximity of the gold and the $\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the composite $\gamma$ - $\mathrm{Fe}_{2} \mathrm{O}_{3} /$ gold nanostructure.

The origin of the Faraday rotation peak at 530 nm can be traced to the electronic structure of the $\gamma-\mathrm{Fe}_{2} \mathrm{O}_{3}$, specifically the crystal field transitions of $\mathrm{Fe}^{3+} 3 \mathrm{~d}^{5}$ electrons that dominate the visible spectrum of iron oxides. ${ }^{59,60}$ The crystal field

## gold-shell on maghemite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ cores (from Viktor Chikan's lab)



Figure 3 (b) Variation of color change when the thickness of gold onto the surface of the nanoparticles is increased.

## Viktor Chikan's core/shell particles



Figure 3 (a) UV-vis absorption spectrum of $3^{\text {rd }}$ batch synthesis of gold coated $\mathrm{Fe}_{2} \mathrm{O}_{3}$
nanoparticles. The initial peak position is indicated by an arrow at 606 nm and shifts to 532 nm with increasing thickness of gold shell.

## Viktor Chikan's core particles



Figure 2 (a) TEM image of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticles used in the experiment.

## Viktor Chikan's core/shell particles, at $\lambda=632 \mathrm{~nm}$



Figure 4 (b) Experimental Verdet constant of gold coated $\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticles only (normalized by the volume fraction of the particles) as a function of gold shell thickness

EM

## scattering

incident plane waves,
spherical dielectric or conducting particles frequency $\omega$, wave vector $k$


A nearly uniform polarization is induced in the NP. Its amplitude depends on the dielectric function $\epsilon(\omega)$. How to describe effects on the light?

## Bulk Plasma oscillations

$$
\omega_{p}=\sqrt{\frac{n e^{2}}{m \epsilon_{0}}}
$$

$\mathrm{n}=$ electron number density $\mathrm{z}=$ electron gas displacement
newtonian mechanics:

$$
\begin{gathered}
-(e n V)\left(-\frac{\sigma}{\epsilon_{0}}\right)=(m n V) \ddot{z} \\
-\left(\frac{n e^{2}}{\epsilon_{0}}\right) z=m \ddot{z} \\
\ddot{z}=-\frac{n e^{2}}{m \epsilon_{0}} z=-\omega_{p}^{2} z
\end{gathered}
$$

About electric polarization P

$A=$ top/bottom surface area

Spherical conductor, plasma oscillations

$$
\omega_{s}=\sqrt{\frac{n e^{2}}{3 m \epsilon_{0}}}=\frac{\omega_{p}}{\sqrt{3}}
$$

$z=$ electron gas displacement

$$
\begin{array}{r}
\sigma=-n e z \cos \theta \quad p_{z}=\int \sigma(a \cos \theta) d A=-\frac{4 \pi a^{3}}{3}(n e z) \\
\text { Polarization: } \quad \vec{P}=-(n e z) \hat{z}
\end{array}
$$

newtonian mechanics: $Q E=M \ddot{z}$

$$
\begin{aligned}
& (-e n V) \frac{n e z}{3 \epsilon_{0}}=(m n V) \ddot{z} \\
& \ddot{z}=-\frac{n e^{2}}{3 m \epsilon_{0}} z=-\omega_{s}^{2} z
\end{aligned}
$$

## Geometry affects the resonance frequency

bulk gold:

$$
\begin{aligned}
& \mathrm{n}=5.90 \times 10^{28} / \mathrm{m}^{3} \\
& \omega_{\mathrm{p}}=1.36 \times 10^{16} \mathrm{rad} / \mathrm{s} \\
& \lambda_{\mathrm{p}}=138.5 \mathrm{~nm} \\
& \mathrm{n}=5.90 \times 10^{28} / \mathrm{m}^{3} \\
& \omega_{\mathrm{s}}=7.85 \times 10^{15} \mathrm{rad} / \mathrm{s} \\
& \lambda_{\mathrm{s}}=240 \mathrm{~nm}
\end{aligned}
$$

spherical gold:

## Sphere in a host medium, dielectric response

$E_{0}=$ field in surroundings


$$
\begin{aligned}
& \Phi_{\text {inside }}=-\left(\frac{3 \epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}}\right) E_{0} r \cos \theta \\
& \vec{E}_{\text {inside }}=\frac{3 \epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}} \vec{E}_{0}=\text { uniform }
\end{aligned}
$$

$$
\epsilon_{\mathrm{a}}=\text { host }
$$

$\Phi_{\text {outside }}=-\left[r-\left(\frac{\epsilon_{b}-\epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}}\right) \frac{a^{3}}{r^{2}}\right] E_{0} \cos \theta$
$\vec{E}_{\text {outside }}=\vec{E}_{0}+\frac{\vec{p} \cdot \vec{r}}{4 \pi \epsilon_{a} r^{3}}$
induced electric dipole:

$$
\vec{p}=\left(\frac{\epsilon_{b}-\epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}}\right)\left(4 \pi a^{3} \epsilon_{a} \vec{E}_{0}\right)
$$

Resonance of a conducting sphere

$$
\epsilon_{\mathrm{b}} \int \vec{E}_{\text {inside }}=\frac{3 \epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}} \vec{E}_{0}
$$

divergence when: $\quad 2 \epsilon_{a}+\epsilon_{b}=0$
Drude model, free electron gas:

$$
\epsilon_{b}(\omega)=\epsilon_{0}\left[1-\frac{\omega_{p}^{2}}{\omega^{2}}\right]
$$

resonance: $\Longrightarrow 2 \frac{\epsilon_{a}}{\epsilon_{0}}+1-\frac{\omega_{p}^{2}}{\omega^{2}}=0 \quad \Longrightarrow \quad \omega_{\mathrm{SP}}=\frac{\omega_{p}}{\sqrt{2 \frac{\epsilon_{a}}{\epsilon_{0}}+1}}$
for gold surrounded by $\mathrm{H}_{2} \mathrm{O}$ :

$$
\begin{aligned}
\mathrm{n}= & \left(\epsilon_{\mathrm{a}} / \epsilon_{0}\right)^{1 / 2} \\
& =\mathrm{I} .33
\end{aligned}
$$

$$
\omega_{\mathrm{SP}}=\frac{\omega_{p}}{\sqrt{2(1.33)^{2}+1}} \approx 0.47 \omega_{p}
$$

$$
\lambda_{\mathrm{sp}}=295 \mathrm{~nm}
$$

What about electron response and Faraday rotation?
Use circular polarization, and magnetic field $\mathbf{B}$ along $\mathbf{k}=k \boldsymbol{n}$.
EM waves approaching you, the observer:

$\square$ D


LEFT circular polarization CCW rotation positive helicity $\boldsymbol{\sigma} \cdot \boldsymbol{n}$

$$
\hat{u}_{L}=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{y}) e^{-i \omega t}
$$

RIGHT circular polarization CW rotation negative helicity $\boldsymbol{\sigma} \cdot \boldsymbol{n}$

$$
\hat{u}_{R}=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{y}) e^{-i \omega t}
$$

Free electron response, at frequency $\omega$ :

LEFT circular polarization

$F_{\text {net }}=e E_{0}+e v B_{z}=m \omega^{2} r$
$r=\frac{e E_{0}}{m \omega^{2}-e \omega B_{z}}=\frac{e E_{0}}{m \omega\left(\omega-\omega_{B}\right)}$
cyclotron frequency:

$$
\omega_{B}=\frac{e B_{z}}{m}
$$

RIGHT circular polarization


$$
\begin{aligned}
& F_{\text {net }}=e E_{0}-e v B_{z}=m \omega^{2} r \\
& r=\frac{e E_{0}}{m \omega^{2}+e \omega B_{z}}=\frac{e E_{0}}{m \omega\left(\omega+\omega_{B}\right)}
\end{aligned}
$$

LEFT polarization produces larger orbit,
larger induced electric dipole

Effect on electric permittivity $\epsilon$
permittivity $\epsilon$ : polarization:
$\vec{P}=n \vec{p}$
$\epsilon \vec{E}=\vec{D}=\epsilon_{0} \vec{E}+\vec{P}$
$\epsilon=\frac{D_{0}}{E_{0}}=\frac{\epsilon_{0} E_{0}+P}{E_{0}}=\epsilon_{0}+\frac{P}{E_{0}}$
$\Longrightarrow \quad \epsilon=\epsilon_{0}-\frac{n e^{2}}{m \omega\left(\omega \pm \omega_{B}\right)}$

$$
\epsilon=\epsilon_{0}\left[1-\frac{\omega_{p}^{2}}{\omega\left(\omega \pm \omega_{B}\right)}\right]
$$

+ for RIGHT circular $\quad \lambda_{R}=\frac{2 \pi}{k_{R}}$
- for LEFT circular
$\lambda_{L}=\frac{2 \pi}{k_{L}}$
wave vectors:

$$
k=\frac{2 \pi}{\lambda}=\sqrt{\epsilon \mu} \omega
$$

$$
k=\frac{\omega}{c} \sqrt{1-\frac{\omega_{p}^{2}}{\omega\left(\omega \pm \omega_{B}\right)}}
$$

$$
\Longrightarrow \quad \lambda_{R}<\lambda_{L}
$$

Why is there Faraday rotation, and how large is it?

Incident linear polarization, at a single frequency $\omega$ :
$\vec{E}_{\mathrm{inc}}=E_{\mathrm{inc}} \hat{x}=E_{\mathrm{inc}} \frac{1}{\sqrt{2}}\left(\hat{u}_{R}+\hat{u}_{L}\right)$


After propagation through z:

$$
\begin{aligned}
\vec{E}(z) & =\frac{E_{\mathrm{inc}}}{\sqrt{2}}\left[\hat{u}_{R} e^{i k_{R} z}+\hat{u}_{L} e^{i k_{L} z}\right] \\
\vec{E}(z) & =E_{\mathrm{inc}}\left[\hat{x} \cos \left(\frac{\Delta k}{2} z\right)+\hat{y} \sin \left(\frac{\Delta k}{2} z\right)\right] e^{i \bar{k} z}
\end{aligned}
$$

Faraday rotation:

$$
\begin{gathered}
\Delta \phi=\frac{\Delta k}{2} z \\
\bar{k} \equiv \frac{1}{2}\left(k_{R}+k_{L}\right) \\
\Delta k \equiv k_{R}-k_{L}
\end{gathered}
$$

## Faraday rotation: Connection to dielectric matrix $\epsilon$

An electron is affected by several forces:

$$
\vec{F}=\underset{\text { binding }}{-m \omega_{0}^{2} \vec{r}-e \vec{E}-e \dot{\vec{r}} \times \vec{B}-m \gamma \dot{\vec{r}}=m \ddot{\vec{r}} \underset{\text { Locentric }}{\text { Lamping }}}
$$


harmonic motion: $\quad \vec{r}(t)=\vec{r}_{0} e^{-i \omega t}$
incident waves
$m\left(\omega^{2}-\omega_{0}^{2}+i \omega \gamma\right) \vec{r}-i \omega e \vec{B} \times \vec{r}=e \vec{E}$
electron response
$\left(\begin{array}{cc}m\left(\omega^{2}-\omega_{0}^{2}+i \omega \gamma\right) & i \omega e B_{z} \\ -i \omega e B_{z} & m\left(\omega^{2}-\omega_{0}^{2}+i \omega \gamma\right)\end{array}\right)\binom{x}{y}=\binom{e E_{0 x}}{e E_{0 y}}$
form is:

$$
M \cdot \vec{r}=e \vec{E}
$$

solution is: $\vec{r}=\binom{x}{y}=M^{-1}\binom{e E_{0 x}}{e E_{0 y}}$

Result for electric permittivity $\epsilon$

$$
\epsilon \vec{E}=\epsilon_{0} \vec{E}+\vec{P} \quad \vec{P}=-n e \vec{r}, \quad \vec{r}=M^{-1}\binom{e E_{0 x}}{e E_{0 y}}
$$

Then magic happens and

$$
\epsilon=\left(\begin{array}{cc}
\epsilon_{x x} & i \epsilon_{x y} \\
-i \epsilon_{x y} & \epsilon_{x x}
\end{array}\right)
$$

$$
\begin{aligned}
& \epsilon_{x x}=\epsilon_{0}-\frac{\left(n e^{2} / m\right)\left(\omega^{2}-\omega_{0}^{2}+i \omega \gamma\right)}{\left(\omega^{2}-\omega_{0}^{2}+i \omega \gamma\right)^{2}-\left(\omega e B_{z} / m\right)^{2}} \\
& \epsilon_{x y}=\frac{\left(n e^{2} / m\right)\left(\omega e B_{z} / m\right)}{\left(\omega^{2}-\omega_{0}^{2}+i \omega \gamma\right)^{2}-\left(\omega e B_{z} / m\right)^{2}}
\end{aligned}
$$

What's important: The eigenstates of $\epsilon$ are the RIGHT/LEFT circular polarization states!

$$
\begin{array}{lll}
\lambda_{1}=\epsilon_{R}=\epsilon_{x x}+\epsilon_{x y} & \hat{u}_{1}=\hat{u}_{R}=\frac{1}{\sqrt{2}}(\hat{x}-i \hat{y}) & \text { RIGHT circular } \\
\lambda_{2}=\epsilon_{L}=\epsilon_{x x}-\epsilon_{x y} & \hat{u}_{2}=\hat{u}_{L}=\frac{1}{\sqrt{2}}(\hat{x}+i \hat{y}) & \text { LEFT circular }
\end{array}
$$

for the propagating eigenstates:

$$
\epsilon_{R / L}=\epsilon_{0}\left(1-\frac{\omega_{p}^{2}}{\omega^{2}-\omega_{0}^{2}+i \omega \gamma \pm \omega \omega_{B}}\right)
$$

$$
\Rightarrow \begin{aligned}
& k_{R}=\sqrt{\epsilon_{R} \mu_{0}} \omega \\
& k_{L}=\sqrt{\epsilon_{L} \mu_{0}} \omega
\end{aligned}
$$

Faraday rotation:

$$
\Delta \phi=1 / 2\left(\mathrm{k}_{\mathrm{R}}-\mathrm{k}_{\mathrm{L}}\right) \mathrm{z} \quad \Rightarrow \quad \Delta \phi=\frac{\omega}{2 c} \frac{\epsilon_{x y}}{\sqrt{\epsilon_{x x}}} z
$$

This could be complex.

$$
\begin{aligned}
& \theta_{F}=\operatorname{Real}\left\{\frac{\omega}{2 c} \frac{\epsilon_{x y}}{\sqrt{\epsilon_{x x}}} z\right\}=\text { rotation } \\
& \chi_{F}=\operatorname{Imag}\left\{\frac{\omega}{2 c} \frac{\epsilon_{x y}}{\sqrt{\epsilon_{x x}}} z\right\}=\text { ellipticity }
\end{aligned}
$$



## Faraday rotation at $\omega_{B} \ll \omega$

cyclotron frequency at $\mathrm{B}=1.0 \mathrm{~T}$

$$
\omega_{\mathrm{B}}=\mathrm{eB} / \mathrm{m}=1.8 \times 10^{11} \mathrm{rad} / \mathrm{s}
$$

optical frequency at $\lambda=600 \mathrm{~nm}$ $\omega=2 \pi c / \lambda=3.1 \times 10^{15} \mathrm{rad} / \mathrm{s}$

Then the Faraday rotation is proportional to B:

$$
\theta_{F}=v B z
$$

$$
v=\text { Verdet constant }
$$

## Viktor Chikan's core/shell particles, at $\lambda=632 \mathrm{~nm}$



Figure 4 (b) Experimental Verdet constant of gold coated $\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticles only (normalized by the volume fraction of the particles) as a function of gold shell thickness
core/shell NP electrostatics:

induced electric dipole (from Laplace eqn. solution):

$$
\vec{p}=\frac{3 \epsilon_{a} \frac{\left(\frac{\epsilon_{b}-\epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}}\right)+\left(\frac{b}{a}\right)^{3}\left(\frac{2 \epsilon_{b}+\epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}}\right)\left(\frac{\epsilon_{c}-\epsilon_{b}}{2 \epsilon_{b}+\epsilon_{c}}\right)}{1+2\left(\frac{b}{a}\right)^{3}\left(\frac{\epsilon_{b}-\epsilon_{a}}{2 \epsilon_{a}+\epsilon_{b}}\right)\left(\frac{\epsilon_{c}-\epsilon_{b}}{2 \epsilon_{b}+\epsilon_{c}}\right)}}{\text { NP polarizability } \boldsymbol{\alpha}_{\mathrm{s}}}\left(\frac{4 \pi a^{3}}{3}\right) \vec{E}_{0}
$$

## core/shell NP electrostatics:



But scattering is from a collection of NPs.

## Use some kind of effective medium theory.

What are this sample's averaged $\epsilon_{R}, \epsilon_{L}$ ? $N=\#$ of NPs


$$
\begin{aligned}
& \text { simple averaging (Maxwell Garnet theory): } \\
& \langle\vec{E}\rangle=(1-f) \vec{E}_{0}+f\left\langle\vec{E}_{\text {in }}\right\rangle=\left[(1-f)+f F_{s}\right] \vec{E}_{0} \Rightarrow \Rightarrow \frac{\langle\vec{E}\rangle}{\left[(1-f)+f F_{s}\right]} \\
& \langle\vec{D}\rangle=\left\langle\epsilon_{\text {eff }}\right\rangle\langle\vec{E}\rangle=\epsilon_{a}\langle\vec{E}\rangle+f \vec{P}=\epsilon_{a}\langle\vec{E}\rangle+f \alpha_{s} \vec{E}_{0} \\
& \langle\vec{D}\rangle=\left\langle\epsilon_{\text {eff }}\right\rangle\langle\vec{E}\rangle=\left[\epsilon_{a}+\frac{f \alpha_{s}}{1-f+f F_{s}}\right]\langle\vec{E}\rangle \Rightarrow\left\langle\epsilon_{\text {eff }}\right\rangle=\epsilon_{a}+\frac{f \alpha_{s}}{1-f+f F_{s}}
\end{aligned}
$$

Find this for RIGHT/LEFT polarizations

## gold parameters

fit $\epsilon_{\text {eff }}$ via absorption:
$\alpha=\frac{\omega}{c} \operatorname{Im}\left\{\sqrt{\varepsilon_{\text {eff }}}\right\}$
assumption for the gold: ( $\mathrm{v}= \pm 1$ for $\mathrm{R} / \mathrm{L}$ )

$$
\varepsilon=1-\frac{g_{0}^{2}}{\omega^{2}-\omega_{0}^{2}+i \gamma_{0} \omega-v \omega \omega_{B}}-\frac{\omega_{p}^{2}}{\omega^{2}+i \gamma_{p} \omega-v \omega \omega_{B}}
$$

(bound e")


Fits the plasmon resonance peak near 530 nm

Gold shel/ has extra scattering. This increases the effective damping of free electrons.


## The superparamagnetic $\mathrm{Fe}_{2} \mathrm{O}_{3}$ core:

fit $\epsilon_{\text {eff }}$ via absorption:

$$
\alpha=\frac{\omega}{c} \operatorname{Im}\left\{\sqrt{\varepsilon_{\mathrm{eff}}}\right\}
$$

assumption: ( $v= \pm 1$ for $\mathrm{R} / \mathrm{L}$ )

$$
\varepsilon=1-\frac{g_{0}^{2}}{\omega^{2}-\omega_{0}^{2}+i \gamma_{0} \omega-v \omega \omega_{B}}
$$

(single resonance, bound $\mathrm{e}^{-}$)

radius $b=4.85 \mathrm{~nm}$

Fits the primary resonance near 350 nm , that is responsible for faraday rotation.

The superparamagnetic $\mathrm{Fe}_{2} \mathrm{O}_{3}$ core:

$$
\begin{array}{crl}
\text { radius } \quad b & =4.85 \mathrm{~nm} \\
\text { volume } V=4 \pi b^{3} / 3 & =478 \mathrm{~nm}^{3}
\end{array}
$$

saturation magnetization $M=414 \mathrm{kA} / \mathrm{m}$ uniaxial anisotropy $K_{A}=4700 \mathrm{~J} / \mathrm{m}^{3}$
anisotropy energy $\mathrm{K}_{\mathrm{A}} \mathrm{V}=14 \mathrm{meV}$
(thermal energy $\mathrm{k}_{\mathrm{B}} \mathrm{T}=26 \mathrm{meV}$ )
magnetic moment

$$
m=M V \approx 21000 \mu_{B}
$$


internal field $\mathrm{B}_{\text {in }} \approx 5.5 \mathrm{~B}_{\text {external }}$
(cyclotron freq. $\omega_{B}=e B_{i n} / m_{e}$ ) enhanced compared to the gold

## simple nanoparticles (core only)

absorption

## Faraday rotation (Verdet constant)




core/shell
nanoparticles
core radius $\mathrm{b}=4.85 \mathrm{~nm}$ fixed.
different shell thicknesses $d=a-b$.


> fixed NP number density $\mathrm{n}_{\mathrm{s}}$
> varying volume fraction $\mathrm{f}_{\mathrm{s}}$
> $f_{s}=n_{s} V_{s}$
> $V_{s}=4 \pi a^{3} / 3$
core/shell nanoparticles
absorption
vs. shell outer radius $\rightarrow$


Faraday rotation (Verdet constant)

$$
\begin{array}{cc}
\text { core/shell } & \begin{array}{c}
\text { Faraday rotation } \\
\text { nanoparticles }
\end{array} \\
\text { divided by volume } \\
\text { fraction of NPs }
\end{array}
$$



## Viktor's core/shell particles, at $\lambda=632 \mathrm{~nm}$



Figure 4 (b) Experimental Verdet constant of gold coated $\mathrm{Fe}_{2} \mathrm{O}_{3}$ nanoparticles only (normalized by the volume fraction of the particles) as a function of gold shell thickness

## Summary

- A model for $\epsilon(\omega)$ was developed to calculate Faraday rotation in core/shell NPs.
- The gold shell has a plasmonic resonance that depends on thickness.
- Absorption and Faraday rotation are driven by this resonance.
- Clustering of particles needs to be accounted for.

