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ABSTRACT

We report enhanced optical Faraday rotation in gold-coated maghemite (γ-Fe2O3) nanoparticles. The Faraday rotation spectrum measured
from 480- 690 nm shows a peak at about 530 nm, not present in either uncoated maghemite nanoparticles or solid gold nanoparticles. This
peak corresponds to an intrinsic electronic transition in the maghemite nanoparticles and is consistent with a near-field enhancement of
Faraday rotation resulting from the spectral overlap of the surface plasmon resonance in the gold with the electronic transition in maghemite.
This demonstration of surface plasmon resonance-enhanced magneto-optics (SuPREMO) in a composite magnetic/plasmonic nanosystem
may enable design of nanostructures for remote sensing and imaging of magnetic fields and for miniaturized magneto-optical devices.

Nanostructures of noble metals, especially gold (Au), silver
(Ag), and copper (Cu), are interesting from both fundamental
and technological standpoints due to their localized surface
plasmon resonance, which is the collective oscillation of the
conduction electrons when excited with visible light.1,2

Plasmon resonances impart these nanostructures with unusual
optical properties, such as strongly enhanced size-, shape-,
and medium-dependent light absorption and Mie scatter-
ing.2- 5 Localized surface plasmons have been employed in
a wide range of applications6 including imaging,7,8 chemical
and biological sensing and probing,9- 11 and targeted photo-
thermal therapy.8,12,13 In addition to these far-field optical
attributes, excitation of localized surface plasmon resonances
results in strong confinement of electric fields around the
nanostructure,14- 16 causing near-field enhancements of linear
and nonlinear optical processes.17,18 A prime example of such
electromagnetic field enhancement is the amplification of
Raman scattering by 105- 106 for molecules adsorbed on gold
or silver nanoparticles19 (and up to 1014- 1015 at “hot spots”
at the intersection of two or more nanoparticles20,21). In recent
years, plasmonic enhancement of photoluminescence from
fluorophores,22- 24 infrared vibrational absorption,17 second

harmonic processes,25- 27 and photochemistry28 have also been
demonstrated using metal nanostructures.

The rotation of the polarization of light in a magnetized
medium can be observed either in reflection (Kerr rotation)
or in transmission (Faraday rotation).29 Magneto-optical
(MO) phenomena provide physical information on electronic
and spin structure of materials30- 32 and have also found
applications in magnetic field sensors, optical isolators, data
storage, and fast optical modulation.29 Here, we demonstrate
a new surface plasmon enhanced MO effect, which we call
“SuPREMO”, in the form of enhanced optical Faraday
rotation in a composite nanostructure consisting of magnetic
maghemite nanoparticles coated with a plasmonic gold shell.

MO effects in most media are typically small. One
approach for enhancing MO effects is the integration of MO-
active media with photonic crystals, leading to enhanced
Faraday rotation at the photonic band gap edge.33,34 Another
theoretical proposal involves the use of metal films with
arrays of subwavelength holes filled with an MO-active
material.35,36 These structures support electromagnetic modes
displaying extraordinary optical transmission (EOT) along
with high Faraday rotation.

There has been recent interest in employing optical
resonances of noble metal nanostructures for enhancing MO
phenomena.37- 45 Hui and Stroud proposed on theoretical
grounds that media containing noble metal nanoparticles
should show enhanced Faraday rotation at optical frequencies
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we selected the fifth-iteration gold-coated γ-Fe2O3 nanopar-
ticles for further characterization. The nanoparticles were
subjected to separation on a strong neodymium magnet to
isolate them from any purely gold particles that may have
nucleated. The magnetically separated precipitate was then
centrifuged at a low speed (800 rpm) for 20 min to remove
any γ-Fe2O3 nanoparticles that may have remained uncoated.
The latter purification steps are important to ensure that the
samples consist predominantly of the composite plasmonic/
magnetic nanostructures. Following the purification steps,
the gold-coated γ-Fe2O3 nanoparticles showed a plasmon
resonance band maximum at about 560 nm.

Transmission electron microscopy (TEM) images of both
uncoated γ-Fe2O3 nanoparticles and the purified gold-coated
nanoparticles (shown respectively in Figure 1b,c) were taken
on a JEOL 2100 TEM operating at 200 kV. TEM samples
were prepared by drop-casting 2 µL of the sonicated colloidal
solution on a carbon-coated Formvar-supported 100 mesh
copper grid and drying the solution in air. From a representa-
tive TEM image (Figure 1b), the uncoated γ-Fe2O3 nano-
particles showed an average diameter of 5.1 nm (with a 1.5
nm standard deviation). At this size, γ-Fe2O3 nanoparticles
are superparamagnetic.52 The gold coating resulted in nano-
particles with an average diameter of 54.7 nm (with a
standard deviation of 18.5 nm), and much higher electron
microscopy contrast due to the gold.

Faraday rotation measurements of Fe3O4, γ-Fe2O3, pure
gold, and gold-coated γ-Fe2O3 nanoparticles were performed
in the visible spectral range. The optical setup (shown in
Scheme 1) consisted of a supercontinuum fiber laser (Fi-
anium, Inc.) with an acousto-optic tunable filter (Crystal
Technology, Inc.), which allowed the tuning of the illumina-
tion wavelength λ from 480 to 690 nm. The laser beam was
linearly polarized by passing through a Glan Thompson
polarizer (extinction ratio 105) and then transmitted through
the sample solution in a 1 cm path length optical cell placed
in the core of a homemade electromagnet. The electromagnet
was driven by a high-current amplifier at 900 Hz, generating
a peak magnetic field of 150 Gauss. The beam transmitted

Figure 1. (a) Powder XRD pattern for γ-Fe2O3 nanoparticles. The
red curve is a 50-point median averaging of the data. Five diffraction
peaks have been assigned based on literature and used to calculate
a lattice parameter of 8.34 + 0.02 Å. Representative transmission
electron microscopy images of (b) bare γ-Fe2O3 nanoparticles and
(c) gold-coated γ-Fe2O3 nanoparticles following magnetic separation
and purification steps.

Figure 2. UV- visible absorbance spectra of gold-coated γ-Fe2O3

nanoparticles shown as a function of the molar ratio of the
maghemite nanoparticles (in Fe2O3 units) to Au ions added during
the iterative gold-coating process. The spectrum for bare γ-Fe2O3

nanoparticles is shown in black. The black arrow indicates the
shoulder absorption corresponding to an electronic transition in
γ-Fe2O3.
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ABSTRACT

We report enhanced optical Faraday rotation in gold-coated maghemite (γ-Fe2O3) nanoparticles. The Faraday rotation spectrum measured
from 480-690 nm shows a peak at about 530 nm, not present in either uncoated maghemite nanoparticles or solid gold nanoparticles. This
peak corresponds to an intrinsic electronic transition in the maghemite nanoparticles and is consistent with a near-field enhancement of
Faraday rotation resulting from the spectral overlap of the surface plasmon resonance in the gold with the electronic transition in maghemite.
This demonstration of surface plasmon resonance-enhanced magneto-optics (SuPREMO) in a composite magnetic/plasmonic nanosystem
may enable design of nanostructures for remote sensing and imaging of magnetic fields and for miniaturized magneto-optical devices.

Nanostructures of noble metals, especially gold (Au), silver
(Ag), and copper (Cu), are interesting from both fundamental
and technological standpoints due to their localized surface
plasmon resonance, which is the collective oscillation of the
conduction electrons when excited with visible light.1,2
Plasmon resonances impart these nanostructures with unusual
optical properties, such as strongly enhanced size-, shape-,
and medium-dependent light absorption and Mie scatter-
ing.2-5 Localized surface plasmons have been employed in
a wide range of applications6 including imaging,7,8 chemical
and biological sensing and probing,9-11 and targeted photo-
thermal therapy.8,12,13 In addition to these far-field optical
attributes, excitation of localized surface plasmon resonances
results in strong confinement of electric fields around the
nanostructure,14-16 causing near-field enhancements of linear
and nonlinear optical processes.17,18 A prime example of such
electromagnetic field enhancement is the amplification of
Raman scattering by 105-106 for molecules adsorbed on gold
or silver nanoparticles19 (and up to 1014-1015 at “hot spots”
at the intersection of two or more nanoparticles20,21). In recent
years, plasmonic enhancement of photoluminescence from
fluorophores,22-24 infrared vibrational absorption,17 second

harmonic processes,25-27 and photochemistry28 have also been
demonstrated using metal nanostructures.
The rotation of the polarization of light in a magnetized

medium can be observed either in reflection (Kerr rotation)
or in transmission (Faraday rotation).29 Magneto-optical
(MO) phenomena provide physical information on electronic
and spin structure of materials30-32 and have also found
applications in magnetic field sensors, optical isolators, data
storage, and fast optical modulation.29 Here, we demonstrate
a new surface plasmon enhanced MO effect, which we call
“SuPREMO”, in the form of enhanced optical Faraday
rotation in a composite nanostructure consisting of magnetic
maghemite nanoparticles coated with a plasmonic gold shell.
MO effects in most media are typically small. One

approach for enhancing MO effects is the integration of MO-
active media with photonic crystals, leading to enhanced
Faraday rotation at the photonic band gap edge.33,34 Another
theoretical proposal involves the use of metal films with
arrays of subwavelength holes filled with an MO-active
material.35,36 These structures support electromagnetic modes
displaying extraordinary optical transmission (EOT) along
with high Faraday rotation.
There has been recent interest in employing optical

resonances of noble metal nanostructures for enhancing MO
phenomena.37-45 Hui and Stroud proposed on theoretical
grounds that media containing noble metal nanoparticles
should show enhanced Faraday rotation at optical frequencies
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through the sample was then passed through a visible-range
polarizing beamsplitter, which splits the beam of intensity I
into a transmitted beam of intensity It and a reflected beam
of intensity Ir. For a small clockwise Faraday rotation θ, we
have

where " is the angle between the input polarization from
the laser and the horizontal axis of the polarizing beamsplit-
ter. An autobalanced photodetector (New Focus Nirvana
2007) was employed to measure It and Ir. For proper function
of the autobalancing circuit, " was set to 54.7°, yielding Ir
≈ 2It. The Faraday rotation angle θ was extracted by software
lock-in at the magnetic field modulation frequency (900 Hz)
and measured as a function of wavelength from 480 to 690
nm in 5 nm increments. Spectra were generated by typically
averaging 10 such wavelength scans. Using this setup, we
measured the Verdet constant of water to be 3.79 ( 0.01 ×
10- 6 rad/G·cm at 590 nm within <1% of the literature value
of 3.80 × 10- 6 rad/G·cm.56 The Verdet constant for water
was taken to have a positive sign as per literature conven-
tion.57 The measured Faraday rotation of water was found
to be a linear function of 1/λ2, typical of diamagnetic
materials.

In Figure 3, the Faraday rotation spectra of γ-Fe2O3

nanoparticles, Fe3O4 nanoparticles, gold-coated γ-Fe2O3

nanoparticles, and a mixture of γ-Fe2O3 nanoparticles and
gold nanospheres are presented. The Faraday rotation due
to the water and quartz windows of the sample cell has been
subtracted. All spectra are normalized to their values at 480
nm. The normalization constants are 17.77, 16.75, 0.78, and
7.71 mdeg for the γ-Fe2O3 nanoparticles, Fe3O4 nanopar-
ticles, gold-coated γ-Fe2O3 nanoparticles, and the mixture,
respectively. The strong light absorption of the gold-coated
γ-Fe2O3 nanoparticles restricted us to using a low particle
concentration, resulting in a smaller magnitude of Faraday
rotation. Error bars represent the standard error of the mean
of 50 measurements for the gold-coated γ-Fe2O3 nanopar-
ticles and 10 measurements for other samples.

Figure 3a shows that there is marked difference in the
Faraday rotation spectra of the nanoparticles of the two iron

oxides, Fe3O4 and γ-Fe2O3. Both oxides show a large
negative Faraday rotation at 480 nm. This rotation is due to
crystal field transitions in the 3d5 orbitals of Fe3+ (compli-
cated by ligand-to-metal charge transfer interactions in the
UV and blue region), which has been observed previously
as a general feature of Fe3+ -containing ferrite and garnet
materials.30,32,58- 60 In the case of the Fe3O4 nanoparticles,
the Faraday rotation reaches zero near 555 nm and crosses
over to a positive Faraday rotation, which further increases
toward the near-infrared. The γ-Fe2O3 on the other hand

Scheme 1. Experimental Setup for Faraday Rotation
Measurement

It )
I
2

(1 + cos 2" + 2θ sin 2") (1)

Ir )
I
2

(1 - cos 2" - 2θ sin 2") (2)

Figure 3. (a) Normalized Faraday rotation spectra of γ-Fe2O3

nanoparticles and Fe3O4 nanoparticles. (b) Normalized Faraday
rotation spectra of γ-Fe2O3 nanoparticles, gold-coated γ-Fe2O3

nanoparticles, and a mixture of γ-Fe2O3 and gold nanoparticles.
The absorbance spectrum showing the plasmon resonance band of
the gold-coated γ-Fe2O3 nanoparticles is indicated by the dotted
blue curve. The * represents the position of the absorption band
edge in γ-Fe2O3 determined from the photoluminescence spectrum
in Figure 4.

Figure 4. Photoluminescence spectrum of γ-Fe2O3 nanoparticles
under 475 nm light excitation, showing an emission band at 530
nm.
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demonstrated using metal nanostructures.

The rotation of the polarization of light in a magnetized
medium can be observed either in reflection (Kerr rotation)
or in transmission (Faraday rotation).29 Magneto-optical
(MO) phenomena provide physical information on electronic
and spin structure of materials30- 32 and have also found
applications in magnetic field sensors, optical isolators, data
storage, and fast optical modulation.29 Here, we demonstrate
a new surface plasmon enhanced MO effect, which we call
“SuPREMO”, in the form of enhanced optical Faraday
rotation in a composite nanostructure consisting of magnetic
maghemite nanoparticles coated with a plasmonic gold shell.

MO effects in most media are typically small. One
approach for enhancing MO effects is the integration of MO-
active media with photonic crystals, leading to enhanced
Faraday rotation at the photonic band gap edge.33,34 Another
theoretical proposal involves the use of metal films with
arrays of subwavelength holes filled with an MO-active
material.35,36 These structures support electromagnetic modes
displaying extraordinary optical transmission (EOT) along
with high Faraday rotation.

There has been recent interest in employing optical
resonances of noble metal nanostructures for enhancing MO
phenomena.37- 45 Hui and Stroud proposed on theoretical
grounds that media containing noble metal nanoparticles
should show enhanced Faraday rotation at optical frequencies
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crosses zero at 580 nm and displays a relatively small
positive Faraday rotation at longer wavelengths.

The comparatively large Faraday rotation of Fe3O4 nano-
particles as wavelengths approach the near-infrared is due
to intervalence charge-transfer transitions (0.6 eV) between
neighboring Fe3+ and Fe2+ ions in Fe3O4,61 which is a
semimetal.62 γ-Fe2O3, on the other hand, has an optical
absorption edge around 2 eV with only weak absorption in
the near-infrared region.61,62 We note that the difference in
the Faraday rotation spectra of Fe3O4 and γ-Fe2O3 nanopar-
ticles could be used to quantitatively follow changes in the
oxidation state of iron oxide. This information is typically
accessible only by more sophisticated techniques such as
X-ray absorption near-edge structure (XANES).62,63 In
particular, we measured the ratio of Faraday rotation at 630
nm to that at 530 nm to be - 0.34 for the γ-Fe2O3

nanoparticles, compared to - 2.63 for the Fe3O4 nanopar-
ticles.

The Faraday rotation spectra of uncoated and gold-coated
γ-Fe2O3 nanoparticles are compared in Figure 3b. The gold-
coated γ-Fe2O3 nanoparticles show an overall similar Faraday
rotation spectrum to the uncoated particles, with the excep-
tion of a sharp peak that appears around 530 nm. The
uncoated γ-Fe2O3 nanoparticles show only a weak shoulder
in this region; no well-resolved resonant feature can be
discerned. A simple “non-interacting” mixture of γ-Fe2O3

nanoparticles and colloidal gold nanospheres (green curve
in Figure 3b) with an absorbance matched to that of the gold-
coated γ-Fe2O3 nanoparticle sample also does not show the
sharp Faraday rotation peak at 530 nm. This demonstrates
that the rotation peak is not due merely to the presence of
the gold component, but rather is a consequence of the close
proximity of the gold and the γ-Fe2O3 in the composite
γ-Fe2O3 /gold nanostructure.

The Faraday rotation peak, observed at 530 nm for gold-
coated γ-Fe2O3 nanoparticles, is blue shifted and much
narrower compared to the gold plasmon absorption band,
establishing that this enhanced Faraday rotation is not simply
due to Faraday rotation associated with the plasmon reso-
nance.38,39 As detailed below, we propose that localized
surface plasmons excited in the nanostructure enhance the
strength of a Faraday rotation band that is intrinsic to the
γ-Fe2O3, but that is normally too weak to resolve.

On the basis of an estimated concentration of ∼1.7 mM
(in γ-Fe2O3 units) of the γ-Fe2O3 nanoparticles, we deduce
a Faraday rotation at 480 nm of - 2.4° T- 1 for a ∼1 µm
path length of γ-Fe2O3 nanoparticles. The particle concentra-
tion for the gold-coated iron oxide nanoparticles is not known
and therefore the rotation enhancement due to the addition
of the gold shell cannot be directly estimated on a per-particle
basis. However, by making a very rough approximation that
the Faraday rotation at 480 nm is not affected by the plasmon
resonance, we calculate an enhancement from the ratio of
the rotation at 530 nm (normalized to the rotation at 480
nm) for the gold-coated particles to that of the uncoated
particles. The enhancement factor estimated in this way is
1.75. The remarkable feature of the enhancement is the
appearance of a sharp and previously indiscernible Faraday

rotation peak, rather than the numerical value of the
enhancement over background.

The origin of the Faraday rotation peak at 530 nm can be
traced to the electronic structure of the γ-Fe2O3, specifically
the crystal field transitions of Fe3+ 3d5 electrons that dominate
the visible spectrum of iron oxides.59,60 The crystal field
transitions of the Fe3+ 3d electrons are in principle both spin-
and parity-forbidden.60 However, in ferrimagnets such as
γ-Fe2O3, these transitions become weakly allowed32,60 due
to the magnetic exchange coupling between Fe3+ centers
(next-nearest neighbors) on antiparallel sublattices. Hence
these transitions make a small contribution to the electronic
absorption and magneto-optical activity.

γ-Fe2O3 has a weakly dipole-allowed electronic absorption
in the 480- 550 nm region, assigned by Sherman et al. to a
“spin-flip” electron pair transition (EPT).60,64 The EPT
involves the simultaneous excitation of two Fe3+ centers on
neighboring antiparallel sublattices from their ground (6A1)
state to the first excited (4T1) state, without a net change in
spin.60 In agreement with previous studies, the bare γ-Fe2O3

nanoparticles in the present study show a weak shoulder in
the UV- vis absorption spectrum indicated by the black
arrow in Figure 2. The band edge of this absorption band is
obtained from a photoluminescence spectrum (Figure 4) of
the γ-Fe2O3 nanoparticles (Varian Cary Eclipse spectrofluo-
rimeter with a xenon lamp excitation source and 10 nm
excitation and emission slits). Under 475 nm excitation, the
γ-Fe2O3 nanoparticles show weak photoluminescence with
a peak at 530 nm, corresponding to the band-edge emission
of an electronic transition in γ-Fe2O3. A previous study on
γ-Fe2O3 nanoparticles found a similar band edge and
excitonic photoluminescence band around 520 nm.65 The
EPT, cited to be around 510 nm in γ-Fe2O3, is therefore the
most likely assignment of this transition.60 It is conceivable
that the transition in the nanocrystals of γ-Fe2O3 is somewhat
red shifted relative to the bulk due to surface effects.66

The weak absorption corresponding to the EPT in γ-Fe2O3

implies a weak oscillator strength for this transition relative
to the stronger electronic absorption transitions of γ-Fe2O3

at the UV end of the spectrum. Pershan and co-workers
previously pointed out that the strength of dipole-forbidden
crystal field transitions can be enhanced when electric-dipole
transitions that can be ad-mixed to relieve the parity
constraint lie close by in energy.42,67 The excitation of
localized surface plasmons in our nanostructure provides
strong dipoles spectrally and spatially close to the EPT. These
plasmon resonances could lead to an increase in the transition
strength of the EPT, allowing this transition to contribute to
the magneto-optical response. Tomita et al. recently sug-
gested the enhancement via strong near-field excitation of
dipole-forbidden crystal field transitions in yttrium- iron
garnet (YIG) thin films incorporating gold nanoparticles, to
explain observed anomalies in the measured Kerr rotation
spectrum in the region of the localized surface plasmon
resonance.42 In combination with the enhancement of the EPT
via intense electric fields, the likely presence of strong field
gradients in the plasmonic field can relieve the parity
constraint on these transitions.
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due to Faraday rotation associated with the plasmon reso-
nance.38,39 As detailed below, we propose that localized
surface plasmons excited in the nanostructure enhance the
strength of a Faraday rotation band that is intrinsic to the
γ-Fe2O3, but that is normally too weak to resolve.

On the basis of an estimated concentration of ∼1.7 mM
(in γ-Fe2O3 units) of the γ-Fe2O3 nanoparticles, we deduce
a Faraday rotation at 480 nm of - 2.4° T- 1 for a ∼1 µm
path length of γ-Fe2O3 nanoparticles. The particle concentra-
tion for the gold-coated iron oxide nanoparticles is not known
and therefore the rotation enhancement due to the addition
of the gold shell cannot be directly estimated on a per-particle
basis. However, by making a very rough approximation that
the Faraday rotation at 480 nm is not affected by the plasmon
resonance, we calculate an enhancement from the ratio of
the rotation at 530 nm (normalized to the rotation at 480
nm) for the gold-coated particles to that of the uncoated
particles. The enhancement factor estimated in this way is
1.75. The remarkable feature of the enhancement is the
appearance of a sharp and previously indiscernible Faraday

rotation peak, rather than the numerical value of the
enhancement over background.

The origin of the Faraday rotation peak at 530 nm can be
traced to the electronic structure of the γ-Fe2O3, specifically
the crystal field transitions of Fe3+ 3d5 electrons that dominate
the visible spectrum of iron oxides.59,60 The crystal field
transitions of the Fe3+ 3d electrons are in principle both spin-
and parity-forbidden.60 However, in ferrimagnets such as
γ-Fe2O3, these transitions become weakly allowed32,60 due
to the magnetic exchange coupling between Fe3+ centers
(next-nearest neighbors) on antiparallel sublattices. Hence
these transitions make a small contribution to the electronic
absorption and magneto-optical activity.

γ-Fe2O3 has a weakly dipole-allowed electronic absorption
in the 480- 550 nm region, assigned by Sherman et al. to a
“spin-flip” electron pair transition (EPT).60,64 The EPT
involves the simultaneous excitation of two Fe3+ centers on
neighboring antiparallel sublattices from their ground (6A1)
state to the first excited (4T1) state, without a net change in
spin.60 In agreement with previous studies, the bare γ-Fe2O3

nanoparticles in the present study show a weak shoulder in
the UV- vis absorption spectrum indicated by the black
arrow in Figure 2. The band edge of this absorption band is
obtained from a photoluminescence spectrum (Figure 4) of
the γ-Fe2O3 nanoparticles (Varian Cary Eclipse spectrofluo-
rimeter with a xenon lamp excitation source and 10 nm
excitation and emission slits). Under 475 nm excitation, the
γ-Fe2O3 nanoparticles show weak photoluminescence with
a peak at 530 nm, corresponding to the band-edge emission
of an electronic transition in γ-Fe2O3. A previous study on
γ-Fe2O3 nanoparticles found a similar band edge and
excitonic photoluminescence band around 520 nm.65 The
EPT, cited to be around 510 nm in γ-Fe2O3, is therefore the
most likely assignment of this transition.60 It is conceivable
that the transition in the nanocrystals of γ-Fe2O3 is somewhat
red shifted relative to the bulk due to surface effects.66

The weak absorption corresponding to the EPT in γ-Fe2O3

implies a weak oscillator strength for this transition relative
to the stronger electronic absorption transitions of γ-Fe2O3

at the UV end of the spectrum. Pershan and co-workers
previously pointed out that the strength of dipole-forbidden
crystal field transitions can be enhanced when electric-dipole
transitions that can be ad-mixed to relieve the parity
constraint lie close by in energy.42,67 The excitation of
localized surface plasmons in our nanostructure provides
strong dipoles spectrally and spatially close to the EPT. These
plasmon resonances could lead to an increase in the transition
strength of the EPT, allowing this transition to contribute to
the magneto-optical response. Tomita et al. recently sug-
gested the enhancement via strong near-field excitation of
dipole-forbidden crystal field transitions in yttrium- iron
garnet (YIG) thin films incorporating gold nanoparticles, to
explain observed anomalies in the measured Kerr rotation
spectrum in the region of the localized surface plasmon
resonance.42 In combination with the enhancement of the EPT
via intense electric fields, the likely presence of strong field
gradients in the plasmonic field can relieve the parity
constraint on these transitions.
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Figure 3 (b) Variation of color change when the thickness of gold onto the surface of the 

nanoparticles is increased.

gold-shell on maghemite (Fe2O3) cores (from Viktor Chikan’s lab)
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Figure 3 (a) UV-vis absorption spectrum of 3

rd
 batch synthesis of gold coated Fe2O3 

nanoparticles. The initial peak position is indicated by an arrow at 606 nm and shifts to 

532 nm with increasing thickness of gold shell.

Viktor Chikan’s core/shell particles
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Figure 2 (a) TEM image of Fe2O3 nanoparticles used in the experiment.

Viktor Chikan’s core particles



Figure 4b 

  
 

Figure 4 (b) Experimental Verdet constant of gold coated Fe2O3 nanoparticles only 

(normalized by the volume fraction of the particles) as a function of gold shell thickness 

Viktor Chikan’s core/shell particles, at λ=632 nm 
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I. PLASMONIC OSCILLATIONS

A. Bulk plasmons

About bulk plasmon excitations in a slab of perfect conductor. The electronic charge density

ne gets a shift thru distance z. Surface charge is

q = σA = −enzA, −→ σ = −enz (1)

Generates uniform electric field in the slab

E = − σ

ε0
(2)

The restoring force acts on all the volume charge in the slab and the mass involved is also

proportional

Q = −enV F = QE = (−enV )

(
− σ

ε0

)
M = mnV (3)

This gives an equation of motion

F = Mz̈ QE = Mz̈ (4)

− (enV )

(
− σ

ε0

)
= (mnV ) z̈ −

(
ne2

ε0

)
z = mz̈ (5)

z̈ = − ne2

mε0
z = −ω2

p z ωp =

√
ne2

mε0
(6)

B. Bulk plasmon in a solid conducting sphere, radius a

Suppose the whole electronic charge density shifts upward by a displacement z. Then the

surface charge distribution that is generated makes rings of charge. The layer thickness for

the charge varies as

l = z cos θ (7)

so the surface charge is

σ = −nez cos θ θ = azimuthal angle (8)
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Spherical conductor, 
plasma oscillations

z = electron gas displacement
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Do engineering physics to get electric field, with dq = σdA,

dEz = dE cos θ =
k dq

r2
cos θ =

1

4πε0

nez cos θ

a2

(
2πa2 sin θdθ

)
cos θ (9)

Get the result

Ez =
nez

2ε0

∫ +1

−1

cos2 θd(cos θ) =
nez

3ε0
(10)

Or get the net dipole moment of the particle

pz =

∫
σ(a cos θ)dA =

∫ +1

−1

(−nez cos θ) (a cos θ)
(
2πa2d(cos θ)

)
(11)

pz = −4πa3

3
(nez) %P = −(nez)ẑ (12)

Then for a sphere, one can use electrostatics and show that there is a uniform electric field

inside,

%E = −
%P

3ε0
=

nez

3ε0
ẑ (13)

This electric field acts on the whole charge of the sphere, so the equation of motion involves

QE = Mz̈ =⇒ (−enV )
nez

3ε0
= (mnV )z̈ (14)

Gives equation for the oscillations with an extra factor of 1/3:

z̈ = − ne2

3mε0
z = −ω2

sz ωs =

√
ne2

3mε0
=

ωp√
3

(15)

Spherical geometry reduces the plasma resonance frequency.

C. Solid dielectric sphere surrounded by dielectric, in applied field !E0

Consider more general problem, sphere of radius a, dielectric εb, surrounded by a medium of

dielectric εa. Solving Laplace’s equation (electrostatics) using the Rayleigh approximation,

λ$ a, leads to potential and electric field inside the sphere

Φinside = −
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)
E0r cos θ %Einside =

3εa

2εa + εb

%E0 (16)

The potential and electric field outside are

Φoutside = −
[
r −

(
εb − εa

2εa + εb

)
a3

r2

]
E0 cos θ %Eoutside = %E0 +

%p · %r
4πεar3

(17)
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Geometry affects the resonance frequency

bulk gold:

spherical gold:

n = 5.90 x 1028/m3

     ωp = 1.36 x 1016 rad/s

λp = 138.5 nm

n = 5.90 x 1028/m3

     ωs = 7.85 x 1015 rad/s

λs = 240 nm



Sphere in a host medium,
dielectric response

E0 = field in 
surroundings

εb

εa=host
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= uniform

where the induced effective net electric dipole moment of the sphere is

!p =

(
εb − εa

2εa + εb

) (
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)
(18)

Now the short explanation of the plasmon resonance for a sphere, is that there can be a large

induced dipole moment even in the absence of an applied field, if the denominator vanishes.

Using the Drude model for εb without damping,

εb(ω) = ε0

[
1− ω2

p

ω2

]
(19)

the resonance occurs when

2εa + εb = 0 or 2
εa

ε0
+ 1− ω2

p

ω2
= 0 (20)

which then leads to a resonance at ω = ωSP, defined by

ωSP =
ωp√

2 εa
εb

+ 1
(21)

If the exterior medium is vacuum, then

ωSP =
ωp√

3
≈ 0.577ωp (22)

If the exterior medium is water, with n =
√

εa/ε0 ≈ 1.33, then

ωSP =
ωp√

2(1.33)2 + 1
≈ 0.47ωp (23)

Part of the reduction from the bulk plasmon frequency comes geometry. The other part is

coming from matching the fields at the sphere boundary.

D. Oscillation of electron gas in DC !B, AC !E: Simple EP2 theory

Consider free electrons exposed to a circularly polarized EM wave moving in the +z direction,

with static magnetic field B along ẑ. Suppose waves aproach +z direction. Look at view of

waves coming out of page, in xy-plane.

4

induced electric dipole:



Resonance of a 
conducting sphere

Drude model,
free electron gas:
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3
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Then for a sphere, one can use electrostatics and show that there is a uniform electric field

inside,

%E = −
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3ε0
=

nez

3ε0
ẑ (13)

This electric field acts on the whole charge of the sphere, so the equation of motion involves

QE = Mz̈ =⇒ (−enV )
nez

3ε0
= (mnV )z̈ (14)

Gives equation for the oscillations with an extra factor of 1/3:
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=
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Spherical geometry reduces the plasma resonance frequency.
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where the induced effective net electric dipole moment of the sphere is

!p =

(
εb − εa

2εa + εb

) (
4πa3εa

!E0

)
(18)

Now the short explanation of the plasmon resonance for a sphere, is that there can be a large

induced dipole moment even in the absence of an applied field, if the denominator vanishes.

Using the Drude model for εb without damping,

εb(ω) = ε0

[
1− ω2

p

ω2

]
(19)

the resonance occurs when

2εa + εb = 0 or 2
εa

ε0
+ 1− ω2

p

ω2
= 0 (20)

which then leads to a resonance at ω = ωSP, defined by

ωSP =
ωp√

2 εa
εb

+ 1
(21)

If the exterior medium is vacuum, then

ωSP =
ωp√

3
≈ 0.577ωp (22)

If the exterior medium is water, with n =
√

εa/ε0 ≈ 1.33, then

ωSP =
ωp√

2(1.33)2 + 1
≈ 0.47ωp (23)

Part of the reduction from the bulk plasmon frequency comes geometry. The other part is

coming from matching the fields at the sphere boundary.

D. Oscillation of electron gas in DC !B, AC !E: Simple EP2 theory

Consider free electrons exposed to a circularly polarized EM wave moving in the +z direction,

with static magnetic field B along ẑ. Suppose waves aproach +z direction. Look at view of

waves coming out of page, in xy-plane.
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What about electron response and Faraday rotation? 

Use circular polarization, and magnetic field B along k=kn.

E E

LEFT circular polarization
CCW rotation

positive helicity  σ·n 

EM waves approaching you, the observer:

B

RIGHT circular polarization
CW rotation

negative helicity  σ·n 

k

This is sometimes expressed in a form

ε =

 εxx iεxy

−iεxy εxx

 (54)

Only two parameters define the matrix:

εxx = ε0 − (ne2/m) (ω2 − ω2
0 + iωγ)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(55)

εxy =
(ne2/m)(ωeBz/m)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(56)

Now when a wave propagates in the medium, we get the simple dispersion relation k =
√

εµω

only for a mode where k is a single number, i.e., determined by an eigenvalue of ε. Look at

its eigenspectrum.  εxx iεxy

−iεxy εxx

  Ex

Ey

 = λ

 Ex

Ey

 (57)

Then one finds easily the eigenspectrum

λ1 = εR = εxx + εxy û1 = ûR =
1√
2
(x̂− iŷ) Right circular (58)

λ2 = εL = εxx − εxy û2 = ûL =
1√
2
(x̂ + iŷ) Left circular (59)

Then a little algebra gives the eigenvalues separately as

εR = ε0 − ne2

D + C
εL = ε0 − ne2

D − C
(60)

or expressed as

εR = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ + ωωB

)
(61)

εL = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ − ωωB

)
(62)

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:

%E = Exx̂ + Eyŷ = ERûR + ELûL (63)

Can show the relation between these leads to relations

ER = 1√
2
(Ex + iEy)

EL = 1√
2
(Ex − iEy)

Ex = 1√
2
(ER + EL)

Ey = −i√
2
(ER − EL)

(64)
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(x̂ + iŷ) Left circular (59)

Then a little algebra gives the eigenvalues separately as

εR = ε0 − ne2

D + C
εL = ε0 − ne2

D − C
(60)

or expressed as

εR = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ + ωωB

)
(61)

εL = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ − ωωB

)
(62)

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:
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are not free; the restoring force is characterized by a resonant frequency ω0. The force on

an electron in the bulk of a medium gives dynamics:

"F = −mω2
0"r − e "E − e"̇r × "B −mγ"̇r = m"̈r (37)

Assume a harmonic time dependences,

for the applied electric field, "E = "E0e−iωt

and for the electron position, "r(t) = "r0e−iωt "r0 = x0x̂ + y0ŷ

The dynamics follows Newton’s law "F = m"̈r "̇r = −iω"r

The equation of motion becomes

−mω2
0"r − e "E − e(−iω)"r × "B −mγ(−iω)"r = −mω2"r (38)

It can be re-arranged into an operator-like equation

m
(
ω2 − ω2

0 + iωγ
)
"r − iωe "B × "r = e "E (39)

Even better is to arrange it into a matrix equation, using the x and y components as the

basis. Remember that "B = Bz ẑ, then

x̂ : m
(
ω2 − ω2

0 + iωγ
)
x + iωeBzy = eE0x (40)

ŷ : m
(
ω2 − ω2

0 + iωγ
)
y − iωeBzx = eE0y (41)

Then as a matrix equation it is more exciting m (ω2 − ω2
0 + iωγ) iωeBz

−iωeBz m (ω2 − ω2
0 + iωγ)

  x

y

 =

 eE0x

eE0y

 (42)

Or just as

M · "r = e "E (43)

The matrix has a simple basic structure like

M =

 D iC

−iC D

 D = m (ω2 − ω2
0 + iωγ)

C = ωeBz

(44)

The eigenvalues and eigenvectors are really simple,

λ1 = D + C = m
(
ω2 − ω2

0 + iωγ
)

+ ωeBz û1 =
1√
2

 1

−i

 (45)
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E0

E0

LEFT circular polarization 

B

RIGHT circular polarization 

k

Free electron response, at frequency ω:

FB
FE

FB

FE

Now in presence of the DC B out of page, ie, !B = Bz ẑ, there are both magnetic and electric

forces acting. The electron is dragged around in the same circular sense as the EM waves,

frequecy ω. It is forced to move at ω.

CCW rotation =⇒ left circular polarization (positive helicity). Net centripetal

force towards center causes centripetal acceleration:

Fnet = eE0 + evBz = mω2r v = ωr (24)

Solving for the orbital radius in response to applied waves amplitude E0,

r =
eE0

mω2 − eωBz
=

eE0

mω(ω − ωB)
ωB =

eBz

m
(25)

CW rotation =⇒ right circular polarization (negative helicity). Net centripetal

force towards center causes centripetal acceleration:

Fnet = eE0 − evBz = mω2r v = ωr (26)

Solving for the orbital radius in response to applied waves amplitude E0,

r =
eE0

mω2 + eωBz
=

eE0

mω(ω + ωB)
ωB =

eBz

m
(27)

The size of the orbit is larger for right circular polarization. This affects how the wave

propagates thru the medium by changing the effective dielectric constant. Get electric

dipole moment, then find epsilon.

!p = −e!r ε !E = !D = ε0
!E + !P !P = n!p (28)

So we get the effective diagonal permittivity for each circular polarization via

ε =
D0

E0
=

ε0E0 + P

E0
= ε0 +

P

E0
ε = ε0 + n

p

E0
(29)

So the resulting dielectric permittivities are expressed by a single formula

ε = ε0 − ne2

mω(ω ± ωB)
ε = ε0

[
1− ne2

mε0ω(ω ± ωB)

]
(30)

Usually this is re-expressed using the bulk plasma frequency,

ε = ε0

[
1− ω2

p

ω(ω ± ωB)

]
+ /− for right/left polarization (31)
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The size of the orbit is larger for right circular polarization. This affects how the wave

propagates thru the medium by changing the effective dielectric constant. Get electric

dipole moment, then find epsilon.

!p = −e!r ε !E = !D = ε0
!E + !P !P = n!p (28)

So we get the effective diagonal permittivity for each circular polarization via

ε =
D0

E0
=

ε0E0 + P

E0
= ε0 +

P

E0
ε = ε0 + n

p

E0
(29)

So the resulting dielectric permittivities are expressed by a single formula

ε = ε0 − ne2

mω(ω ± ωB)
ε = ε0

[
1− ne2

mε0ω(ω ± ωB)

]
(30)

Usually this is re-expressed using the bulk plasma frequency,
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[
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p

ω(ω ± ωB)

]
+ /− for right/left polarization (31)
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forces acting. The electron is dragged around in the same circular sense as the EM waves,

frequecy ω. It is forced to move at ω.

CCW rotation =⇒ left circular polarization (positive helicity). Net centripetal

force towards center causes centripetal acceleration:

Fnet = eE0 + evBz = mω2r v = ωr (24)

Solving for the orbital radius in response to applied waves amplitude E0,

r =
eE0

mω2 − eωBz
=

eE0

mω(ω − ωB)
ωB =

eBz

m
(25)

CW rotation =⇒ right circular polarization (negative helicity). Net centripetal

force towards center causes centripetal acceleration:

Fnet = eE0 − evBz = mω2r v = ωr (26)

Solving for the orbital radius in response to applied waves amplitude E0,

r =
eE0

mω2 + eωBz
=

eE0

mω(ω + ωB)
ωB =

eBz

m
(27)

The size of the orbit is larger for right circular polarization. This affects how the wave

propagates thru the medium by changing the effective dielectric constant. Get electric

dipole moment, then find epsilon.

!p = −e!r ε !E = !D = ε0
!E + !P !P = n!p (28)

So we get the effective diagonal permittivity for each circular polarization via

ε =
D0

E0
=

ε0E0 + P

E0
= ε0 +

P

E0
ε = ε0 + n

p

E0
(29)

So the resulting dielectric permittivities are expressed by a single formula

ε = ε0 − ne2

mω(ω ± ωB)
ε = ε0

[
1− ne2

mε0ω(ω ± ωB)

]
(30)

Usually this is re-expressed using the bulk plasma frequency,

ε = ε0

[
1− ω2

p

ω(ω ± ωB)

]
+ /− for right/left polarization (31)

5

Now in presence of the DC B out of page, ie, !B = Bz ẑ, there are both magnetic and electric
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cyclotron
frequency:

LEFT polarization produces 
larger orbit, 

larger induced electric dipole 
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force towards center causes centripetal acceleration:
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electric dipole:

Effect on electric permittivity ε
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Do engineering physics to get electric field, with dq = σdA,

dEz = dE cos θ =
k dq

r2
cos θ =

1

4πε0

nez cos θ

a2

(
2πa2 sin θdθ

)
cos θ (9)

Get the result

Ez =
nez

2ε0

∫ +1

−1

cos2 θd(cos θ) =
nez

3ε0
(10)

Or get the net dipole moment of the particle

pz =

∫
σ(a cos θ)dA =

∫ +1

−1

(−nez cos θ) (a cos θ)
(
2πa2d(cos θ)

)
(11)

pz = −4πa3

3
(nez) %P = −(nez)ẑ (12)

Then for a sphere, one can use electrostatics and show that there is a uniform electric field

inside,

%E = −
%P

3ε0
=

nez

3ε0
ẑ (13)

This electric field acts on the whole charge of the sphere, so the equation of motion involves

QE = Mz̈ =⇒ (−enV )
nez

3ε0
= (mnV )z̈ (14)

Gives equation for the oscillations with an extra factor of 1/3:

z̈ = − ne2

3mε0
z = −ω2

sz ωs =

√
ne2

3mε0
=

ωp√
3

(15)

Spherical geometry reduces the plasma resonance frequency.

C. Solid dielectric sphere surrounded by dielectric, in applied field !E0

Consider more general problem, sphere of radius a, dielectric εb, surrounded by a medium of

dielectric εa. Solving Laplace’s equation (electrostatics) using the Rayleigh approximation,

λ$ a, leads to potential and electric field inside the sphere

Φinside = −
(

3εa

2εa + εb

)
E0r cos θ %Einside =

3εa

2εa + εb

%E0 (16)

The potential and electric field outside are

Φoutside = −
[
r −

(
εb − εa

2εa + εb

)
a3

r2

]
E0 cos θ %Eoutside = %E0 +

%p · %r
4πεar3

(17)
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forces acting. The electron is dragged around in the same circular sense as the EM waves,

frequecy ω. It is forced to move at ω.

CCW rotation =⇒ left circular polarization (positive helicity). Net centripetal

force towards center causes centripetal acceleration:

Fnet = eE0 + evBz = mω2r v = ωr (24)

Solving for the orbital radius in response to applied waves amplitude E0,

r =
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=

eE0

mω(ω − ωB)
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r =
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=
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The size of the orbit is larger for right circular polarization. This affects how the wave

propagates thru the medium by changing the effective dielectric constant. Get electric

dipole moment, then find epsilon.

!p = −e!r ε !E = !D = ε0
!E + !P !P = n!p (28)

So we get the effective diagonal permittivity for each circular polarization via

ε =
D0

E0
=

ε0E0 + P

E0
= ε0 +

P

E0
ε = ε0 + n

p

E0
(29)

So the resulting dielectric permittivities are expressed by a single formula

ε = ε0 − ne2

mω(ω ± ωB)
ε = ε0

[
1− ne2

mε0ω(ω ± ωB)

]
(30)

Usually this is re-expressed using the bulk plasma frequency,

ε = ε0

[
1− ω2

p

ω(ω ± ωB)

]
+ /− for right/left polarization (31)
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+ for RIGHT circular
- for LEFT circular

The index of refraction n =
√

ε determines the wave speed as vph = c/n. Consider for

propagating waves, ω > ωp. Then the left circular polarization has the smaller ε and the

smaller index. Its phase velocity will be faster than for the right circular polarization. (also

it is faster than c, how to reconcile this?!)

But what is important in propation of the waves is not the speed, so much, as the wave

vector k. It is given by the dispersion formula with λ being the wavelength in the medium,

k =
2π

λ
=
√

εµ ω (32)

Consider magnetically neutral media with µ = µ0 and
√

ε0µ0 = 1/c,

k =
ω

c

√
1− ω2

p

ω(ω ± ωB)
(33)

So now there are different wavelengths for right/left circular polarization:

λR =
2π

kR
=

2π

ω
√

εRµ0
=

2πc

ω

[
1− ω2

p

ω(ω + ωB)

]−1/2

(34)

λL =
2π

kL
=

2π

ω
√

εLµ0
=

2πc

ω

[
1− ω2

p

ω(ω − ωB)

]−1/2

(35)

Assuming ωB > 0, the right polarization has a shorter wavelength and changes phase faster

over some distance:

λR < λL for ωB > 0 (36)

This is the basic physical reason why a Faraday rotation can take place. The two types of

waves get out of sync with distance, which leads to a rotation of the plane of polarization

for linearly polarized light.

E. More realistic: Oscillation of electron gas in applied fields

Now consider the basic explanation of oscillation of an electron gas in a DC magnetic field %B,

in combination with the AC electric field %E of a plane wave. Use the Rayleigh approximation

of long wavelength, larger than the particle. Suppose for simplicity the electrons are exposed

to forces from %E, %B (due only to the DC field), a restoring force and damping. The electrons

6
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of long wavelength, larger than the particle. Suppose for simplicity the electrons are exposed
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Do engineering physics to get electric field, with dq = σdA,

dEz = dE cos θ =
k dq
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Get the result
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Then for a sphere, one can use electrostatics and show that there is a uniform electric field

inside,
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=
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This electric field acts on the whole charge of the sphere, so the equation of motion involves

QE = Mz̈ =⇒ (−enV )
nez

3ε0
= (mnV )z̈ (14)

Gives equation for the oscillations with an extra factor of 1/3:

z̈ = − ne2

3mε0
z = −ω2

sz ωs =

√
ne2

3mε0
=

ωp√
3

(15)

Spherical geometry reduces the plasma resonance frequency.

C. Solid dielectric sphere surrounded by dielectric, in applied field !E0

Consider more general problem, sphere of radius a, dielectric εb, surrounded by a medium of

dielectric εa. Solving Laplace’s equation (electrostatics) using the Rayleigh approximation,

λ$ a, leads to potential and electric field inside the sphere

Φinside = −
(

3εa

2εa + εb

)
E0r cos θ %Einside =

3εa

2εa + εb

%E0 (16)

The potential and electric field outside are

Φoutside = −
[
r −

(
εb − εa

2εa + εb

)
a3

r2

]
E0 cos θ %Eoutside = %E0 +

%p · %r
4πεar3

(17)

3

The index of refraction n =
√

ε determines the wave speed as vph = c/n. Consider for

propagating waves, ω > ωp. Then the left circular polarization has the smaller ε and the

smaller index. Its phase velocity will be faster than for the right circular polarization. (also

it is faster than c, how to reconcile this?!)

But what is important in propation of the waves is not the speed, so much, as the wave

vector k. It is given by the dispersion formula with λ being the wavelength in the medium,

k =
2π

λ
=
√

εµ ω (32)

Consider magnetically neutral media with µ = µ0 and
√

ε0µ0 = 1/c,

k =
ω

c

√
1− ω2

p

ω(ω ± ωB)
(33)

So now there are different wavelengths for right/left circular polarization:

λR =
2π

kR
=

2π

ω
√

εRµ0
=

2πc

ω

[
1− ω2

p

ω(ω + ωB)

]−1/2

(34)

λL =
2π

kL
=

2π

ω
√

εLµ0
=

2πc

ω

[
1− ω2

p

ω(ω − ωB)

]−1/2

(35)

Assuming ωB > 0, the right polarization has a shorter wavelength and changes phase faster

over some distance:

λR < λL for ωB > 0 (36)

This is the basic physical reason why a Faraday rotation can take place. The two types of

waves get out of sync with distance, which leads to a rotation of the plane of polarization

for linearly polarized light.

E. More realistic: Oscillation of electron gas in applied fields

Now consider the basic explanation of oscillation of an electron gas in a DC magnetic field %B,

in combination with the AC electric field %E of a plane wave. Use the Rayleigh approximation

of long wavelength, larger than the particle. Suppose for simplicity the electrons are exposed

to forces from %E, %B (due only to the DC field), a restoring force and damping. The electrons
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Why is there Faraday rotation, and how large is it?
F. How Faraday rotation results

Start with a linear polarization along x̂, then propagate thru a distance z. Incident waves

are

!Einc = Eincx̂ = Einc
1√
2
(ûR + ûL) (65)

Then each component propagates with its respective wave vector.

!E(z) =
Einc√

2

[
ûReikRz + ûLeikLz

]
(66)

After using the definitions of R/L basis, we get

!E(z) = Einc

[
x̂ cos

(
∆k

2
z

)
+ ŷ sin

(
∆k

2
z

)]
eik̄z

k̄ ≡ 1
2(kR + kL)

∆k ≡ kR − kL

(67)

Then it’s obvious that the plane of polarization has rotated through the angle ∆φ around

the z-axis,

∆φ =
∆k

2
z (68)

In the case of small magnetic field, an expansion leads to approximate result, using the

relative permittivities with εxy $ εxx,

∆k =
ω

c

[√
εxx + εxy −

√
εxx − εxy

] ≈ ω

c

εxy√
εxx

∆φ =
ω

2c

εxy√
εxx

z (69)

More generally, this is a complex angle. the real part is the rotation of the polarization, the

imaginary part is the ellipticity.

θF = Real

{
ω

2c

εxy√
εxx

z

}
χF = Imag

{
ω

2c

εxy√
εxx

z

}
(70)

G. Spherical core/shell particle electrostatics

Consider a core/shell particle, has εc in the core to radius b, εb in the shell between radii b

and a, surrounded by medium εa for r > a. There is some uniform applied field strength

E0. The problem can be solved by ”induction” scheme or by solving boundary problem

for Laplace’s equation. Either way, we get the exterior field is that of an electric dipole of

strength !p given by

!p = 3εa

(
εb−εa

2εa+εb

)
+

(
b
a

)3
(

2εb+εa

2εa+εb

) (
εc−εb
2εb+εc

)
1 + 2

(
b
a

)3
(

εb−εa

2εa+εb

) (
εc−εb
2εb+εc

) (
4πa3

3

)
!E0 = αV !E0

b = core radius

a = shell outer radius

(71)
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Incident linear polarization, at a single frequency ω:
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2
z
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2
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After propagation through z:

This is sometimes expressed in a form

ε =

 εxx iεxy

−iεxy εxx

 (54)

Only two parameters define the matrix:

εxx = ε0 − (ne2/m) (ω2 − ω2
0 + iωγ)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(55)

εxy =
(ne2/m)(ωeBz/m)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(56)

Now when a wave propagates in the medium, we get the simple dispersion relation k =
√

εµω

only for a mode where k is a single number, i.e., determined by an eigenvalue of ε. Look at

its eigenspectrum.  εxx iεxy

−iεxy εxx

  Ex

Ey

 = λ

 Ex

Ey

 (57)

Then one finds easily the eigenspectrum

λ1 = εR = εxx + εxy û1 = ûR =
1√
2
(x̂− iŷ) Right circular (58)

λ2 = εL = εxx − εxy û2 = ûL =
1√
2
(x̂ + iŷ) Left circular (59)

Then a little algebra gives the eigenvalues separately as

εR = ε0 − ne2

D + C
εL = ε0 − ne2

D − C
(60)

or expressed as

εR = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ + ωωB

)
(61)

εL = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ − ωωB

)
(62)

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:

%E = Exx̂ + Eyŷ = ERûR + ELûL (63)

Can show the relation between these leads to relations

ER = 1√
2
(Ex + iEy)

EL = 1√
2
(Ex − iEy)

Ex = 1√
2
(ER + EL)

Ey = −i√
2
(ER − EL)

(64)
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2
z
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eik̄z
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Then it’s obvious that the plane of polarization has rotated through the angle ∆φ around

the z-axis,

∆φ =
∆k

2
z (68)

In the case of small magnetic field, an expansion leads to approximate result, using the

relative permittivities with εxy $ εxx,
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ω

c
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εxx + εxy −

√
εxx − εxy

] ≈ ω

c

εxy√
εxx
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εxy√
εxx
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More generally, this is a complex angle. the real part is the rotation of the polarization, the

imaginary part is the ellipticity.
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ω
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εxy√
εxx
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}
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G. Spherical core/shell particle electrostatics
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and a, surrounded by medium εa for r > a. There is some uniform applied field strength
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for Laplace’s equation. Either way, we get the exterior field is that of an electric dipole of

strength !p given by
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Faraday rotation:

k z



Faraday rotation: Connection to dielectric matrix ε
FB

FE
v

Fv

F0

An electron is affected by several forces:

are not free; the restoring force is characterized by a resonant frequency ω0. The force on

an electron in the bulk of a medium gives dynamics:

"F = −mω2
0"r − e "E − e"̇r × "B −mγ"̇r = m"̈r (37)

Assume a harmonic time dependences,

for the applied electric field, "E = "E0e−iωt

and for the electron position, "r(t) = "r0e−iωt "r0 = x0x̂ + y0ŷ

The dynamics follows Newton’s law "F = m"̈r "̇r = −iω"r

The equation of motion becomes

−mω2
0"r − e "E − e(−iω)"r × "B −mγ(−iω)"r = −mω2"r (38)

It can be re-arranged into an operator-like equation

m
(
ω2 − ω2

0 + iωγ
)
"r − iωe "B × "r = e "E (39)

Even better is to arrange it into a matrix equation, using the x and y components as the

basis. Remember that "B = Bz ẑ, then

x̂ : m
(
ω2 − ω2

0 + iωγ
)
x + iωeBzy = eE0x (40)

ŷ : m
(
ω2 − ω2

0 + iωγ
)
y − iωeBzx = eE0y (41)

Then as a matrix equation it is more exciting m (ω2 − ω2
0 + iωγ) iωeBz

−iωeBz m (ω2 − ω2
0 + iωγ)

  x

y

 =

 eE0x

eE0y

 (42)

Or just as

M · "r = e "E (43)

The matrix has a simple basic structure like

M =

 D iC

−iC D

 D = m (ω2 − ω2
0 + iωγ)

C = ωeBz

(44)

The eigenvalues and eigenvectors are really simple,

λ1 = D + C = m
(
ω2 − ω2

0 + iωγ
)

+ ωeBz û1 =
1√
2

 1

−i

 (45)

7

binding electric Lorentz damping

harmonic motion:
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ŷ : m
(
ω2 − ω2

0 + iωγ
)
y − iωeBzx = eE0y (41)

Then as a matrix equation it is more exciting m (ω2 − ω2
0 + iωγ) iωeBz

−iωeBz m (ω2 − ω2
0 + iωγ)

  x

y

 =

 eE0x

eE0y

 (42)

Or just as

M · "r = e "E (43)

The matrix has a simple basic structure like

M =

 D iC

−iC D

 D = m (ω2 − ω2
0 + iωγ)

C = ωeBz

(44)

The eigenvalues and eigenvectors are really simple,

λ1 = D + C = m
(
ω2 − ω2

0 + iωγ
)

+ ωeBz û1 =
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form is:

λ2 = D − C = m
(
ω2 − ω2

0 + iωγ
)− ωeBz û2 =

1√
2

 1

i

 (46)

So the response for (x, y) will be simple, if the applied field is composed from these eigen-

vectors, which relate direct to the circular polarizations. So it is best to suppose one of

the circular polarizations. An incident wave with right circular polarization has $E rotating

clockwise when viewed looking towards the source.

CW rotation = right circular. Corresponds to the first eigenvector:

$E = Real

{
ER

(x̂− iŷ)√
2

e−iωt

}
= ER

1√
2
(x̂ cos ωt− ŷ sin ωt) (47)

CCW rotation = left circular. Corresponds to the second eigenvector:

$E = Real

{
EL

(x̂ + iŷ)√
2

e−iωt

}
= EL

1√
2
(x̂ cos ωt + ŷ sin ωt) (48)

Get the repsonse more easily by simply inverting the matrix M . It’s inverse is simple because

it is a 2× 2.

M−1 =
1

D2 − C2

 D −iC

iC D

 (49)

Then the solution for the position response is simple,

$r =

 x

y

 = M−1

 eE0x

eE0y

 =
1

D2 − C2

 D −iC

iC D

  eE0x

eE0y

 (50)

Then the induced electric dipole moment per unit volume is

$P = −ne$r =
−ne2

D2 − C2

 D −iC

iC D

  E0x

E0y

 (51)

Now this implies a matrix for the permitivity, from the relation

ε $E = ε0
$E + $P (52)

Therefore the dielectric permittivity matrix is

ε = ε0

 1 0

0 1

− ne2

D2 − C2

 D −iC

iC D

 (53)
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(x̂ cos ωt + ŷ sin ωt) (48)

Get the repsonse more easily by simply inverting the matrix M . It’s inverse is simple because

it is a 2× 2.

M−1 =
1

D2 − C2

 D −iC

iC D

 (49)

Then the solution for the position response is simple,

$r =

 x

y

 = M−1

 eE0x

eE0y

 =
1

D2 − C2

 D −iC

iC D

  eE0x

eE0y

 (50)

Then the induced electric dipole moment per unit volume is

$P = −ne$r =
−ne2

D2 − C2

 D −iC

iC D

  E0x

E0y

 (51)

Now this implies a matrix for the permitivity, from the relation

ε $E = ε0
$E + $P (52)

Therefore the dielectric permittivity matrix is

ε = ε0

 1 0

0 1

− ne2

D2 − C2

 D −iC

iC D

 (53)

8

λ2 = D − C = m
(
ω2 − ω2

0 + iωγ
)− ωeBz û2 =
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Result for electric permittivity ε
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1√
2

 1

i

 (46)

So the response for (x, y) will be simple, if the applied field is composed from these eigen-

vectors, which relate direct to the circular polarizations. So it is best to suppose one of

the circular polarizations. An incident wave with right circular polarization has $E rotating

clockwise when viewed looking towards the source.

CW rotation = right circular. Corresponds to the first eigenvector:

$E = Real

{
ER

(x̂− iŷ)√
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Then magic happens andThis is sometimes expressed in a form

ε =

 εxx iεxy

−iεxy εxx

 (54)

Only two parameters define the matrix:

εxx = ε0 − (ne2/m) (ω2 − ω2
0 + iωγ)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(55)

εxy =
(ne2/m)(ωeBz/m)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(56)

Now when a wave propagates in the medium, we get the simple dispersion relation k =
√

εµω

only for a mode where k is a single number, i.e., determined by an eigenvalue of ε. Look at

its eigenspectrum.  εxx iεxy

−iεxy εxx

  Ex

Ey

 = λ

 Ex

Ey

 (57)

Then one finds easily the eigenspectrum

λ1 = εR = εxx + εxy û1 = ûR =
1√
2
(x̂− iŷ) Right circular (58)

λ2 = εL = εxx − εxy û2 = ûL =
1√
2
(x̂ + iŷ) Left circular (59)

Then a little algebra gives the eigenvalues separately as

εR = ε0 − ne2

D + C
εL = ε0 − ne2

D − C
(60)

or expressed as

εR = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ + ωωB

)
(61)

εL = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ − ωωB

)
(62)

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:

%E = Exx̂ + Eyŷ = ERûR + ELûL (63)

Can show the relation between these leads to relations

ER = 1√
2
(Ex + iEy)

EL = 1√
2
(Ex − iEy)

Ex = 1√
2
(ER + EL)

Ey = −i√
2
(ER − EL)

(64)
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What’s important:  The eigenstates of ε are the 
RIGHT/LEFT circular polarization states! 

This is sometimes expressed in a form

ε =

 εxx iεxy

−iεxy εxx

 (54)

Only two parameters define the matrix:
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0 + iωγ)2 − (ωeBz/m)2

(55)

εxy =
(ne2/m)(ωeBz/m)

(ω2 − ω2
0 + iωγ)2 − (ωeBz/m)2

(56)

Now when a wave propagates in the medium, we get the simple dispersion relation k =
√

εµω

only for a mode where k is a single number, i.e., determined by an eigenvalue of ε. Look at

its eigenspectrum.  εxx iεxy

−iεxy εxx

  Ex

Ey

 = λ

 Ex

Ey

 (57)

Then one finds easily the eigenspectrum

λ1 = εR = εxx + εxy û1 = ûR =
1√
2
(x̂− iŷ) Right circular (58)

λ2 = εL = εxx − εxy û2 = ûL =
1√
2
(x̂ + iŷ) Left circular (59)

Then a little algebra gives the eigenvalues separately as

εR = ε0 − ne2

D + C
εL = ε0 − ne2

D − C
(60)

or expressed as

εR = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ + ωωB

)
(61)

εL = ε0

(
1− ω2

p

ω2 − ω2
0 + iωγ − ωωB

)
(62)

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:

%E = Exx̂ + Eyŷ = ERûR + ELûL (63)

Can show the relation between these leads to relations

ER = 1√
2
(Ex + iEy)

EL = 1√
2
(Ex − iEy)

Ex = 1√
2
(ER + EL)

Ey = −i√
2
(ER − EL)

(64)
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(x̂− iŷ) Right circular (58)

λ2 = εL = εxx − εxy û2 = ûL =
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Faraday rotation:

Δϕ=½(kR-kL)z
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The index of refraction n =
√

ε determines the wave speed as vph = c/n. Consider for

propagating waves, ω > ωp. Then the left circular polarization has the smaller ε and the

smaller index. Its phase velocity will be faster than for the right circular polarization. (also

it is faster than c, how to reconcile this?!)

But what is important in propation of the waves is not the speed, so much, as the wave

vector k. It is given by the dispersion formula with λ being the wavelength in the medium,

k =
2π

λ
=
√

εµ ω (32)

This means a separate equation for each polarization:

kR =
√

εRµ0 ω kL =
√

εLµ0 ω (33)

Consider magnetically neutral media with µ = µ0 and
√

ε0µ0 = 1/c,

kR/L =
ω

c

√
1− ω2

p

ω(ω ± ωB)
(34)

So now there are different wavelengths for right/left circular polarization:

λR =
2π

kR
=

2π

ω
√

εRµ0
=

2πc

ω

[
1− ω2

p

ω(ω + ωB)

]−1/2

(35)

λL =
2π

kL
=

2π

ω
√

εLµ0
=

2πc

ω

[
1− ω2

p

ω(ω − ωB)

]−1/2

(36)

Assuming ωB > 0, the right polarization has a shorter wavelength and changes phase faster

over some distance:

λR < λL for ωB > 0 (37)

This is the basic physical reason why a Faraday rotation can take place. The two types of

waves get out of sync with distance, which leads to a rotation of the plane of polarization

for linearly polarized light.

E. More realistic: Oscillation of electron gas in applied fields

Now consider the basic explanation of oscillation of an electron gas in a DC magnetic field %B,

in combination with the AC electric field %E of a plane wave. Use the Rayleigh approximation
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for the propagating eigenstates:

⇒

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:

"E = Exx̂ + Eyŷ = ERûR + ELûL (65)

Can show the relation between these leads to relations

ER = 1√
2
(Ex + iEy)

EL = 1√
2
(Ex − iEy)

Ex = 1√
2
(ER + EL)

Ey = −i√
2
(ER − EL)

(66)

F. How Faraday rotation results

Start with a linear polarization along x̂, then propagate thru a distance z. Incident waves

are

"Einc = Eincx̂ = Einc
1√
2
(ûR + ûL) (67)

Then each component propagates with its respective wave vector.

"E(z) =
Einc√

2

[
ûReikRz + ûLeikLz

]
(68)

After using the definitions of R/L basis, we get

"E(z) = Einc

[
x̂ cos

(
∆k

2
z

)
+ ŷ sin

(
∆k

2
z

)]
eik̄z

k̄ ≡ 1
2(kR + kL)

∆k ≡ kR − kL

(69)

Then it’s obvious that the plane of polarization has rotated through the angle ∆φ around

the z-axis,

∆φ =
∆k

2
z (70)

In the case of small magnetic field, an expansion leads to approximate result, using the

relative permittivities with εxy $ εxx,

∆k =
ω

c

[√
εxx + εxy −

√
εxx − εxy

] ≈ ω

c

εxy√
εxx

∆φ =
ω

2c

εxy√
εxx

z (71)

More generally, this is a complex angle. the real part is the rotation of the polarization, the

imaginary part is the ellipticity.

θF = Real

{
ω

2c

εxy√
εxx

z

}
χF = Imag

{
ω

2c

εxy√
εxx

z

}
(72)
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⇒

This could be complex.  

These are the basic form of ε that determines propagation of the wave eigenstates. We can

rename as Right and Left, then a transverse electric field can be expressed Cartesian or R/L

form:
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Can show the relation between these leads to relations

ER = 1√
2
(Ex + iEy)

EL = 1√
2
(Ex − iEy)

Ex = 1√
2
(ER + EL)

Ey = −i√
2
(ER − EL)

(66)

F. How Faraday rotation results

Start with a linear polarization along x̂, then propagate thru a distance z. Incident waves

are

"Einc = Eincx̂ = Einc
1√
2
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Faraday rotation at  ωB≪ω
cyclotron frequency at B=1.0 T

ωB = eB/m = 1.8x1011 rad/s
optical frequency at λ=600 nm  
ω = 2πc/λ=3.1x1015 rad/s  ≪

Then the Faraday rotation is proportional to B:

θF = υBz

υ = Verdet constant



Figure 4b 

  
 

Figure 4 (b) Experimental Verdet constant of gold coated Fe2O3 nanoparticles only 

(normalized by the volume fraction of the particles) as a function of gold shell thickness 

Viktor Chikan’s core/shell particles, at λ=632 nm 
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core/shell NP electrostatics:

Fe2O3

Au

εc

r=b

r=a

εb
E0 

B

G. Spherical core/shell particle electrostatics

Consider a core/shell particle, has εc in the core to radius b, εb in the shell between radii b

and a, surrounded by medium εa for r > a. There is some uniform applied field strength

E0. The problem can be solved by ”induction” scheme or by solving boundary problem

for Laplace’s equation. Either way, we get the exterior field is that of an electric dipole of

strength "p given by

"p = 3εa

(
εb−εa

2εa+εb

)
+

(
b
a

)3
(

2εb+εa

2εa+εb

) (
εc−εb
2εb+εc

)
1 + 2

(
b
a

)3
(

εb−εa

2εa+εb

) (
εc−εb
2εb+εc

) (
4πa3

3

)
"E0 = αV "E0

b = core radius

a = shell outer radius

(73)

The dipole moment per unit volume is related to a polarizability α, defined thru

"P =
"p

4πa3/3
= α"E0 (74)

The solution also gives a uniform field in the core, and a varying field in the shell.

"Ecore =

(
3εa

2εa + εb

) (
3εb

2εb+εc

)
1 + 2

(
b
a

)3
(

εb−εa

2εa+εb

) (
εc−εb
2εb+εc

) "E0 (75)

The averaged field in the shell is

〈 "Eshell〉 =

(
3εa

2εa + εb

)
1

1 + 2
(

b
a

)3
(

εb−εa

2εa+εb

) (
εc−εb
2εb+εc

) "E0 (76)

The core is weighted by its volume Vcore ∝ b3 and the shell is weighted by its volume

Vshell ∝ a3 − b3,

〈 "Eparticle〉 =
Vcore〈 "Ecore〉+ Vshell〈 "Eshell〉

Vparticle
(77)

so the averaged internal field is found as

〈 "Ein〉 =

(
3εa

2εa + εb

) 1 +
(

b
a

)3
(

εb−εc

2εb+εc

)
1 + 2

(
b
a

)3
(

εb−εa

2εa+εb

) (
εc−εb
2εb+εc

) "E0 ≡ S̃ "E0 (78)

So we know the response of a particle to an applied field.

II. EFFECTIVE MEDIUM THEORIES

Need to see what is the net dielectric permittivity of core/shell NPs in a host medium. This

is an averaging procedure, can be done different ways, depending on the number density of
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simple averaging (Maxwell Garnet theory):

But scattering is from a collection of NPs.  
Use some kind of effective medium theory.
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II. EFFECTIVE MEDIUM THEORIES

Need to see what is the net dielectric permittivity of core/shell NPs in a host medium. This

is an averaging procedure, can be done different ways, depending on the number density of

NPs in the host. Actually, the theories usually assume a volume density f of nanoparticles,

i.e.

f =
NVNP

Vsys
(79)

where N is the total numbers of NPs, VNP is the volume of one particle, and Vsys is the

system volume, which has a fraction (1 − f) occupied by the host medium.

A. Averaging the Electric field in a composite medium

The averaged electric field and electric polarization in a medium can be used to define its

average dielectric permittivity 〈ε〉. Weight the average field inside a NP by its volume, and

same for the medium outside the NP:

〈 "E〉 = (1 − f) "E0 + f〈 "Ein〉 (80)

Here "E0 is the averaged field in the medium, surrounding an NP. We assume small volume

fraction of NPs. Use the above result for averaged inside field.

〈 "E〉 = (1 − f) "E0 + fS̃ "E0 =
[
(1 − f) + fS̃

]
"E0 (81)

Now express the displacement using the polarization, which is due to the background host

medium, and due to the volume fraction of NPs, with "P = α"E0, we get

〈 "D〉 = 〈ε〉〈 "E〉 = εa〈 "E〉 + f "P = εa〈 "E〉 + fα"E0 (82)

But we need the averaged field on RHS, so use

"E0 =
〈 "E〉[

(1 − f) + fS̃
] (83)

Then

〈 "D〉 = 〈ε〉〈 "E〉 =

[
εa +

fα

1 − f + fS̃

]
〈 "E〉 (84)
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The averaged permittivity of the composite medium is

〈εeff〉 = εa +
fαs

1 − f + fFs
(85)

(One could argue for a factor of (1 − f) on εa, but it would be a small correction.)

∗ Electronic address: wysin@phys.ksu.edu; URL: http://www.phys.ksu.edu/personal/wysin
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fit: bound + free electrons

17 nm gold  particles in water, 
absorption over 1 cm distance

g
0
 = 2.35 µm

-1
 = 4.43 x 10

15
 rad/s

#
p
 = 7.27 µm

-1
 = 1.37 x 10

16
 rad/s

#
0
 = 2.05 µm

-1
 = 3.86 x 10

15
 rad/s   (488 nm)

$
p
  = 0.146 µm

-1
 = 2.75 x 10

14
 rad/s   (3.64 fs)

$
0
  = 0.33 µm

-1
 = 6.22 x 10

14
 rad/s   (1.61 fs)

free electrons:

bound electrons:

gold parameters

 - 3 - 

this model gives a reasonable description of that resonance, it should be able to suggest how the 

absorption and Faraday rotation vary with gold shell modifications.  

Describing the maghemite core [

! 

" -Fe2O3] is complex, because it has several different 

absorption resonances.  There is at least one strong resonant absorption in the ultraviolet that is 

responsible for Faraday rotation.
8
 Its tail produces the leading contribution to the absorption 

! 

"(#)  in the visible.  The absorption spectrum of 

! 

" -Fe2O3 particles over 350 nm < lambda < 700 

nm, not including the weaker absorption band from 460 nm -- 560 nm, was fit by using the above 

expression (5), see Figure 2.   For a volume fraction f of spherical particles of dielectric constant 

! 

" in water (the host medium, with 

! 

"
a
=1.777), the absorption is 

! 

" =
#

c
Im $

eff{ }, where 

! 

"
eff

 

results from the Maxwell Garnett effective medium theory
9
  (MG equation), 

 

! 

"
eff
#"a

"
eff

+ 2"a
= f

" #"a

" + 2"a
.         (7) 

 

Assuming only bound electrons (

! 

" p = 0) we found that 

! 

g
0
=5.20 x 10

15
 rad/s, 

! 

"
0
=5.06 x 10

15
 

rad/s (

! 

"
0

=372 nm), and 

! 

"
0
=2.89 x 10

15
 rad/s (

! 

"
0

=1 #
0
=0.347 fs) describes the underlying 

absorption curve of Fe2O3 (Figure 2).
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The other parameters needed to describe the maghemite core are its domain saturation 

magnetization M = 414 kA/m, and its anisotropy constant K = 4700 J/m
3
.
8
   The cores have 

average radius b=4.85 nm, volume 

! 

V = 4"b3 /3 = 478 nm
3
, and magnetic moment 

! 

m = MV , and 

are super-paramagnetic, as can be seen by the ratio of magnetic anisotropy energy 

! 

KV = 14 meV 

to the thermal energy 

! 

k
B
T  = 26 meV (at 300 K).  Their average magnetic moment in an 

externally applied magnetic induction 

! 

B follows the classical Langevin function, 
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3
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For the permanent magnetization in these single domain particles, the internal magnetic field is 

! 

H
in

= " 1

3
M  and the internal magnetic induction is 

! 

Bin = µ0(H in + M) = 2

3
µ0M . The component 

along z is 
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B
in,z

= B
in
cos" = 2

3
µ
0
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3
= 2

9
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2
k
B
T( )B . This internal magnetic induction is 

amplified by the factor 

! 

2

9
µ
0
VM

2
k
B
T( ) = 5.5, which helps to enhance the Faraday rotation 

compared to that in a non-magnetized medium. 

For pure particles of either gold or maghemite in a water solution, the MG theory (7) can 

be applied to calculate the Faraday rotation.  Figure 3 indicates how the plasmon peak in 

! 

"(#)  

for gold is accompanied by a similar peak in the Verdet function,

! 

"(#).  Further, the plasmon 

width increases for smaller particles, due to the enhanced surface scattering term. 

 

Core/shell particle's permittivity 

! 

"
s
 

The individual particles are assumed to be spherical, with a maghemite core (

! 

"
c
) of radius 

! 

b, 

surrounded by a shell of gold (

! 

"
b
) to outer radius 

! 

a , much less than the wavelength of light being 

considered.  The particle is immersed in a medium (water) with dielectric constant 

! 

"
a
.  From 

their separate frequency-dependent permittivities, we require first the effective permittivity of 

fit εeff via absorption: assumption for the gold:
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A resonance in the absorption will correspond to a similar resonance effect in the Faraday 

rotation.  We take the approach of finding an accurate description of the dielectric functions 

! 

"(#) , based on experimental measurements of absorption in solutions of nanoparticles.  Once 

! 

"(#)  is known separately for both the core and the shell materials, the resulting Faraday rotation 

of core/shell nanoparticles in solution can be calculated as described below 

The frequency-dependent relative dielectric permittivity of a medium, due to bound 

electrons at a single resonance 

! 

"
0
 combined with free electrons of plasma frequency 

! 

" p , is taken 

as
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For the bound electrons, 

! 

"
0
 is the binding frequency, 

! 

g
0
 is the oscillator strength, and 

! 

"
0
 is the 

damping frequency. The last term in (5) represents the free electrons, with plasma frequency 

! 

" p  

and damping frequency 

! 

" p . The applied magnetic field (along z) responsible for the Faraday 

rotation enters into both terms, in the cyclotron frequency, 

! 

"
B

= eB
z
m
*
. The helicity is 

! 

" = +1/#1 for left/right circular polarization.  That term, due to the Lorentz force, leads to 

Faraday rotation, applying expression (5) separately for both polarizations. 

For the gold shell, we assume that the free electron plasma is the main contribution to

! 

", 

although a contribution from bound electrons 
6
 must also be included to move the plasmon 

frequency of gold nanoparticles into the visible.  For the free electrons, we use the bulk value 

plasma frequency, 

! 

" p
=1.37 x 10

16
 rad/s (

! 

"=138.5 nm), and a scattering time 

! 

" =9.1 fs, effective 

mass 

! 

m
*

= m
e
, and damping frequency that includes scattering from the shell surfaces, 

7
 

according to  
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" p =
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#
+
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d
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The Fermi velocity is 

! 

v
F
=1.40 x 10

6
 m/s and d is the thickness of the gold shell. For the bound 

electrons, we do not use a limiting dielectric constant like 

! 

"# $10 , as in Ref. 7 to get the plasmon 

resonance for spherical gold particles near 530 nm. Instead, the average effect of the bound 

electrons is represented approximately by a single resonance term proportional to 

! 

g
0

2  as in Eq. 

(5). This makes the inclusion of Faraday effects rather simple, compared to a more correct 

treatment of the interband transitions. The parameters have been fitted from the absorption 

spectrum of a solution of 17 nm diameter (average) gold nanoparticles in water (similar to that 

explained for 

! 

" -Fe2O3 parameter fitting in the following paragraph).  For description of the 

absorption, especially near the plasmon resonance, the fitting parameters are found to be 
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 rad/s (scattering 

time 
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0

=1/#
0

=1.61 fs).  This fit is shown in Figure 1; the fit is close to the experimental data 

around the plasmon resonance, and somewhat overestimates the absorption at longer 

wavelengths, but the model should not be taken seriously in the ultraviolet.  This, however, is not 

a problem, because it is the change in the frequency of the plasmon resonance with changing 

gold shell thickness that is responsible for many of the interesting plasmonic effects.  As long as 
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Fits the plasmon resonance 
peak near 530 nm



Gold shell has extra scattering.  This increases 
the effective damping of free electrons.
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A resonance in the absorption will correspond to a similar resonance effect in the Faraday 

rotation.  We take the approach of finding an accurate description of the dielectric functions 

! 

"(#) , based on experimental measurements of absorption in solutions of nanoparticles.  Once 

! 

"(#)  is known separately for both the core and the shell materials, the resulting Faraday rotation 

of core/shell nanoparticles in solution can be calculated as described below 
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For the bound electrons, 
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 is the binding frequency, 
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 is the oscillator strength, and 
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 is the 

damping frequency. The last term in (5) represents the free electrons, with plasma frequency 
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" p . The applied magnetic field (along z) responsible for the Faraday 

rotation enters into both terms, in the cyclotron frequency, 
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. The helicity is 
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" = +1/#1 for left/right circular polarization.  That term, due to the Lorentz force, leads to 

Faraday rotation, applying expression (5) separately for both polarizations. 

For the gold shell, we assume that the free electron plasma is the main contribution to

! 
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although a contribution from bound electrons 
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 must also be included to move the plasmon 

frequency of gold nanoparticles into the visible.  For the free electrons, we use the bulk value 

plasma frequency, 
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=1.37 x 10

16
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"=138.5 nm), and a scattering time 
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mass 
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according to  
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The Fermi velocity is 
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v
F
=1.40 x 10

6
 m/s and d is the thickness of the gold shell. For the bound 

electrons, we do not use a limiting dielectric constant like 

! 

"# $10 , as in Ref. 7 to get the plasmon 

resonance for spherical gold particles near 530 nm. Instead, the average effect of the bound 

electrons is represented approximately by a single resonance term proportional to 

! 

g
0

2  as in Eq. 

(5). This makes the inclusion of Faraday effects rather simple, compared to a more correct 

treatment of the interband transitions. The parameters have been fitted from the absorption 

spectrum of a solution of 17 nm diameter (average) gold nanoparticles in water (similar to that 

explained for 

! 

" -Fe2O3 parameter fitting in the following paragraph).  For description of the 

absorption, especially near the plasmon resonance, the fitting parameters are found to be 

! 

g
0

= 4.43"10
15

 rad/s , 
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0

= 3.86 #10
15

 rad/s (

! 
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0

=488 nm), and 

! 

"
0

= 6.22 #10
15

 rad/s (scattering 

time 

! 

"
0

=1/#
0

=1.61 fs).  This fit is shown in Figure 1; the fit is close to the experimental data 

around the plasmon resonance, and somewhat overestimates the absorption at longer 

wavelengths, but the model should not be taken seriously in the ultraviolet.  This, however, is not 

a problem, because it is the change in the frequency of the plasmon resonance with changing 

gold shell thickness that is responsible for many of the interesting plasmonic effects.  As long as 
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A resonance in the absorption will correspond to a similar resonance effect in the Faraday 

rotation.  We take the approach of finding an accurate description of the dielectric functions 

! 

"(#) , based on experimental measurements of absorption in solutions of nanoparticles.  Once 

! 

"(#)  is known separately for both the core and the shell materials, the resulting Faraday rotation 

of core/shell nanoparticles in solution can be calculated as described below 

The frequency-dependent relative dielectric permittivity of a medium, due to bound 
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For the bound electrons, 

! 

"
0
 is the binding frequency, 

! 

g
0
 is the oscillator strength, and 

! 

"
0
 is the 

damping frequency. The last term in (5) represents the free electrons, with plasma frequency 

! 

" p  

and damping frequency 

! 

" p . The applied magnetic field (along z) responsible for the Faraday 

rotation enters into both terms, in the cyclotron frequency, 

! 

"
B

= eB
z
m
*
. The helicity is 

! 

" = +1/#1 for left/right circular polarization.  That term, due to the Lorentz force, leads to 

Faraday rotation, applying expression (5) separately for both polarizations. 

For the gold shell, we assume that the free electron plasma is the main contribution to

! 

", 

although a contribution from bound electrons 
6
 must also be included to move the plasmon 

frequency of gold nanoparticles into the visible.  For the free electrons, we use the bulk value 

plasma frequency, 
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" p
=1.37 x 10

16
 rad/s (

! 

"=138.5 nm), and a scattering time 

! 

" =9.1 fs, effective 

mass 
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, and damping frequency that includes scattering from the shell surfaces, 
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according to  
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The Fermi velocity is 

! 

v
F
=1.40 x 10

6
 m/s and d is the thickness of the gold shell. For the bound 

electrons, we do not use a limiting dielectric constant like 

! 

"# $10 , as in Ref. 7 to get the plasmon 

resonance for spherical gold particles near 530 nm. Instead, the average effect of the bound 

electrons is represented approximately by a single resonance term proportional to 

! 

g
0

2  as in Eq. 

(5). This makes the inclusion of Faraday effects rather simple, compared to a more correct 

treatment of the interband transitions. The parameters have been fitted from the absorption 

spectrum of a solution of 17 nm diameter (average) gold nanoparticles in water (similar to that 

explained for 

! 

" -Fe2O3 parameter fitting in the following paragraph).  For description of the 

absorption, especially near the plasmon resonance, the fitting parameters are found to be 

! 

g
0

= 4.43"10
15

 rad/s , 

! 

"
0

= 3.86 #10
15

 rad/s (

! 

"
0

=488 nm), and 

! 

"
0

= 6.22 #10
15

 rad/s (scattering 

time 

! 

"
0

=1/#
0

=1.61 fs).  This fit is shown in Figure 1; the fit is close to the experimental data 

around the plasmon resonance, and somewhat overestimates the absorption at longer 

wavelengths, but the model should not be taken seriously in the ultraviolet.  This, however, is not 

a problem, because it is the change in the frequency of the plasmon resonance with changing 

gold shell thickness that is responsible for many of the interesting plasmonic effects.  As long as 
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A resonance in the absorption will correspond to a similar resonance effect in the Faraday 

rotation.  We take the approach of finding an accurate description of the dielectric functions 

! 

"(#) , based on experimental measurements of absorption in solutions of nanoparticles.  Once 

! 

"(#)  is known separately for both the core and the shell materials, the resulting Faraday rotation 

of core/shell nanoparticles in solution can be calculated as described below 

The frequency-dependent relative dielectric permittivity of a medium, due to bound 

electrons at a single resonance 
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For the bound electrons, 

! 

"
0
 is the binding frequency, 

! 

g
0
 is the oscillator strength, and 

! 

"
0
 is the 

damping frequency. The last term in (5) represents the free electrons, with plasma frequency 

! 

" p  

and damping frequency 

! 

" p . The applied magnetic field (along z) responsible for the Faraday 

rotation enters into both terms, in the cyclotron frequency, 

! 

"
B

= eB
z
m
*
. The helicity is 

! 

" = +1/#1 for left/right circular polarization.  That term, due to the Lorentz force, leads to 

Faraday rotation, applying expression (5) separately for both polarizations. 

For the gold shell, we assume that the free electron plasma is the main contribution to

! 

", 

although a contribution from bound electrons 
6
 must also be included to move the plasmon 

frequency of gold nanoparticles into the visible.  For the free electrons, we use the bulk value 

plasma frequency, 
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" p
=1.37 x 10

16
 rad/s (

! 

"=138.5 nm), and a scattering time 

! 

" =9.1 fs, effective 

mass 

! 
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e
, and damping frequency that includes scattering from the shell surfaces, 
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according to  
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The Fermi velocity is 

! 

v
F
=1.40 x 10

6
 m/s and d is the thickness of the gold shell. For the bound 

electrons, we do not use a limiting dielectric constant like 

! 

"# $10 , as in Ref. 7 to get the plasmon 

resonance for spherical gold particles near 530 nm. Instead, the average effect of the bound 

electrons is represented approximately by a single resonance term proportional to 

! 

g
0

2  as in Eq. 

(5). This makes the inclusion of Faraday effects rather simple, compared to a more correct 

treatment of the interband transitions. The parameters have been fitted from the absorption 

spectrum of a solution of 17 nm diameter (average) gold nanoparticles in water (similar to that 

explained for 

! 

" -Fe2O3 parameter fitting in the following paragraph).  For description of the 

absorption, especially near the plasmon resonance, the fitting parameters are found to be 

! 
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=1.61 fs).  This fit is shown in Figure 1; the fit is close to the experimental data 

around the plasmon resonance, and somewhat overestimates the absorption at longer 

wavelengths, but the model should not be taken seriously in the ultraviolet.  This, however, is not 

a problem, because it is the change in the frequency of the plasmon resonance with changing 

gold shell thickness that is responsible for many of the interesting plasmonic effects.  As long as 
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this model gives a reasonable description of that resonance, it should be able to suggest how the 

absorption and Faraday rotation vary with gold shell modifications.  

Describing the maghemite core [

! 

" -Fe2O3] is complex, because it has several different 

absorption resonances.  There is at least one strong resonant absorption in the ultraviolet that is 

responsible for Faraday rotation.
8
 Its tail produces the leading contribution to the absorption 

! 

"(#)  in the visible.  The absorption spectrum of 

! 

" -Fe2O3 particles over 350 nm < lambda < 700 

nm, not including the weaker absorption band from 460 nm -- 560 nm, was fit by using the above 

expression (5), see Figure 2.   For a volume fraction f of spherical particles of dielectric constant 

! 

" in water (the host medium, with 

! 

"
a
=1.777), the absorption is 

! 

" =
#
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eff{ }, where 
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results from the Maxwell Garnett effective medium theory
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  (MG equation), 
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Assuming only bound electrons (

! 

" p = 0) we found that 
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=2.89 x 10
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0
=0.347 fs) describes the underlying 

absorption curve of Fe2O3 (Figure 2).
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The other parameters needed to describe the maghemite core are its domain saturation 

magnetization M = 414 kA/m, and its anisotropy constant K = 4700 J/m
3
.
8
   The cores have 

average radius b=4.85 nm, volume 

! 

V = 4"b3 /3 = 478 nm
3
, and magnetic moment 

! 

m = MV , and 

are super-paramagnetic, as can be seen by the ratio of magnetic anisotropy energy 

! 

KV = 14 meV 

to the thermal energy 

! 

k
B
T  = 26 meV (at 300 K).  Their average magnetic moment in an 

externally applied magnetic induction 
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B follows the classical Langevin function, 
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For the permanent magnetization in these single domain particles, the internal magnetic field is 
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in
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amplified by the factor 
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T( ) = 5.5, which helps to enhance the Faraday rotation 

compared to that in a non-magnetized medium. 

For pure particles of either gold or maghemite in a water solution, the MG theory (7) can 

be applied to calculate the Faraday rotation.  Figure 3 indicates how the plasmon peak in 
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"(#)  

for gold is accompanied by a similar peak in the Verdet function,

! 

"(#).  Further, the plasmon 
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A resonance in the absorption will correspond to a similar resonance effect in the Faraday 

rotation.  We take the approach of finding an accurate description of the dielectric functions 

! 

"(#) , based on experimental measurements of absorption in solutions of nanoparticles.  Once 

! 

"(#)  is known separately for both the core and the shell materials, the resulting Faraday rotation 

of core/shell nanoparticles in solution can be calculated as described below 

The frequency-dependent relative dielectric permittivity of a medium, due to bound 
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For the bound electrons, 
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" = +1/#1 for left/right circular polarization.  That term, due to the Lorentz force, leads to 

Faraday rotation, applying expression (5) separately for both polarizations. 

For the gold shell, we assume that the free electron plasma is the main contribution to
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although a contribution from bound electrons 
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 must also be included to move the plasmon 

frequency of gold nanoparticles into the visible.  For the free electrons, we use the bulk value 
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The Fermi velocity is 
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v
F
=1.40 x 10

6
 m/s and d is the thickness of the gold shell. For the bound 

electrons, we do not use a limiting dielectric constant like 
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"# $10 , as in Ref. 7 to get the plasmon 

resonance for spherical gold particles near 530 nm. Instead, the average effect of the bound 

electrons is represented approximately by a single resonance term proportional to 

! 
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2  as in Eq. 

(5). This makes the inclusion of Faraday effects rather simple, compared to a more correct 

treatment of the interband transitions. The parameters have been fitted from the absorption 

spectrum of a solution of 17 nm diameter (average) gold nanoparticles in water (similar to that 

explained for 
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" -Fe2O3 parameter fitting in the following paragraph).  For description of the 
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The superparamagnetic Fe2O3 core:

saturation magnetization M=414 kA/m

uniaxial anisotropy KA=4700 J/m3

radius            b = 4.85 nm
volume  V = 4πb3/3 = 478 nm3

anisotropy energy  KAV=14 meV

(thermal energy  kBT=26 meV)

magnetic moment 
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internal field  Bin ≈ 5.5Bexternal
(cyclotron freq.  ωB= eBin/me)
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one spherical particle, 

! 

"
s
.  This can be found equivalently either by (1) finding the effective 

polarization and average internal electric field using electrostatics, or (2) applying Maxwell 

Garnett theory
9, 10

 to a single particle, taking the Fe2O3 core as an inclusion of internal volume 

fraction 

! 

fc = b a( )
3

 within the gold shell "host" medium.  The composite particle's dielectric 

function 

! 

"
s
 is found to be 

 

! 

"s = "b
1+ 2#c

1$#c

, #c = fc
"c $"b
"c + 2"b

, fc = b a( )
3

.  (9, Solution of MG equation.) 
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Effective Composite Medium 

These particles are dispersed into water with a volume fraction 

! 

fs = nsVs , where 

! 

n
s
" 3.5 #10

18
/m

3  is their number density and 

! 

V
s

= 4"a3 /3 is their volume that depends on the 

outer radius of the gold shell. We consider two different ways to determine the effective 

permittivity of the solution: (1) Maxwell Garnett effective medium theory, assuming that the 

spheres are well separated and scatter light independently; (2) Bruggeman theory,
9, 10

 supposing 

that the spheres combine into clusters composed from hundreds to thousands of the core/shell 

particles in a closed packed arrangement with a volume fraction 

! 

f
Br
" 0.74  . 

In the MG theory the effective permittivity of the composite can be expressed as  

! 

"eff = "a + f s# s 1$ fs(1$ Fs)[ ]    or as    

! 

"
eff

= "a
1+ 2#s

1$#s
, #s = f s

"s $"a
"s + 2"a

. (11) 

 

This expression is evaluated separately for left/right polarizations, from which the Faraday 

rotation can be found using (2) and (3).  Some results for absorption and Faraday rotation due to 

core/shell particles are shown in Figure 4.  The important aspect of the results is that the plasmon 

resonance starts at long wavelengths for very thin gold shells, and moves towards about 520 nm 

with increasing shell thickness. Note that the volume fraction 

! 

fs  increases with thickness of the 

gold shell, as the number density of particles was nearly constant in experiments.  

To include the clustering effects via the Bruggeman theory, we first find the effective 

permittivity of a cluster, 

! 

"
cl

, composed from volume fraction 

! 

f
Br

 of core/shell spheres 

surrounded by volume fraction 

! 

1" f
Br

 of water host (

! 

"
a
).  The cluster effective permittivity 

! 

"
cl

 

solves the Bruggeman equation,   

 

! 

f
Br

"s #"cl

"s + 2"cl
+ (1# f

Br
)
"a #"cl

"a + 2"cl
= 0 ,      (12) 
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Figure 4b 

  
 

Figure 4 (b) Experimental Verdet constant of gold coated Fe2O3 nanoparticles only 

(normalized by the volume fraction of the particles) as a function of gold shell thickness 

Viktor’s core/shell particles, at λ=632 nm 



Summary

• A model for ε(ω) was developed to calculate Faraday 
rotation in core/shell NPs.

• The gold shell has a plasmonic resonance that depends 
on thickness.

• Absorption and Faraday rotation are driven by this 
resonance.

• Clustering of particles needs to be accounted for.


