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ABSTRACT

We preaeﬁt analytical and numerical simulation studies on the two
dimensional-XY classical ferromagnetic model with weak in-plane magnetic field
(the reduced field is h = 0.05 and it is applied along the x-axis). The
structure and dynamics of vortex spin configurations are considered. The
simulation data show a strong crossover at Tc = I.UJSE; the data for T < Tc
are well interpreted by one- and two- spin wave processes with an additional
anomalous central peak at Exx{E.m] structure function which is suggested as a
contribution from domain walls. The data for T > Tc can be interpreted by
vortex gas theory. The in-plane data can be compared to recent experiments
performed on EGClz-intercﬂlated into graphite. The Szzfa,m} shows unusual
behaviour as T is increased to T > 1.2.152 indicating that another phase
trangition or crossover, related to the out-of-plane spin component, can

occur.
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I -~ INTRODUCTION

Classical two dimensional (2D) easy plane (XY) magnetism has attracted a
great deal of attention in recent years. As for other low dimensional systems,
the interplay between extended fluctuations and large amplitude, localized
excitations has been found to be quite rich. Easy plane symmetry in 2D spin
systems isparticularly appealing because it admits vortex-like spin
configurations and the possibility of a topological vortex-antivortex unbinding
transition, as proposed by Kosterlitz and Thouless [1973]. Improvements in
materials preparation have made available a considerable number of quasi-2D
ferro and antiferromagnetic materials and, consequently, the amount of
experimental information on spin dynamics has also increased considerably,
making possible a comparison with detailed theoretical predictions existing
for both the fluctuations and excitations in this model. Many of the materials
that have been classified as quasi-2D easy plane include anisotropies that
can break thé‘rﬂtatiunal symmetry of the XY plane. José et al. [1977], using
a renormalization group te:hnique; have studied the phase diagram of the 2D-
planar mode (i.e., spins restricted to the XY-plane) with in- plane symmetry
breaking of degree p. Their conclusion is that the Kosterlitz-Thouless (KT)
phase is suppressed if p < 4. We emphasize, however, that a dynamical
description of 2D-XY models must include the out-of-plane spin component S .
The inclusion of Sz can lead to additional features beyond by those predicted
by Jose et al, [1977] including ancmalies in Sz currelgtiuns (Kawabata and
Bishop [1982]).

In this work, we will concentrate on ZD=-XY ferromagnets with an
external magnetic field applied along one of the in-plane axes. A magnetic
field corresponds to a symmetry breaking of degree p = 1. At low temperatures,
the spins are almost completely aligned along the field and a standard
spin wave treatment to two spin waves processes can be used (Section II) to
explain the main features concerning the dynamical behaviour in this low
temperature range. As the temperature is raised, nonlinear excitations such
as vortices and domain walls have to be incorporated in the description.

In Section III, we study, analytically and numerically, the effects due to

the applied field on the shape and dynamics of vortices; formation of
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domain walls is also discussed there. Combined Monte Carlo (MC)-Molecular
Dynamics (MD) numerical simulation studies covering a wide temperature

range are presented in Section IV. A transition is observed at Tc = l.D.IS2

and we discuss separately data obtained at temperatures lower than Tc

(Section IV.A) and above Tc (Section IV.B). A comparison between our

results and some recent inelastic neutron experiments performed on intercalated
graphite compounds {Euﬂl2 = GIC) with an in-plane magnetiec field is also

included in Section IV, The final conclusions are given in Section V.
II - Spin-Wave Theory

The 2D-XY model in & magnetic field can be described by the classical

Hamiltonian

. o y vy _ x
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where the summation is taken over the sites (m,n) of a 2D=-square lattice,

J is the exchange parameter, 5% are the components of the classical spin
vector & = (s* .Sy ,Sz ) and

m,n m,n’ m,n’ m,n
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is the sum over the nearest neighbors of each site (m,n}.
For the pure XY model (in the absence of a field), it is well known
that, besides spin-waves, one should consider vortices as essential excitations

leading to a topological phase transition at Tc [Kosterlitz and Thouless, 1973].



It has been shown [Nelson and Fisher (1977), Coté and Griffin (1986)] that,
for temperatures below Tc, the effect of (bound) vortices can be described
as a renormalization of the spin-wave excitations. In the presence of a
magnetic field, the possibility of 2n-domain walls being formed represents
and additionalcomplication.However, the energy of a domain wall is proportional
to its length (and, also, to the field strength) and it is not very probable
that many domain walls will be created at low temperature. If the applied
field is sufficiently strong, and at low temperatures (above the 3D ordering
temperature but below Tc)' we can assume that the spins will be aligned nearly
parallel to the field so that a spin-wave theory can be used. In this
section, we will ignore both vortices and domain walls, and their interactions
with .spin-waves, assuming that for this temperature range such effects will
result in a renormalization of the spin-wave energy. We will find that the
principal features concerning dynamical spin-correlations may be understood
within the spin-wave approximation provided that one includes two-spin-waves
processes.

We choose x as the quantization direction and use the Holstein-Primakoff

transformation to express the spin operators as boson operators:

After a straightforward calculation [for details, see e.g. Heilmann et al.
(1981)], spin-correlation functions can be obtained in. the harmonic
approximation context. For the spatial Fourier transform of yy- and zz-

correlation functions, we obtain
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where “ﬁ = (e 1) is the uwsual boson occupation number, mﬁ is the
spin-wave energy
wy = IS (4 + W% [4 + h - cos(q)) - cos(a 1'%, (11.4)

h = guBHI{JE} is the reduced magnetic field, and ﬂ; . p% are given by

(11.5)
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It is easily seen from (II.3), that a sharp one-spin wave peak at w = % ma
is expected in S“u{ﬁ,m}, [@ = y,z]. We can also compute the integrated

intensities I°(§) = | dw §°® (q,w) and obtain the ratio
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In obtaining (II.6), we took the classical limit of (II.3). We will show in
section IV that these predictions for Suﬂ{ﬁ.m] [a = yv,z] agree well with our
numerical simulation data.

For the Sxxiﬁ,t] function we have
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is due to the spin fluctuations. The first term in (II.7) gives a Bragg peak
while the second term, defined by (II1.8), is the contribution due to two-spin
wave processes: the first term in (I1.8) corresponds to the simultaneous
creation and annihilation of spin waves while the second term represents the

two-spin wave annihilation (nﬁ Ry ) and creation [(1 + ny 1 + s )] processes—
1 2 1 2

we shall focus only on the creation process. Taking the classical limit and

the temporal Fourier transform of each term in (II.B), we have
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for the two-spin wave creation where ﬁl and 32 are restricted by the conditions
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The D and S subseripts stand for difference and sum processes as suggested
by (II.11). We can expect a very complicated spectrum because there is a

singularity in Gxx[ﬁ,m } (a = D,S) for each critical point of w *w
a 1] ﬁ"'?i' 'ﬁ'r
as a function of §r. In order to obtain some information about the spectrum,

we consider small values for the wavevector § so that an expansion can be

made: and we obtain, approximately.
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(In order to obtain (I1.12) and (II.13), we restricted the 4§ vector to lie
along the x-axis). Even with all these apﬁrcximaticns, it is not an easy

task to perform the sums indicated in (II1.9) and (II.10) but for § = 0 we

can say that the difference and sum peaks will occur at Wy = 0 and

wg = EJSEh2 + 6h + ﬁ]IIZ; for § # 0, we expect these frequency peaks to change
(approximately) linearly with [ﬁi. These predictions will be checked by the

numerical simulation data (Section IV).
II1I - Vortices in a Magnetic Field

The spin vector % can be described by two continuously varying fields,
e(¥,t) and ¢(¥,t), as

§(%,t) = Slcos B(¥,t) cos ®(¥,t), cos B(F,t) sind(F,t), sinO(F,e)} (111.1)



and, then, the continuum equations of motion corresponding to Hamiltonian
(II.1) can be obtained. A general solution to these equations of motion is
not available. A nontrivial static (8 = 0) solution can be obtained by

solving the sine-Gordon equation

v‘?m = h sin ¢, (I11.2)

In the absence of field, this equation gives the well known planar vortices
of the XY model

@ =0 , ¢ =¢+c (h = 0) (I11.3)

where ¢ is a polar coordinate, and ¢ is an arbitrary constant. An analytic
solution to (II1.2), for h # 0, was given by Hudak [1982] but it corresponds
to a vortex with vorticicty 4 which is not expected to play an important
role in dynamics [Amit et al. (1980)]. In order to study the modifications
to the static vortex shape [specified by (I11.3)] due to a weak applied

field, we will adopt an appreoximate perturbative treatment inserting

¢ =3 <+ 0 e=8 +8 ; y (I11.4)
o o 1

1 ]

and

dm-v.We , G=-v. V0 (111.5)

into the equations of motion. Here, ¢n and € are given by (IL1.3) and v is

the vortex velocity.



This procedure is straightforward and was previously used by us [Gouvéa
et al. (1989 )] to study the distortion suffered by a vortex due to the
movement induced by interactions with other vortices in the system. After

¢, and v, we obtain

linearizing in Bl’ 1

& = A sin (¢ - a) (r + =) (I11.6a)
4J5 T

where o is the angle between v and the x-axis, and
h 2
$, = - §£ sin (¢ + c) . (I11.6b)

where h is considered as a small parameter (in our numerical simulations,
Section IV, we used h = 0.05)., The asymptotic solution for 8ys eq. (I1I.6a)
is asymmetric about v — the out-of-plane component has different signs on
each side of the line along which the vortex moves. This result is identical
to the one found for 2D-XY systems [Gouvéa et al, (1989a)]), The deformation
of the in-plane field, ¢l

field, i.e., the effect of the magnetic field is to create a region (domain)

., forces the spins into the direction of the magnetic

where all spins lie along the + x direction; as the size of this region increases.

the vortex is pushed to one of the system's boundaries. It should be noted

1
pure XY-model, this constant has no role and is often ignored. However, when

that ¢. and, also, the direction of motion depend on the constant c. In the

a certain in-plane magnetic field is applied, the value of ¢ directly
influences the.ﬂtatic force %H due to interactions with the field and,
consequently, the direction of motion a. These conclusions can also be drawn
from Huber's [1982] expression for iH'

At low temperature, we are concerned with vortex-antivortex pairs
[Kosterlitz and Thouless (1973)]. In the absence of a field, the energy of
a pair does not depend on the value of the constant ¢ (III.3) of each one
of the pair's components. A field breaks the rotational symmetry of the

XY-plane and then different pairs (corresponding to different c's) will have
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different energies; one can easily estimate which combinations correspond
to low or high energy simply by trying to put together different vortices
and antivortices (neglecting any distortions) and by counting the number
of spins (in fact, spin components) aligned parallel or antiparallel to
the field. The interesting conclusion is that the configurations that lead
to minimal energy have lower energy for h # 0 than for h = 0. This means that
these energetically favoured pairs will be mnfe tightly bound and will
require more energy to unbind.
Consequently, we can expect that, for h = 0, vortex-antivortex pairs will
unbind at a temperature higher than Tep (= ﬂ.EJSzl.

In order te check the approximate analytical results given by (III.6)
and to get information on how the discreteness of the lattice
affects the vortex motion, simulation studies were performed on a 40 X 40
square lattice. The dia:reté equations of motion used in the numerical

simulations are

31.- 31 x?‘i aegix (3, x ), (III.7)
*® —— ¥ - 2 -
Fo=23 ] ((s3+m & +sT & +55 80 (111.8)
e |

The sum on j only runs over the nearest neighbors of i. The parameter e is
the strength of a Landau-Gilbert damping, which was included to damp out
spin waves generated from non-ideal initial conditions. A single planar
(6 = 0) vortex (with ¢ = - w/2) centered in a unit cell of the lattice
was used as the initial condition. The equations for the xyz-spin components
were integrated using a fourth order Runge-Kutta scheme with cime step
0.04 (in time units h/JS). Neumann boundary conditions and a damping
strength € = 0.1 were used.

Figures [l(a,b)] show the instantaneocus configuration at times t = 6.0
and 15.0. From figure (la) we see that the vortex moves along the - y

direction with the out-of-plane spin components having different signs
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{white and black arrows) on each side of the y axis. It can also be seen
that the distortion of the in-plane spin component agrees, qualitatively,
with (III.6b). Figure (lb), at a later time, shows a large domain with
all spins aligned along the field; the vortex is being pushed to the
opposite boundary as this domain increases., The single vortex, which,
initially (t = 0), extended itself through the whole system, is now
restricted to a much smaller region. The structure seen in figure (1b) can
be described as a vortex whose radius corresponds to a few lattice
constants ( ~ 4a) bound to a Zr-domain wall, This 2r-domain wall consists
of two m-domain walls separated by (approximately) the vortex diameter, and
its length L is the distance that separates the vortex from the boundary to which
it is moving. The energy of a domain wall increases linearly with L, and
in an infinitely extended system, the energy of the structure shown in
figure (1b) would diverge as L + = so that we should not expect to find
these structures at low temperatures. However, vortex-antivortex pairs
bound by domain walls have finite energy and can be nucleated giving rise
to a linear interaction potential between vortices.

Entropy arguments [Lee and Grinstein (1985), Einhorn et al (1980),
Tang and Haﬁanti (1986)] can be used to determine the phase diagram.
Basically, we should concentrate on two characteristical temperatures TI and TE'
The free energy related to domain walls invelves a competition between
two terms with the same functional dependence since both the energy and
the entropy of a domain wall depend linearly on L. Tl corresponds to the
temperature at which these terms give the same contribution; for
T > Tl' the walls connecting vortex-antivortex pairs become flexible (i.e.,
transverse fluctuations become soft). Similar arguments [Kosterlitz and
Thouless (1973)] lead to the identification of T2 as the temperature at
which vortex-antivortex pairs unbind. Then, if Tl < TE' We can expect two
transitions. For 'I'1 < T« TZ' the interaction potential between vortices
recovers its logarithmic dependence on L (as for the 2D-XY model) and we
have a KT phase; the second transition, at T = Tz. will correspond to the
KT transition. If T1 > T2 we will have just one transition and both

phenomena, walls becoming flexible and vortex-antivortex unbinding, will

oceur for T > Tl' For the XY-model with symmetry breaking p = 1



12,

(corresponding to an in-plane magnetic field), the work of Joseé et al. [1987] predicts

a single crossover temperature {TlﬂTz}: in amagnetic field there is no standard
phase transition. However, those theoretical results were obtained for the planar-
model and could be modified when out-of-plane spin components are included — for
instance, an additional anomaly has beennoted in the specifie heat [Tobochnik and

Chester (1979) ] and static correlation of Sz[KawabEtaandBishup{lEBEJ].

IV = Numerical Simulation and Analysis

A combined Monte-Carle (MC)-Molecular Dynamics (MD) method
[Kawabata et al (1986)) was used to determine the dynamic structure
fuunginns S(q,w). The simulations were performed on a 100 X 100 square
lattice for model (II.1), with periodic boundary conditions. First, an MC
algorithm of lDa steps was used to produce three equilibrium configurations
at =8 desired temperature. These configurations are then used as initial
conditions for an energy-conserving MD simulation of the equations of
motion. The time integration was performed with a standard fourth order
Runge-Kutta method, with a fixed time step of 0.04 {JS]“I. The dynamic
structure function Sunia,m) (¢ = x,y,z) was then determined from the
Fourier transform of the space-and time-correlation functions,
{Su{ﬂ,ﬂjsa{;,t}?_ The structure functions resulting from the three initial
conditions for a given temperature were then averaged. A smoothing
algorithm on S{E.m]. as in Mertens et al. [1987], was also employed to
reduce the effects of a finite time series and statistical fluectuations.

Simulations were performed for a mapgnetic field corresponding to
h = 0.05 and for temperatures in the range.ﬂ.?Sz <T< 1.3 JSZ (in
intervals AT = G.IJSZ}. For simplicity, we will discuss separately two
sets of data: A) low-temperature data (D.?JEE €T U.QJSE}, and B)
£ £T =< I.JJSE).

high-temperature data (1.0J5

A - Low Temperature Data

Here, the yy-and zz-correlation functiens show a simple structure
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(figure 2) consisting of a well defined finite frequency peak at Wy which
softens (i.e., Nﬁ + 0) and becomes broader as T increases. This peak can
be identified as the one-spin wave peak predicted in (II.3a) and (II.3b).
Figure [3] shows the spin wave dispersion obtained from our simulation data
at T = D.?JSE; it compares reasonably well to theory (continuocus curve)
especially since renormalization effects due to temperature are not
included in (II.4). Evaluating (I1.6) at q = 0 for h = 0.05, we obtain
R{E = 0) =~ 78. This number corresponds to a calculation made at T = 0
and shows that Iy{ﬂ}>> Iz{ﬁ}: the difference between y and 2z intensities
+

decreases as q Increases. Using the simulation data, we can estimate
R{a = ) at different temperatures obtaining R{a = 0) = 51, 44, and 32
for T = D.?JEZ. G.BJSE. and U.EJSE. respectively. The value obtained for
T = 0. ?JS2 is comparable to the calculated one (T = 0). The decreasing
of R(q} as T increases is mainly due to the decreasing of I [q}, since
1 fq} remains roughly constant. s

The B:agg peak predicted in (II.7) is clearly seen in Sxx(a = 0,uw).
For small g, Sxx{;’m} exhibits a central peak and two finite frequency
peaks[fipgure 4] that can be interpreted as due to the sum and difference
Processes disﬁussed in Section II. Equation (I1I.11) assures that, for
E z 0, the central peak (discussed below) cannot be produced by difference
processes. Figure [5] displays the data obtained for the frequencies of
spin wave difference-(lower data) and sum—(upper data) peaks at
T = ﬂ.?JSE; they fit reasonably well to straight lines, as predicted by
(I1.12) and (II.13). Notice that the straight lines shown in figure [5]
ewtrapolate to the expected point at a = 0, namely, “n‘a =0) = 0, and
S(q = D) = 0.72JS (from figure 3 we obtain a gap of 0.36JS at
T =0,7J8 }¢

It is tempting to suppose that the central peak observed in S {q w)
{(for small q} is related to the presence of domain walls (Section III}
Simulation studies performed for 2D-XY models with a 4-fold in-plane symmetry
breaking (implying 7/2 domain walls) also show a central peak at low
temperatures [Gouvéa et al. (1989b)] and, indeed, scattering from domain
walls can be established as a mechanism to produce central peaks. Unfortunately,

an analysis of our simulation data — focusing on the central peak behaviour
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(low T) — and its comparison to a theory including the effects mentioned

above (spin waves, domain walls, vortices and their interactions) cannot

be done because such theory, to our knowledge, is not available in the
literature at this time. Consequently, we cannot be conclusive in asserting
that domain walls are responsible for the observed central peak. Cur
simulation data show that this central peak, or better, its width ?x and
intensity Ix’ suffer a change of behaviour for T > 1.0J5". For

ﬂ.?JSz =T =< G.EJSE. the widcth decreases while the intensity increasesas T
increases; i.e., the central peak becomes narrower and higher as T + I.DJSZ. The
intensity reaches a local maximum around T==1.DJ52.Fnr T> I.GJSE, the widch does
not vary appreciably (we observe a slight increasing) with T and the intensity Ix

decreases as T increases. Regarding the S}’?(E'm} and S _ {E,m] correlation
2

functions, a central peak starts developing in the vicinity of T = 1,0J5°. We
interpret these changes as due to gz atrongcrussnvernccuringabaut'fcn l.UJSZ.
>

B - High-Temperature Data

As discussed in Section III, we can expect that thiscrossover will be
related to such complex phenomena as vortex-antivortex pair unbinding and
domain walls becoming flexible (i.e., Tc - T1 > Tz}. We also discussed
that, in the presence of an in plane magnetic field, the pairs should
unbind at & temperature Tc above TKT[which is the transition temperature for
the pure XY-model; TKT ~ G.BJSZ] — as observed in the present simulations.
The low temperature data analysis suggests that the Six{E'“] correlation
functions will be more sensitive to effects due to domain walls. Therefore,
effects due to the unbinding of vortices pairs should be seen more clearly
in SH{E.N} and suca.m.

Recently, Mertens et al [1987, 1989] have proposed a phenomenclogical
theory to explain the dynamic properties of spin vortices in 2D-XY
ferromagnets. The theory assumes an ideal gas of unbound vortices above TKT
and predicts a central peak for both in-and out-of-plane correlations.

For the in-plane central peak, their theory gives
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r (@) = % T - 11172 % J 1+ e)? (IV.1)

for the g-dependent width and

(g = & e * 3 (1v.2)
y bn [+ (Eq)*)3/2

for the integrated intensity, where v is the root mean square velocity and £
is the correlation length. The width of the out-of-plane central peak is
given by

2 r,(q) = vq. (1v.3)

We will assume, for the moment, that a weak magnetic field does not
seriously compromise the picture of a gas of vortices moving above Tc' In
this context, the main effects due to the field would be: a) to increase
the transition temperature, i.e. Tc > TKT’ and b) to increase the average
velocity v (Section III) with which vortices move in the system. Then, we
can compare the predictions of that phenomenological theory with the
MC-MD simulation results for syy{E,m} and szzfﬁ.m). The predicted
g-dependencies [(IV.1), (IV.2) and (IV.3)] of Fz' PF and TF are well
supported by the simulation data [figure 6]. Table 1 gives the parameters
v and £ obtained by fitting to the width and intensity of the central peaks.
The data obtained for rz and I“!"r overestimate the real values due to the
difficulty of subtracting the softened spin wave peak which appears (for
small 3] close to the central peak. Consequently, the values obtained for v,
from fitting to the widths, are also overestimated. Using an equation of
motion for free vortices, Huber [1982] obtained an expression for v for the
2D-XY model, His formula can be written, approximately [see Mertens et al
(1989)] as
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S, [T 0 b/ + 0.58)1/2 (1v.3)
2
where
2 (T-T)
E(T) = Egexp (bt ”2}. R N - (IV.4)
Tc

Here Eﬂ is of the order of the lattice constant a and b has been found
[Heinekamp and Pelcovitz (1985)] to be temperature dependent. Fquation
(1V.3) predicts a strong increase of v for temperatures slightly above Tc
and a saturation for tv ~ 0.36. In order to compare the simulation values
for v to the ones predicted ‘by (IV.3), we used Eu = a, Tc = I.DJS2
and obtained b by fitting (IV.4) to the E values obtained from FF'
Obviously, this is an approximate calculation for v. The wvalues obtained
from the simulations compare well with the calculated ones (table 1); notice
that the simulation wvalues are larger than the calculated values. We observe
that v increases with T; probably, in order to achieve the region where v
remains constant as T increases, we would have to consider still higher
temperatures. It is interesting to compare our calculated values for v,
in the presence of a field, to the ones obtained by Mertens et al. [198%]
for h = 0 [using (IV.3)]. The comparison cannot use the absolute ﬁemperature
T, since T: is different for the two cases, but can be done in terms of the
reduced temperature 1. For h = 0, we repeat the values obtained in the
refered work to [here the b-values (IV.3) were taken from the work by
Heinekamp and Pelcovitz (1985)]: v = 0.30, 0.47 and 0.56 for T = 0.125,
0.250 and 0.375, respectively. The last column in table 1 gives v
corresponding to t = 0.1, 0.2 and 0.3, respectively. The immediate
conclusion is that the average vortex velocity increases when a magnetic
field is applied.

For the 2D-XY model, the (in=-plane) spin waves are expected to be
strongly softened for T > TKI [Nelson and Kosterlitz (1979)]; experiments

and numerical simulations have checked this behaviour. Caﬂlz —intercalated
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into graphite has been taken as an example of 2D-easy plane ferromagnets
[Elahy and Dresselhaus (1985)]. Extensive inelastic neutron scattering
experiments [Zabel and Shapiro (1987)] have been performed on this compound
and a transition is observed at Tu = 9,6K (corresponding to Tu = H-QJSE}
which has been tentatively identified as a KT-transition. Also, the
temperature dependence of the magnon dispersion was measured and spin waves
for q > 0.1 were observed to renormalize continuously while those at small gq
disappeared at Tu- in qualitative agreement with the predictions of Nelson
and Kosterlitz [1977].

The effects of an in-plane field were experimentally studied by
Wiesler et al [1988]. When the field is applied, they observed that, the
central peak loses intensity and its width decreases while spin wave
peaks persist for T = Tu’ even for small q. These authors concluded that

the effect of the field is to effectively raise Tu without softening the spin

waves energy. Our numerical simulations (h=0.05) agree qualitatively with these

experiments since we obtain a higher transition temperature {Tc - I.{TIJS2

compared to D.BJS2 for the pure XY-model) when an in-plane magnetic field

is applied and we also observe in-plane spin waves for temperatures well
above Tc' Figure 7 shows that spin waves can be clearly seen for both

yy-and zz-correlation functions at T = 1.1J52, even for low E. Our
interpretation is that, in the presence of a field, the vortex pairs are
more tightly bound and the density n, of free vortices is lower than in the
pure 2D-XY model. As a consequence, the correlation length § [“v = (ZE)rzl
will be larger, and it is reasonable to have spin waves with wavevectors

q > qc{q: - E_l}. We observe spin waves with wavevector as small as

q = 0.06m (T = 1.1J52]. However, then the values given for £ in table 1 seem
to be too small. The experimentally cobserved reductiun-in the width of the
in-plane central peak can also be explained by a vortex ideal gas
phenomenology [Mertens et al(1989)]. This theory predicts that [ = v/E
for small q. Then, from (IV.3) and (IV.4), we obtain I = exp(- ZbT_IIZ}r
where we have only kept the exponential dependence on 1 because it is
dominant. In the presence of a field, the transition temperature is higher,
which means that 1 will be lower — comparing to the same temperature

interval above Tﬂ for h = 0. A decrease in 1 results in a reduction of
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the width as was observed in the experiments.
An unexpected feature in our simulations is that the out-of-plane
spin wave shows a strong softening for T > 1.2.152 (figure 8). Also,
Cz{a.t =0) = Szzfﬁ,gj dw, which is related to the susceptibility, shows
a maximum at T = 1.2J5". These features indicate that a dvnamical crossover
(or a transition; we cannot distinguish these alternatives with our
numerical accurancy), closely related to the z spin component, takes place
at this temperature. Presently, we have no explanation for thisbehavior, but we
note that it occurs at the same temperature (relative to Tc} where specific heat and

Sz correlations showed an anomaly for the zero-field case [Tobochnick and Chester
(1979), Kawabata and Bishop (1982)].

V - Conclusions

? In this paper, we have studied the effects of an in-plane magnetic
field on 2D-XY spin systems. In the absence of a field, wvortices are well
known as important excitations in describing the properties of 2D-XY
models. An external (in-plane) magnetie field, breaks the rutatiunai
symmetry of the XY-plane and, therefore, influences the vortex shape
and behaviour. Besides, a field can introduce domain walls corresponding
to a 2n- rotation about the priveleged direction (here the x-axis). Our
approximate analytical treatment and numerical simulations (Section III)
show how the shape of the single vortex changes and how it moves in the
presence of the field. The simulations suggest that vortex pairs will be
connected by domain walls; the 2r-walls can be thought of as consisting
of two m-walls separated by a narrow domain (of width ~ the vortex diameter)
where the spins are antiparallel to the field.

MC-MD data (Section IV) for temperatures lower than 1.0352 are well
interpreted within a spin wave approximation (Section II) provided two-
spin wave processes are included. However, an anomalous central peak is
observed in the Sxxfa.w} correlation function at all temperatures
{D.}'JS2 <T j_l.SJSZ} we have considered in the simulations. Our hypothesis
is that this central peak is intimately related to the presence of domain

walls but additional theoretical work is necessary in order to consolidate
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this possibility since many mechanisms can contribute to a central peak. The data

analysis concerning this central peak in Sxx[;,u} reveals a change takine nlare at

ahnutﬁf-l.DJSZ: farD.?JSz <T= 1.UJSZ, this central peak becomes narrower and

more intense as T increases, while for T:lI.DJSEit105&5intensityandbecnmesslightly
broader. Simultaneously, changes are also observed in the vv- and zz- correlation

2
functions where central peaks are seen to develop for T>1.0J5". We interpret these

changes as due to a strong crossover frommagnetic field to vortesx symmetryat T = I.!Il..TS2

For the pure 2D-XY model, a topological phase transition due to the

unbinding of vortex pairs occurs at TKT - D.BJSE. Since the magnetic field
used in our simulations is small .(h = 0.05, H << J), we do not expect it
to drastically alter the properties of the system. Therefore, we expect
that the crossover at Tc = I.UJS2 is induced by the unbinding of pairs
of vortices although domain walls should also play a relevant role .
It is reasonable to have Tc B TKT because, in a magnetic
field, a pair of vortices is more tightly bound and will unbind at a
higher temperature. Qur data suggest that effects related to the existence
of domain walls are more important for S [q.w} functions; § {q w) and
S (q.w} would then be more sensitive to vorticas. With this thnught in
mind. the central peaks in yy-and zz-correlation functions (for T > 1. UJS Y
specifically their widths and intensities as taken from our simulationms,
were analysed and compared to the predictions of a phenomenological theory
based on a free vortex gas picture. The agreement is quite good and provides
evidence for vortex diffusion abowve Tc'

Cur results were compared with recent inelastic neutron scattering

experimental data [Wiesler et al (1988)] for CoCl, - GIC with an in plane

magnetic field and the qualitative agreement is v:ry good. Unfortunately,
these experiments did not measure, separately, the ocut-of-plane contribution
and, as yet, have not been taken to temperatures as high as T = 12382

{(~ 13K). Thus, our results (from simulations) revealing a softening of

of out-of-plane spin waves for T > 1.2J52 and possibly a strong second
anomaly at T* cannot yet he compared with experiments.

The understanding of this interesting high temperature region requires more

theoretical and experimental studies.
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. Table 1 . Parameters v and £ obtained by fitting to the intensities and
widths of the central peaks in SFF{E.W} and Szz{E’w} in our MC-MD data
for Hamiltonian (II.1)(h = 0.05). The last column gives v values obtained
from (IV.3) and (IV.4) using TIc = l.l'.‘rJS2 and iﬁ = a, For £(T), we used

the values given in the third column of this table.

T E{FF} E{Py} v(ry] v[?z} v (from (IV.3))
1.1 1.6 2.2 0.71 0.60 0.47
1.2 1.1 2.0 0.71 0.79 0.50
1.3 0.9 1.4 0.74 0.68 0.61
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Figure 2.

Figure 3.

Figure 4.
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Figure 7.

Figure 8.
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A single vortex in a magnetic field at a) t = 6.0 and b) t = 15.0
time units, starting from a planar vortex (8 = 0, & = ¢ + n/2).
Black and white arrows denote positive and negative out-of-plane
spin components, respectively. The vortex moves along the y
direction. Only a segment of the 40 X 40 simulated lattice is shown.
Results for S?F{E = 0,w} (continuous curve) and for SEZ{E = 0,w)
(dashed line) obtained from MC-MD simulations of Hamiltonian (I1.1)
on a 100 X 100 lattice. The plots correspond to T = D.?JSE.
Spin wave dispersion obtained from the simulation data for wavevectors
along the x-axis at T = U.TJSE. The crosses and circles correspond,
respectively, to data taken from Szzfa.w} and Syy{a,m]. The

continuous curve corresponds to (II.4).

Results. for sxx('.i,m} from MC-MD simulations of Hamiltonian (II.1)

on a 100 X 100 lattice for q = (0.06m,0)a ) at T = 0.7J52.

Simulation data for the frequencies “n of spin wave difference

(lower data) and Wg of spin wave sum (upper data) peaks (as

explained in the text). The crosses (x) and circles (e) indicate

data taken from Sxxfa,m} for E along y-(x) and x-(e) directions,
respectively.

Simulation data at T = 1, 1J52 for the a) width r of the central

peak in 5 (q,w} b) width IF, and c¢) intensity I:.r of the ecentral

peak in SFF{q,w]. Data points for the intensity result from estimating
I:’Ir from plots like fig. 7 assuming a*squared Lorentzian ffrm. Data

for three different orientations of q are shown: (®) for q along

[1,0); (x) for E along [0,1], and (A) for E along [1,1] directions.
Solid lines are fits to: a) (IV.3), b) (IV. l], and ¢) (IV.2) for

small q

Results from MC-MD simulations for Hamiltonian (II.1) on a 100 X 100
1attiée for E = G.UEwa-1 at T = l.lJS2 for SY {E,m){cuntinuuus line)
and S__(q,u) (dashed line). 3

Spin wave frequencies (from our simulations) as functions of temperature

determined from 5 (q.w} {#) and S fa.m} (%) for two wavevectors:

E =0 (nuntinunua line} and q = U ﬂﬁwa 1& (dashed line).
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