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Vortex states in thin circular magnetic nanodots are studied using auxiliary constraining fields as
a way to map out the potential energy space of a vortex, while avoiding a rigid vortex approximation.
In the model, isotropic Heisenberg exchange competes with the demagnetization field caused both by
surface and volume magnetization charge density. The system energy is minimized while applying a
constraint on the vortex core position, using Lagrange’s method of undetermined multipliers. The
undetermined multiplier is seen to be the external field needed to hold the vortex core in place at a
desired radial distance r from the dot center. This auxiliary field is applied only in the core region of
the vortex. For a uniform nanodot, the potential energy is found to be very close to parabolic with
r, as in the rigid vortex approximation, while the constraining field increases linearly with r. Effects
of nonmagnetic impurities and holes in the medium can also be estimated. An impurity or hole in
the dot can lead to bistable operation between the two minima that result under the application of
a transverse applied magnetic field.
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I. INTRODUCTION: MAGNETIC VORTICES IN

NANODOTS

Cylindrical magnetic dots of 1–2 µm diameter and
thickness 15–100 nm are of great theoretical and ex-
perimental interest, because they could serve as high-
density memory devices,1 using a range of materials in-
cluding Permalloy,2,3 Fe4,5 and Co.6,7 If a dot is very
thin compared to its diameter, demagnetization or dipo-
lar effects lead to a nearly planar magnetization (effective
easy-plane anisotropy),8 that depends on position.9 This
leads to vortex states with a curling of the magnetization
within the plane of the dot10,11 and tilting out-of-plane
in a vortex core. The core tilting has been used to iden-
tify and locate vortices,12 which have also been identi-
fied using magnetic force microscopy.13 The goal of the
present work is to make accurate calculations of the effec-
tive space-dependent potential experienced by a vortex
within a dot, which will be important for understanding
vortex stability, dynamics and manipulation. We con-
sider pure samples as well as those with defined defects
or impurities that can pin vortices.12 The potential due
to impurities can be estimated14,15 from analytic approx-
imations, whereas, here we apply a micromagnetics en-
ergy minimization with a constraint on vortex position.

The core spin tilting is similar to that for vortices
in easy-plane magnets,16–18 whose core spins only tilt
out of plane when the anisotropy is weaker than a crit-
ical strength,18,19 which originates from an energetic
instability.20–22 The gross effects of defects in magnetic
dots, including dipolar effects, can be gleaned from their
effects in 2D easy-plane magnets, including only the ef-
fects of anisotropic exchange interactions. For instance,
in easy-plane magnets (with exchange interactions but no
dipolar interactions), theory23–26 and experiments27,28

show that nonmagnetic defects attract and pin vortices.
Vortex energies are lower on defects29,30 and defect sites

have a thermodynamic preference for vortex formation
around their centers.31 For a vortex pinned on a min-
imum defect (i.e., one nonmagnetic site in the lattice),
all spins obtain a greater tendency to stay close to
planar,29,32 requiring even weaker anisotropy for the core
spins to tilt out-of-plane. Considering a hole in the dot as
a larger nonmagnetic defect, removing a greater number
of magnetic sites beyond some fairly small radius even-
tually leaves only the planar vortex configuration as the
stable one.33 Dipolar forces strengthen the effective easy-
plane anisotropy and enhance the above effects.

When a vortex forms around a defect, some exchange
interactions are removed, compared to a vortex far from
a defect, leading to a lowered total energy. Pinned vor-
tices in nanoparticles should affect the hysteresis curves34

and can be manipulated by applied magnetic fields.12,35

Thus it makes sense to study the potential energy space
of vortices in dots with impurities as well as in pure sam-
ples. Also of great interest is to consider dots with two or
more intentionally designed defects.36 The vortex can be
attracted by any of them, leading to a multistable switch-
ing device. For a vortex pinned on a defect, there is a
threshold applied field needed to free the vortex from the
pinning center.37 We consider energetics of these states,
and how an externally applied magnetic field is able to
move a vortex reversibly from a defect and back.

For thin enough dots, there is only weak dependence of
magnetization on the (z) coordinate through the thick-
ness. This allows for an approximate two-dimensional
analysis that we use here; the three dimensional magnet-
ics is represented quite accurately by a two-dimensional
approach.38,39 Using Green functions for thin samples40

to obtain the demagnetization field, fast Fourier trans-
forms (FFT) are used for evaluation of the required Green
function integrals in only two dimensions. The FFT for
finding the demagnetization field41 in nanomagnetism
greatly speeds up this task, which is the calculational
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bottleneck.
Even in a small dot of 100 nm diameter and 15 nm

thickness, there are too many atomic spins to be fol-
lowed computationally. Instead, the system is parti-
tioned into larger cells containing many atoms; this is
the so-called micromagnetics approach.42 The usual mi-
cromagnetics approach uses the Landau-Lifshitz-Gilbert
equation with damping to approach a local minimum
energy state. Here, we want to impose a desired lo-
cation to a vortex, and then calculate its energy. The
enforcement of this constraint can be accomplished via
Lagrange’s method of undetermined multipliers, which
simultaneously gives the magnitude of the constraining
field. We describe how this leads to a new iterative lo-
cal field relaxation scheme, that is an improvement over
earlier approaches.43

The result is that the vortex effective potential energy
U(~r) can be mapped out in many situations. An esti-
mate of such potentials could be very important. If an
accurate potential is at hand, the dynamics of a vortex
in a nanodot might be described by a greatly reduced
number of degrees of freedom. In certain situations, the
dynamics of the vortex core can be described via an ef-

fective equation of motion44 with a vortex gyrovector ~G
and mass tensor M̃. The potential U(~r) determines the

force ~F = −~∇U(~r) in the equation of motion for the core

position [~V = ~̇X(t),

~F + ~G × ~V = M̃ · d~V

dt
. (1)

A knowledge of the potential and hence the force could
be used to predict and analyze the vortex dynamics in a
dot.

For determining the potential, calculations are carried
out for the parameters of Permalloy-79 (Fe21Ni79), which
has saturation magnetization MS = 860 kA/m, contin-
uum exchange stiffness A = 13 pJ/m, Curie temperature
near 630 K, and face-centered-cubic lattice structure with
conventional unit cell parameter a0 = 0.355 nm.

II. VORTEX PROPERTIES

Based on the properties of vortices in a pure circular
magnetic dot without defects, we can extend the discus-
sion to problems with defects. In general, the magneti-
zation can be described by in-plane angles Φi and the
out-of-plane component, Mz

i , where i refers to cells used
to partition the system. For a defect-free dot of adequate
size, the vortex ground state can be described by giving
the in-plane angles as

Φi = φi + φ0, (2)

where φi = tan−1(yi/xi) is the azimuthal coordinate
measured with respect to the dot center, and φ0 = ±90◦

is a constant global rotation of all the dipoles away from

the radial direction. The vortex has two equivalent states
at φ0 = ±90◦, corresponding to opposite directions of the
rotation of the spins around the center of the dot. These
two states have opposite circulation C ≈ ±1, a quantity
defined by the sum over the cells of the whole system,

C =
1

N

∑

i

m̂i · φ̂i. (3)

If the dipoles tilt out of the xy-plane, this sum can be less
than unity in magnitude. The switching of this degree
of freedom of the vortex could be caused by an applied
field,45 or by a current through the dot.46

The out-of-plane component mz is monotonically de-
creasing outward from the vortex core. An approxi-
mate analytic expression for mz has been given (rigid
vortex model)47 and its switching between two degener-
ate states (i.e., the vortex polarization) is of considerable
interest.48,49 When a vortex is pinned into a hole, even
for an extremely small hole the magnetization will remain
essentially lying within the plane of the dot and there is
no polarization. Thus, one can imagine design of devices
with three possible polarization states (+1, 0, -1). For
determination of vortex states numerically, we initiate a
planar vortex into the system by using expression (2).
During the relaxation iteration, a vortex not centered in
a hole will develop nonzero mz in its core region as it
lowers its total energy. Any small asymmetry in the ini-
tial state can select which polarization state is eventually
reached.

The vortex core location can be defined roughly as
within the cell where the effective vorticity charge is con-
centrated, i.e., where the following integral around the
cell edges gives q = 1:

q =
1

2π

∮

~∇Φ · d~r. (4)

Due to the demagnetization energy, the vortex with q =
−1 is unstable.

When a vortex is pinned on a hole or defect, there
is a certain minimum input energy (or applied field) re-
quired just to pull the vortex out. An important goal of
this work is to estimate the dependence of this threshold
energy and field on the hole size and other parameters.

III. EFFECTIVE MICROMAGNETICS

HAMILTONIAN

In the underlying atomic system, the spins have atomic
magnetic dipole moments of magnitude µatom = gµBS,
where g is the Landee g-factor, µB is the Bohr magneton,
and S is the spin length. Assuming fcc lattice structure,
there are four atoms per conventional unit cell of size
a3
0, giving a volume per atom of v1 = a3

0/4, and the
saturation magnetization is

MS =
gµBS

v1
. (5)
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(With the parameters for Py, this implies atomic dipole
moments µatom = 9.62 × 10−24 A · m2.)

From the micromagnetics viewpoint, the system is par-
titioned into cells, each containing many atoms, which
are small enough that the net magnetic moment might
have a nearly constant magnitude, but varying direction.
The simulations need only keep track of the directions
of the magnetic moments in each cell. Obviously it is
an approximation. But if the exchange is strong enough,
then the spins in a cell stay mostly aligned, hence the
dipole moment in a cell has a nearly fixed length, equal
to the saturation magnetization times the cell volume.

The cells being used do not have to be cubic. In a thin
magnet, there is only weak dependence on z, the coor-
dinate measuring distance through the thickness. The
nano-disk has a radius R and thickness L � R. To a
first approximation we can ignore any dependence of ~M
on the longitudinal coordinate z. Then it makes sense
to have cells which are small in xy directions, but longer
columns in the z direction, and use only a single layer of
cells. In this way the problem is converted into an equiv-
alent two-dimensional problem. The working cells can be
of dimensions a×a×L, where a is greater than the atomic
lattice parameter a0, and L = la is the total thickness of
the sample. To be appropriate from the physical point of
view, however, L should be small enough, so that the as-
sumption of spins aligned within a cell is still valid. The
spins in a cell being aligned means the magnetization is
assumed to be saturated in each cell. The cell edges are
assumed to be smaller in the xy directions, where the
magnetization changes more rapidly with position.

The volume of a working cell vcell = La2 contains
many atoms. Assuming the atoms fill an fcc lattice as for
Permalloy, the number of atoms in a working cell must be
la3/(a3

0/4). Then the saturated magnetic moment µcell

in a cell would be

µcell = Msvcell = MsLa2, (6)

which can also be expressed as

µcell =
gµBS

a3
0/4

× la3 = 4l

(

a

a0

)3

µatom. (7)

For most of the studies here, we consider a Permalloy
disk 12 nm thick, and use a cell size a = 2.0 nm. This
results in µcell = 2010 µatom. In the micromagnetics
viewpoint, these will be taken as the fixed magnitude
dipoles that interact with each other via local exchange
and long-range dipolar forces. Computationally, we will
follow their unit vectors m̂(~r) = ~µ(~r)/µcell. These only
need to be defined on a two-dimensional grid, but we
need to know their effective couplings.

A. Exchange interactions

We define the interactions between the cells, start-
ing from the continuum magnetics Hamiltonian that in-
cludes exchange and demagnetization energies produced

by magnetization ~M(~r). Here it is assumed that local
anisotropy is small. The exchange stiffness A is used to
define the exchange energy based on the scaled contin-

uum magnetization, ~m = ~M/MS, through

Hex = A

∫

dV ∇~m · ∇~m. (8)

For the exchange interactions, we use the general ex-
pression (8) converted to a finite difference representation
on the chosen cell grid. Although the underlying atomic
interactions live on the fcc lattice, those interactions are
thought of as smoothed out, and now we just have the
cell-to-cell exchange interactions. We assume a square
cell grid (ignoring the z-dependence). A cell centered at
the origin is surrounded by four other cells, at displace-
ments of ±ax̂ and ±aŷ (measured to their centers). Then
the exchange energy of our cell at the origin interacting
with only the two neighbors to the right and above, as a
lowest order finite difference approximation to (8), is

Hex,cell = Avcell×
{

(

~m(ax̂) − ~m(0)

a

)2

+

(

~m(aŷ) − ~m(0)

a

)2
}

. (9)

We use only these two neighbors; then by summing over
all cells, there will be no double counting, as every cell-
to-cell bond will be included only once. Expanding and
re-arranging, this becomes

Hex,cell =
Avcell

a2

{

4~m2 − 2~m(0) · [~m(ax̂) + ~m(aŷ)]
}

.

(10)

But the magnetization vectors ~M that produce ~m =
~M/MS in each cell have been assumed to be saturated to
the magnitude MS . It means that the each ~m is a unit
vector, so the per-cell exchange contribution is

Hex,cell =
2Avcell

a2
{2 − m̂(0) · [m̂(ax̂) + m̂(aŷ)]} . (11)

Finally, it can be expressed as the exchange energy per
bond,

Hex,bond =
2Avcell

a2
[1 − m̂(0) · m̂(ax̂)] . (12)

It demonstrates that the effective exchange coupling be-
tween the cells (i.e., cell-to-cell) is

Jcell =
2Avcell

a2
= 2AL. (13)

Dropping the irrelevant constant, the exchange Hamilto-
nian for the cells is

Hex = −Jcell

∑

(i,j)

m̂i · m̂j (14)

where only interactions between nearest neighbor cells
are included.
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B. Dipolar interactions

The exchange strength between cells needs to be con-
trasted to the strength of their effective dipolar interac-
tions. We already saw that each cell has a dipole mo-
ment of magnitude µcell = (4la3/a3

0)µatom. These inter-
act as well according to the usual dipole-dipole interac-
tion. Also, lengths (or positions) will be measured in
units of the cell size, a, and it is convenient to use the
unit vector magnetic moments, m̂i = ~µi/µ, the discrete

version of m̂ = ~M/MS. Thus we have the dipolar terms
for micromagnetics calculations,

Hdd = −µ0

4π

µ2
cell

a3

∑

i>j

[3(m̂i · r̂ij)(m̂j · r̂ij) − m̂i · m̂j ]

(rij/a)3

(15)
However, we do not evaluate the dipolar energy this way,
because it gets very slow for even moderate system size.
Instead, we resort to finding the “stray field” or demag-
netization field, which then interacts with the dipoles.
We do this by a FFT solution of the effective magnetics
equation, which gives the solution for magnetic potential
ΦM when a given magnetization distribution is provided.
It is based on Gauss’s law for the magnetic induction,

~∇ · ~B = µ0(~∇ · ~H + ~∇ · ~M) = 0. (16)

We assume the magnetic field is derived from a potential,
in the absence of free currents.

~HM = −~∇ΦM , then −∇2ΦM = −~∇ · ~M (17)

The RHS is an effective magnetic charge density, so we
can write

−∇2ΦM = ρM , where ρM = −~∇ · ~M (18)

Once the magnetic field is known, the demagnetization
energy is known to be given by the expression,

Hdd = Hdemag = −1

2
µ0

∫

dV ~HM · ~M (19)

The factor of 1/2 takes care of double counting of the
field interactions. If there is also an externally applied
magnetic field, then it makes an additional energy con-
tribution,

HB = −µ0

∫

dV ~Hext · ~M (20)

HB = −
∑

i

~Bext · ~µi = −µ0MS

∫

dV ~Hext · m̂ (21)

C. Units for Computations

To continue, it is convenient to use some dimensionless
units, from which the definition of the magnetic exchange

length emerges. Magnetization is already scaled by MS

to give the dimensionless form, m̂. The gradient operator
is scaled by the cell size, to give a dimensionless gradient,

∇̃ ≡ a~∇ (22)

This then leads to the dimensionless magnetic charge
density ρ̃,

ρM = −~∇ · ~M = −1

a
∇̃ · (MSm̂) =

MS

a
ρ̃ (23)

which means the definition is

ρ̃ ≡ −∇̃ · m̂ (24)

Similarly there is the dimensionless magnetic potential,
derived from ρ̃,

−∇2ΦM = − 1

a2
∇̃2ΦM = −1

a
∇̃ · (MSm̂) =

MS

a
ρ̃ (25)

ΦM = aMSΦ̃ (26)

Then the dimensionless equation being solved computa-
tionally is

−∇̃2Φ̃ = ρ̃ (27)

The demagnetization field is

~HM = −~∇ΦM = −1

a
∇̃(aMSΦ̃) = −MS∇̃Φ̃ (28)

Then it makes sense to define the dimensionless demag-
netization field,

H̃M = −∇̃Φ̃ , ~HM = MSH̃M , (29)

which has an associated magnetic induction,

~BM = µ0
~HM = −µ0MS∇̃Φ̃ = µ0MSH̃M . (30)

The most interesting result in dimensionless units is the
demagnetization energy. A chosen magnetic dipole has
that interaction expressed as

UM = −1

2
~BM · µi = −1

2
µ0MS(−∇̃Φ̃) · MSvcell m̂i

= −1

2
µ0M

2
SLa2 (H̃M · m̂i). (31)

But it is necessary to measure all energies in the same
units. For this, we use units of the cell-to-cell exchange
constant, Jcell = 2AL. So we write

UM

Jcell
= −1

2

µ0M
2
SLa2

2AL
(H̃M · m̂i)

= −1

2

(

a

λex

)2

(H̃M · m̂i) (32)
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where the exchange length is defined from

λex =

√

2A

µ0M2
S

. (33)

Similarly, if there is an externally applied magnetic field,
the interaction energy is scaled in the same way,

UB

Jcell
= −

(

a

λex

)2

(H̃ext · m̂i) (34)

where the external magnetic induction and field are re-
lated by

~Bext = µ0
~Hext = µ0MSH̃ext (35)

D. Dimensionless Hamiltonian and Effective Field

Combining the interactions in dimensionless form, in-
volving the unit vector moments m̂i = ~µi/µcell, we have
the total Hamiltonian for the micromagnetics cells

Hmm = −Jcell







∑

(i,j)

m̂i · m̂j

+

(

a

λex

)2
∑

i

(

H̃ext +
1

2
H̃M

)

· m̂i

}

. (36)

This is associated with the effective magnetic field on a
site,

~Fi = −∂Hmm

∂m̂i
(37)

= Jcell

{

∑

nbrs

m̂j +

(

a

λex

)2(

H̃ext +
1

2
H̃M

)

}

.

This field determines both the total system energy, and
applies to the undamped dynamics when the gyromag-
netic ratio γ ≈ −e/me is included into the torque equa-
tion:

Hmm = −
∑

i

~Fi · m̂i, (38)

˙̂mi = γim̂i × ~Fi. (39)

In the work here, we do not actually use time dynamics,
so the gyromagnetic ratio is not needed. But the effective

fields ~Fi do determine the energetics, and we use them
to find local energy minima.

The simulations were performed for circular Permalloy
disks from 80 nm to 240 nm diameter, similar is size
to samples used in recent experiments. We used a cell
size of a = 2.0 nm, and two different disk thicknesses
L = la = 12 nm and L = 4.0 nm, with exchange stiffness
A = 13 pJ/m and exchange length λex = 5.3 nm, as
found in Py.

IV. THE DEMAGNETIZATION FIELD H̃M IN A

THIN SAMPLE

The solution of the Poisson equation (27) is effected
by a Green’s function,

Φ̃(~r) =

∫

d3r′ G(~r, ~r ′) ρ̃(~r ′) =

∫

G(~r, ~r ′) dq ′ (40)

where dq ′ = dq(~r ′). The charge density may include
parts on the surfaces that appear more as a surface charge
density,

σ̃ = m̂ · n̂ (41)

where n̂ is the outward normal from the system. The
system is assumed to be a thin cylinder. The magneti-
zation is assumed to depend only on x and y, not on the
vertical coordinate, z. Then there are surface charges
σ̃z = ±m̂z on the upper and lower planar (circular) faces
of the dot, respectively. There can be additional surface
charges along the curved edge of the cylinder. In this sec-
tion we drop the M subscript on H̃M . It is understood
we are discussing only the demagnetization field.

The 3D Green’s function for the Poisson equation is

G(~r, ~r ′) =
1

4π|~r − ~r ′| (42)

Specializing to a thin system with L � R leads to effec-
tive Green’s functions for a two-dimensional problem.40

We summarize the approach here to exhibit the special
treatment given to the results near the origin, |~r−~r ′| →
0.

A. Finding the longitudinal field component H̃z

The contributions to H̃z come only from the charges
on the upper and lower planar faces. Let the coordinate
z of the observation point lie inside the range between
−δ ≤ z ≤ +δ, where δ = L/2. From the area element
dA′ = dx′ dy′, where dq′ = σ′dA′ = m̂ · n̂ dx′ dy′, we get

dΦ̃(x, y, z) =
dA′

4π

{

mz
√

r2 + (z − δ)2
+

−mz
√

r2 + (z + δ)2

}

(43)
where r2 ≡ (x − x′)2 + (y − y′)2. The gradient w.r.t. z
gives the field increment produced,

dH̃z = − ∂

∂z
(dΦ̃) (44)

= −dA′

4π

{ −mz(z − δ)

(r2 + (z − δ)2)3/2
+

mz(z + δ)

(r2 + (z + δ)2)3/2

}

At the center of the sample, z = 0, we would get the
net demagnetization field there by integrating over all
elements,

H̃z(0) =

∫

dx′ dy′

{

−1

4π

2δ

[r2 + δ2]
3/2

}

mz(x
′, y′). (45)
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The factor within braces is an effective Green’s function,
used to get the demagnetization field in the middle of
the cylinder. We might call it G0, it is understood that
it gives H̃z(0).

H̃z(0) =

∫

dx′ dy′ G0(r) mz(x
′, y′) (46)

G0(r) =
−1

4π

2δ

[r2 + δ2]
3/2

, (47)

r2 = (x − x′)2 + (y − y′)2.

To get a better approximation for total magnetic energy,
we instead need the average demagnetization field over
the whole range of z (average in a cell). So we find instead
the vertical field component averaged over all z, denoted
just as H̃z,

dH̃z =
1

2δ

∫ δ

−δ

dz

(−∂

∂z
dΦ̃

)

=
−1

2δ
dΦ̃
∣

∣

∣

+δ

−δ
(48)

Then using Eq. (43) and including the integration over
x′ and y′ gives

H̃z =

∫

dx′ dy′ dH̃z (49)

=

∫

dx′ dy′

{

1

4πδ

[

1
√

r2 + (2δ)2
− 1

r

]}

mz(x
′, y′).

The part in braces is a Green’s function; call it Gz . It
gives the average vertical field at some point (x, y). It is
better to write Gz and the above relationship using the
two-dimensional vectors r̃ = (x, y) and r̃ ′ = (x′, y ′), and
using the dot thickness L, as a convolution,

H̃z(r̃) =

∫

d2r̃ ′ Gz(r̃ − r̃ ′) mz(r̃
′) , r̃ ≡ (x, y) (50)

Gz(r̃) =
1

2πL

[

1√
r̃2 + L2

− 1

|r̃|

]

, r̃2 ≡ x2 +y2 (51)

B. Finding the in-plane demagnetization field

components.

The volume charge density (together with some sur-
face charges at the curved boundary of the cylinder) will
produce the in-plane field components. From the basic
Green’s function (42) for the Poisson equation look at
the contribution to potential at (x, y, z) caused by the
volume charge density at (x′, y′), as ρ̃ does not depend
on z′. This involves an integration over source points z′,
for the contribution from charge dq ′ = ρ̃(x′, y′) dx ′dy ′,

dΦ̃(x, y, z) =

{

1

4π

∫ +δ

−δ

dz ′ 1
√

r2 + (z − z ′)2

}

dq ′ (52)

where r2 ≡ (x − x′)2 + (y − y′)2. The integration is
straightforward and leads to a well known result, one
form of which is

dΦ̃(x, y, z) =
1

4π
ln

[

√

r2 + (δ − z)2 + δ − z
√

r2 + (δ + z)2 − δ + z

]

dq ′ (53)

As this depends on the vertical position, it is necessary to
average it over z. In terms of the dot thickness L = 2δ,
the averaging is

dΦ̃(x, y) =
1

2δ

∫ δ

−δ

dz dΦ̃(x, y, z) (54)

=
1

2πL

[

L sinh−1

(

L

r

)

+ r −
√

r2 + L2

]

dq ′

Because the result only depends on the radial distance of
the observation point from the source point, only a radial
demagnetization component is produced. The increment
produced is

dH̃r = −êr
∂

∂r

(

dΦ̃
)

=
êr

2πL





√

1 +

(

L

r

)2

− 1



dq ′.

(55)
Thus the vector Green’s function for the in-plane field is

~Gxy(r̃) =
êr̃

2πL





√

1 +

(

L

r̃

)2

− 1



 . (56)

This determines the (x, y) demagnetization field compo-
nents as a convolution,

H̃xy(r̃) =

∫

d2r̃ ′ ~Gxy(r̃ − r̃ ′) ρ̃(r̃ ′). (57)

The integration involves the unit vector between source
and observation points,

êr̃−r̃ ′ =
r̃ − r̃ ′

|r̃ − r̃ ′| . (58)

C. Finite difference approximations for magnetic

charges

To apply Eq. (57), we use simple formulas to approx-
imate the magnetic charge densities, both in the volume
and at the curved surface. A surface site is any site of
the 2D grid with less than 4 neighbors (for a square grid).
As long as a site has four neighbors, it must be a volume
site, then it only has volume charge density, defined from
its charge,

qvol
M = −

∫

d3x ~∇ · m̂ = −
∫

m̂ · d ~A (59)
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For calculation of H̃xy, one can ignore the top and bottom
cell surfaces (at z = ±δ), whose charges cancel. This
leaves only the edge terms,

qvol
M = −{m̂01 · x̂ − m̂03 · x̂ + m̂02 · ŷ − m̂04 · ŷ} (aL)

= −1

2
aL [mx

1 − mx
3 + my

2 − my
4 ] (60)

where the values averaged between two cells are defined
like

m̂ij ≡ 1

2
(m̂i + m̂j). (61)

The notation is that “0” is a central cell, and 1,2,3,4 are
located at displacements of ax̂, aŷ, −ax̂ and −aŷ from
the central cell, respectively. Then the contribution to
charge density at the central cell is this divided by the
cell volume,

ρ̃vol
0 =

qvol
M

La2
= − 1

2a
[mx

1 − mx
3 + my

2 − my
4] (62)

For the surface sites, we also need to include an extra
amount of charge, the surface charge,

qsur
M =

1

2
m̂ · ~A =

aL

2
m̂ · n̂, (63)

that produces an additional contribution to charge den-
sity,

ρ̃ sur
0 =

q sur
M

La2
=

∑

cell edges

1

2a
m̂0 · n̂edge (64)

Associated in each cell we use the total charge found
there, equally whether surface or volume charge. Note
that these charges only determine the in-plane demagne-
tization components, H̃x, H̃y. The mz component deter-

mines the out-of-plane demagnetization field, H̃z.

D. Treatment of the 2D Green’s functions near

r = 0

When applied to the discretized system for micromag-
netics, some care is needed in using the Green’s functions

near the origin, |r̃ − r̃ ′| → 0. We can let ~Gxy → 0 in this
limit without difficulty. The Green’s function for finding
H̃z is singular at the origin; one sees Gz(r̃) ∼ 1

|r̃| . There-

fore we make an approximation to Gz when we apply it
on a grid with finite sized cells. (For simplicity, we drop
the tilde notation for 2D vectors here.) Because its value
exactly at r = 0 is undefined, we do an averaging of Gz

over a circular region with the same area A0 as a cell.
That is, we average Gz out to a radius r0 defined so that

A0 = πr2
0 = a2 , r0 =

a√
π

(65)

Using the definition (51), the averaged value from r = 0
out to r = r0 is

〈Gz〉r0

0 =
1

a2

∫ r0

0

2πr dr Gz(r)

=
1

La2

[

√

r2
0 + L2 − L − r0

]

(66)

This is the non-divergent value to use in the origin cell.
Gz can also be smoothed out on the grid in some of the
cells surrounding the origin. We can do an averaging
in the next layers of cells at r = a and at r =

√
2a,

again defining averaging radii according to area mapping.
There are four cells that are nearest neighbors to the
origin cell, at r = a, and we use the average of Gz between
r = r0 and r = r1, the latter defined by

A1 = πr2
1 = a2 + 4a2 , r1 =

√

5

π
a (67)

We also define an outer radius for the third set of cells
at r =

√
2a, the four next-nearest neighbors,

A2 = πr2
2 = a2 + 4a2 + 4a2 , r2 =

√

9

π
a (68)

In these cells we use the averages (per cell) between two
radii, like

〈Gz〉r1

r0
=

1

2πL

[〈

1√
r2 + L2

〉

−
〈

1

r

〉]r1

r0

(69)

which means we need the averages,

〈

1

r2 + L2

〉r1

r0

=
1

4a2

∫ r1

r0

dr 2πr
1√

r2 + L2

=
2π

4a2

[

√

r2
1 + L2 −

√

r2
0 + L2

]

(70)

〈

1

r

〉r1

r0

=
1

4a2

∫ r1

r0

dr 2πr
1

r
=

2π

4a2
(r1 − r0) (71)

Combining these gives the result

〈Gz〉r1

r0
=

1

4La2

[

√

r2
1 + L2 −

√

r2
0 + L2 − (r1 − r0)

]

(72)



8

Inserting the specific values for the radii, gives these replacements in the region around the origin,

Gz(0) −→ 〈Gz〉r0

0 =
1

La2

[
√

L2 +
a2

π
− L −

√

a2

π

]

(73)

Gz(a) −→ 〈Gz〉r1

r0
=

1

4La2

[
√

L2 +
5a2

π
−
√

L2 +
a2

π
−
√

5a2

π
+

√

a2

π

]

(74)

Gz(
√

2 a) −→ 〈Gz〉r2

r1
=

1

4La2

[
√

L2 +
9a2

π
−
√

L2 +
5a2

π
−
√

9a2

π
+

√

5a2

π

]

(75)

When the Green function is used on a square grid, these are used in place of the exact expression. It avoids the
divergence at the origin and gives reasonably good values for solution for H̃ in a uniformly magnetized circular
cylinder as a test case.

E. FFT solution for the demagnetization field H̃M

The expressions for H̃z and H̃x, H̃y involve convo-
lutions of the Green’s functions with each appropriate
source density. These convolutions in real space become
direct multiplications of the corresponding space Fourier
transforms when the operations are done in Fourier
space. Expressions (50) and (57) were evaluated using
2D fast Fourier transforms on a square grid with a size
Nx×Nx, where Nx = 2p and p is an integer. Nx is chosen
to be at least twice as large as the number of cells needed
to fit across the dot diameter D = 2R. Stated otherwise,
Nxa ≥ 2R. The extra cells are needed to avoid the wrap-
around problem, so that the demagnetization field being
found is that of an isolated nanodot without the period-
icity effects of the FFT. Then for a given configuration of
the cells’ magnetic dipoles and the demagnetization field
they produce, the total system energy is evaluated via
the Hamiltonian (36).

V. CONSTRAINED VORTEX SOLUTIONS

We want to find solutions to the equations of motion
under specific constraints that localize a vortex in a de-
sired position. Without a constraint, vortex solutions can
be found by damped Landau-Lifshitz-Gilbert dynamics,
but the vortex will always move to its minimum energy
position. So the constraint approach is necessary if we
want to map out the effective potential experienced by a
vortex. This can be done, for example, by using a con-
straining procedure like that in Ref. 43, where energy
minimization is carried out while fixing the in-plane an-
gles Φi of a set of “core” dipoles that are nearest to the
desired vortex position. During an energy minimization,
those core sites are allowed only to tilt out of the xy-
plane, but not allowed to rotate within that plane. The
disadvantage of that approach is no information is ob-
tained about the force or effective field that is needed to
secure a vortex in its desired position.

Here, instead we use a Lagrange multiplier scheme,
exactly so that information about the constraining force

and effective field is obtained. The basic idea is still to
consider some number Nc of central core dipoles around
the vortex center. We have considered from four to 96
core sites nearest to the desired vortex location. The
procedure described here works best when the diameter
of the core region is at least as large as the magnetic
exchange length. We do an energy minimization that
satisfies the unit-length constraint of the cell dipoles, and
include another constraint for vortex position.

A. Constrained dipole lengths

Before introducing the position constraint, consider
how Lagrange undetermined multipliers works. If we just
wanted to constrain the dipole lengths to some value m,
we use the energy Hmm = E[~mi] as defined in (36) or in
(38) to make a functional to be minimized,

Λ[~mi] = E[~mi] +
∑

i

αi(~m
2
i − m2) (76)

where the αi are Lagrange multipliers. The ~mi are non-
unit vector dipoles; we consider variations in their com-

ponents, mβ
i , β = x, y, z, so that E is minimized consis-

tent with the constraint. The minimization follows from

∂Λ

∂αi
= ~m2

i − m2 = 0 (77)

∂Λ

∂mβ
i

=
∂E

∂mβ
i

+ 2αim
β
i = 0, β = x, y, z (78)

From the energy function (38), the gradients with respect

to dipole components produce the local effective fields ~Fi

displayed in (37), and

−F x
i + 2αim

β
i = 0. (79)

Then the solution for the dipole components is

mβ
i =

F β
i

2αi
. (80)
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FIG. 1: Behavior of cell dipoles around a vortex core, with
cell size a = 2.0 nm. The arrows’ lengths in this view are
proportional to each cell’s out-of-plane magnetization com-
ponent, mz. Spatial variations in mz occur over an exchange
length λex = 5.3 nm.

When combined with the length constraint we get

~m2
i =

1

4α2
i

[(F x
i )2 + (F y

i )2 + (F z
i )2] = m2,

αi =
1

2m

∣

∣

∣

~Fi

∣

∣

∣
. (81)

Then the iteration algorithm to minimize the energy,
while satisfying the length constraint, would be

mβ
i = m

F β
i

|~Fi|
. (82)

This is the usual “local field relaxation” algorithm for en-
ergy minimization, scaling to unit lengths, m = 1. Each
dipole is placed along the direction of the effective field
acting on it, and the process is repeated iteratively until
a desired precision is achieved. It was used in Ref. 43,
although not developed there by the Lagrange technique.

B. Constrained vortex core position

The vortex core position can be controlled by including
an additional constraint. As a first approximation, with
Nc = 4 core cells symmetrically located around the core
position (Fig. 1), the core dipoles are assumed to satisfy
a constraint

Nc
∑

i=1

mx
i =

Nc
∑

i=1

my
i = 0 (83)

This would hold if a vortex is centered at the common
corner of the four grid cells, see Figure 1. This term is
included to make a new functional, applied when using
Nc core sites (where Nc may be greater than four):

Λ[~mi] = E[~mi] +
∑

i

αi(~m
2
i − m2) − ~λ ·

Nc
∑

n=1

~mn (84)

The new Lagrange multiplier ~λ is a vector with only x
and y components. Now the minimization equations (in
the core region) are

∂Λ

∂mx
n

=
∂E

∂mx
n

+ 2αnmx
n − λx = 0

∂Λ

∂my
n

=
∂E

∂my
n

+ 2αnmy
n − λy = 0

∂Λ

∂mz
n

=
∂E

∂mz
n

+ 2αnmz
n = 0 (85)

The results inside the core are

−F x
n + 2αnmx

n − λx = 0 −→ mx
n =

1

2αn
(F x

n + λx)

−F y
n + 2αnmy

n − λy = 0 −→ my
n =

1

2αn
(F y

n + λy)

−F x
n + 2αnmz

n = 0 −→ mz
n =

1

2αn
F z

i (86)

The constraint is just an extra magnetic field, applied
only in the core cells. To complete the solution, one
needs to determine that field. That comes from using
the spin length constraint,

~m2
n =

1

4α2
n

[

(F x
n + λx)2 + (F y

n + λy)2 + (F z
n )2
]

= m2,

(87)
which gives

1

αn
=

2m
√

(F x
n + λx)2 + (F y

n + λy)2 + (F z
n)2

. (88)

The constraint (83) also has to be applied to make the
solution complete. Doing the sums in the core,

∑

core

mβ
n =

∑

core

1

2αn
(F β

n + λβ) = 0, (89)

this leads to (for β = x, y only)

λβ = −
∑

core F β
n /αn

∑

core 1/αn
. (90)

Now we can see the algorithm for spin update is fairly

simple. Initially, ~λ is set to zero. On each iteration step

the new value of ~λ is found from expressions (88) and
(90). Then do

~mn = m
(F x

n + λx)x̂ + (F y
n + λy)ŷ + F z

n ẑ
√

(F x
n + λx)2 + (F y

n + λy)2 + (F z
n )2

. (91)
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before relaxation

L=6a,  a=2.0 nm
Uniform dot, 1 vortex

FIG. 2: (Color online) Result of the relaxation process for
a vortex in a nanodisk of radius R = 40a, height L = 6a,
using cell size a = 2.0 nm, λex = 5.3 nm, without applied
field. The total disk energy in units of Jcell = 2AL is shown
both before and after the converged relaxation, as a function
of the constrained center position of the vortex. The “before”
configuration consisted of a planar vortex; the relaxed con-
figuration has an out-of-plane tilting of the magnetization at
the vortex core.

By its design, the result is obviously of length m, which
is set to m = 1. Further, it is clear that the spin solution
must satisfy the position constraint (83). This is the
basic vortex position algorithm.

It can be improved slightly, taking into account the
possibility to constrain a vortex off-center in a cell, and
also, to allow for out-of-plane tilting of the dipoles in
the core. Instead of constraining the core sums to zero,

suppose they are constrained to a value ~T = (Tx, Ty) that
is set by the initial configuration, which is supposed to
impose the desired position. The functional is modified
to

Λ[~mi] = E[~mi] +
∑

i

αi(~m
2
i − m2) − ~λ ·

(

∑

core

~mn − ~T

)

(92)
During the iteration, compute the nonzero sums

∑

core

mβ
n =

∑

core

1

2αn

(

F β
n + λβ

)

= Tβ , β = x, y. (93)

The solution for the constraining field is now

λβ =
Tβ −∑core F β

n /αn
∑

core 1/αn
. (94)

During iteration, the dipoles will tilt out of plane in the
vortex core. So we consider that the constraining param-
eters Tx and Ty are moving constraints that change as the
core dipoles tilt out of plane. As the iteration proceeds,
Tx and Ty are continuously re-evaluated, according to a
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)

R=20a

R=40a

R=60a
L=6a,  a=2.0 nm
Uniform dot, 1 vortex

FIG. 3: (Color online) The relaxed vortex potentials for dif-
ferent disk radii as indicated, in disks of height L = 6a = 12.0
nm. x0 is the horizontal displacement of the vortex core from
the center. The potential is softer (lower force constant) but
deeper in the wider disks.

definition,

Tβ =

[

∑

core

mβ
n(0)

]

〈

√

1 − (mz
n/m)2

〉

, (95)

where ~mn(0) are from the original starting configuration,
which give some values to define the core location. The
mz

n are the continuously changing out-of-plane compo-
nents, increasing mainly near the vortex core. The square
root factor gives the dipoles’ projections into the xy-
plane, which become smaller as the iteration proceeds.
We use the average over the core region. If the vortex
is centered in a unit cell, and the core region does not
extend beyond the system edge nor into a hole, this new
constraint has Tx = Ty = 0, reproducing constraint (83).
Nonzero values of Tx or Ty only come into play when the
vortex core is near an edge or hole in the system.

C. About the simulation parameters

The size of the core region is defined somewhat arbi-
trarily, using at least four cells, or other numbers such as
Nc = 12, 16, 24, 48, 96, all of which give a symmetrical set
of cells around a vortex located in the center of a unit
cell. In most of our application, we used 24 core cells,
defined as the ones closest to the desired vortex center.
The cell size used was a = 2.0 nm, slightly smaller than
the Permalloy exchange length λex = 5.3 nm.

In some cases the constraint produces particularly
strong forces in the system. To avoid production of unde-
sired solutions such as vortex-antivortex pairs, it is im-
portant that the diameter of the constrained region be
larger than the magnetic exchange length. The Nc con-
strained cells have a total area Nca

2 = πr2
c , leading to
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FIG. 4: (Color online) The relaxed vortex potentials for dif-
ferent disk radii as indicated, in very thin disks of height
L = 2a = 4.0 nm. The potential is softer in these thin disks
than in the thicker disks of Fig. 3, which makes it easier to
move the vortex around by an applied external field.

a constrained radius rc =
√

Nc/π a. The process does
result in a slight deformation of the vortex near its core.
This is to be expected, because of the competition be-
tween the long-range forces acting on the vortex and the
constraining forces applied on the core region. Relax-
ations that did not preserve the desired single vortex,
usually due to very large forces, were thrown out from
the results. These included vortex-free single-domain so-
lutions at high applied fields and other configurations.

The applied and demagnetization fields in the Hamil-
tonian (36) and its extension Λ[~mi] in (92) appear mul-
tiplied by the factor (a/λex)

2. In order to compare them

to the position constraint field ~λ it makes sense to define
the scaled external field used in the simulations,

~hext =
a2

λ2
ex

H̃ext =
a2

λ2
ex

~Hext

MS
. (96)

In the calculations we specify the values of h = |~hext|.
In this way, ~λ and ~hext are in the same units. A similar
transformation can also be defined for scaled demagneti-
zation field. Indeed, this relation can be used in reverse

to define a physical field strength ~Hλ that corresponds

to the constraint field ~λ (switch ~hext to ~λ on LHS and

switch ~Hext to ~Hλ on RHS). For the simulations here,
the ratio λ2

ex/a2 ≈ 7.02 is needed for the conversion from
hy to Hext in units of MS

VI. EFFECTIVE VORTEX-IN-DOT

POTENTIALS

The approximate shape of the potential experienced by
a vortex can be obtained through the zero-temperature
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R=60a Uniform dot, 1 vortex
L=6a, a=2.0 nm

FIG. 5: (Color online) The constraining field λy needed to
insure a desired vortex location (x0, 0), for the disks of height
L = 6a = 12.0 nm whose potentials are shown in Fig. 3. The
vortex has a positive rotation of the magnetic moments (i.e.,
counterclockwise viewed from above, φ0 = +90◦, or C = +1).
When requiring a desired position (x0, 0) the constraining
field must be in the perpendicular direction. The constraining
field increases more slowly for the larger disks.
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FIG. 6: (Color online) The constraining field λy needed to
insure a desired vortex location (x0, 0), for the thinner disks
of height L = 6a = 12.0 nm whose potentials are shown in Fig.
4. The vortex has a positive rotation of the magnetic moments
(counterclockwise viewed from above). The constraining field
needed is weaker than that in the thicker disks. The large
nearly vertical sections are in unstable regions.

calculation of the total system energy described above,

for a sequence of constrained vortex locations, ~X =
(x0, y0). The origin (0, 0) is the center of the disk; the
vortex is “moved” along the x-axis, taking y0 = 0. The
energy minimization is carried out while artificially hold-

ing the vortex in place at position ~X via the constraining

field ~λ that acts only on the Nc cells closest to the vortex
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FIG. 7: (Color online) Relaxed vortex potentials for a disk
of radius R = 40a = 80.0 nm, height L = 6a = 12.0 nm, in
the presence of an externally applied field. The curves are
labeled by the dimensionless scaled field hy, that gives the
physical field in units of saturation magnetization as Hy =
Ms(λex/a)2hy . The minimum-energy position shifts almost
linearly with applied field. There is no vortex confined in the
disk for when hy surpasses ≈ 0.008 .

core. (Mostly we used Nc = 24.) The definition of core

sites is rather liberal. If the vortex position ~X is some-
where inside a hole, then the Nc cells whose centers fall

closest to ~X are considered the core, although they fall
along the edge of the hole, and might be well-separated

from ~X and from each other.
One iteration step involves changing all N cells. Typ-

ically hundreds or even thousands of iterations are re-
quired until the energy becomes accurate to 1 part in 107.
The iteration was stopped when the average changes per
iteration in the unit vector components (~m) fell below
10−7, according to 〈|∆mx| + |∆my| + |∆mz|〉 < 10−7.
Outside the core, all dipoles are completely free to move
so as to lower their energy. Within the core, they move

only as allowed by the Lagrange field ~λ. The core obtains

a slight shape deformation due to ~λ.
A typical result for the system energy before and after

the Lagrange constrained relaxation is shown in Fig. 2,
for a disk of 160 nm diameter, 12 nm thick. The energy
moves downward by about 5Jcell due to the relaxation,
while maintaining a potential very close to a parabolic
shape, U(x0) = U0 + 1

2kx2
0.

A. Uniform cylindrical dots

Fig. 3 shows vortex-dot potentials for different sized
dots of thickness L = 6a = 12 nm, not containing holes.
The diameters are D = 80 nm, 160 nm, 240 nm. Fig. 4
shows the corresponding vortex-dot potentials in thinner

0 0.002 0.004 0.006 0.008 0.01
 h

y

0
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20
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40
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0 (
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)
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R=20a

vortex minimum-
energy position vs.
applied field

L=6a,  a=2.0 nm
Uniform dot, 1 vortex

FIG. 8: (Color online) For disks of height L = 6a = 12.0 nm,
the equilibrium vortex position (from Fig. 7) as a function
of the applied field in scaled dimensionless form, hy. The
physical field in units of saturation magnetization is Hy =
Ms(λex/a)2hy . The curves are labeled by the disk radius.
The upward arrows indicate the points beyond which there is
no stable vortex solution in the nanodisk.

dots, of thickness L = 2a = 4 nm. The vortex position

was scanned across a diameter of the dot, ~X = (x0, 0).
The depth of the overall potential well increases with
dot diameter and with dot thickness. There is a high
relative potential near the dot’s edge that stabilizes the
vortex within the dot. If the dot is too small, the vor-
tex destabilizes to a quasi-single-domain state. This can
be attributed to the fact that the vortex potential well
becomes flatter with reduced dot diameter.

The corresponding constraining fields λy are displayed
in Figures 5 and 6 for the two different dot thicknesses.
The simulations were carried out for a vortex of positive
circulation (φ0 = +90◦ or C = +1). This requires a neg-
ative λy for a positive displacement x0. When the vortex
is near the disk center, the constraining field is propor-
tional to x0. For a vortex located far from the disk center,
λy reverses, but this occurs in the unstable region where
the vortex will not be naturally confined in the disk. One
can see that λy changes sign at the same point where the
potential has a local maximum near the disk edge. As ex-
pected from the form of the potentials, the thinner disks
require a smaller constraining field, consistent with their
smaller force constants.

For x0 < R/2, the vortex potentials are very accurately
fit by a parabolic form, U(x0) = U0 + 1

2kx2
0. The effec-

tive force constants for the two different disks thicknesses
of 4.0 nm and 12.0 nm are displayed in Table I. The
force constant decreases with increasing diameter, and
increases with disk thickness. Typical values of this force
constant for the disks studied, range from k ∼ 0.02A/a
to k ∼ 0.4A/a or about 0.1 – 2.6 pN/nm in Py.
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L R = 20a R = 30a R = 40a R = 50a R = 60a

2a 0.0502 0.0425 0.0339 0.0276 0.0228

6a 0.435 0.323 0.251 0.204 0.172

TABLE I: Values of the effective vortex-in-disk force constant
k in units of exchange constant over cell size, A/a. The cal-
culations used a = 2.0 nm.
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FIG. 9: (Color online) Relaxed vortex potentials for a thinner
disk of radius R = 40a = 80.0 nm, height L = 2a = 4.0 nm,
in the presence of an externally applied field. The curves are
labeled by the dimensionless scaled field hy . (Physical field
Hy = Ms(λex/a)2hy .) The vortex is destabilized from the
disk by only hy ≈ 0.0024 .

B. Uniform cylindrical dot with an applied field

It is known that the application of an externally gen-

erated magnetic field ~Hext tends to shift the vortex core
position. This effect can be investigated by calculating
the vortex potential. One example is shown in Fig. 7,
for disks of 160 nm diameter and 12 nm thickness, where
the potential is displayed for a range of applied fields
in scaled form, hy defined in Eqn. (96). The minimum
of these potentials gives the equilibrium vortex position.
Not surprisingly, the constraining field λy becomes zero
at the vortex minimum energy position (not shown here).
The minimum of the potential shifts to the left (towards
−x̂) with increasing applied field directed along the ŷ axis
(for positive circulation C = +1). For negative circula-
tion, C = −1, field along ŷ will result in displacement
towards +x̂. Eventually, at a field between hy = 0.008
and hy = 0.009, there is no minimum within the disk; the
vortex is pushed out of the disk. For this example, the
limiting field for a stable vortex hy ≈ 0.008 corresponds
to a physical value Hext ≈ 0.056MS.

The vortex minimum energy position for different disk
radii, all of thickness 12 nm, is displayed in Fig. 8. In each
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 h
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)

R=40a

R=30a

R=20a

vortex minimum-
energy position vs.
applied field

L=2a,  a=2.0 nm
Uniform dot, 1 vortex

FIG. 10: (Color online) For thinner disks of height L = 2a =
4.0 nm and radii indicated, the equilibrium vortex position
(from Fig. 9) as a function of the applied field in scaled di-
mensionless form, hy . (Physical field is Hy = Ms(λex/a)2hy .)
The thinner disks require a much lower field for removal of the
vortex from the disk, which occurs at the upwards arrows.

case the vortex is expelled from the disk at a limiting field
that is a small fraction of the saturation magnetization.
For small applied field, the vortex displacement varies
linearly with applied field.

If the disks are thinner, then consistent with their lower
effective force constants, smaller applied field is required
to displace the vortex from the disk center. The typical
potentials for R = 40a and L = 2a = 4.0 nm are shown in
Fig. 9, for hy ranging from 0.0 to 0.0026; the last value
already expels the vortex from the disk. The limiting
value for a vortex within the disk is around hy ≈ 0.0024
or Hext ≈ 0.0168MS. Fig. 10 displays the vortex mini-
mum energy positions for these thinner disks. In terms of
a susceptibility defined as the ratio of vortex position to
applied field, β = −x0/(Chy), the susceptibility is higher
in the thinner disks. Of course, the limiting fields are also
considerably smaller in the thinner disks.

C. Cylindrical dot with a central hole

It is interesting to consider a cylindrical dot with a
single central hole of radius Rh. A hole is simply a
non-magnetic region with missing atoms or non-magnetic
atoms. Although it may be somewhat artificial to spec-
ify the vortex location inside a hole, the procedure gives
a reasonable view of the depth of the potential that a
hole causes. Two cases are shown in Figs. 11 and 12,
which exhibit the change in the dot potential for the two
dot thicknesses and two different sized holes. One can see
that the depth of the extra confining potential due to the
hole increases dramatically with hole size. However, its
depth does not depend significantly on the thickness of
the dot. In a region out to a radius of about 3Rh the hole
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FIG. 11: (Color online) Relaxed vortex potentials for dots of
radius R = 30a = 60.0 nm, height L = 6a = 12 nm, both
without and with a central hole of radius Rh as indicated.
The central hole provides a very strong confining potential.
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FIG. 12: (Color online) Relaxed vortex potentials for thin
dots of radius R = 30a = 60.0 nm, height L = 2a = 4.0
nm, both without and with a central hole of radius Rh as
indicated.

exerts a strong attractive force on the vortex, as seen by
the steeper potential there. Far from the hole, however,
there is little influence on the vortex and the potential
follows the potential for the uniform dot.

D. Cylindrical dot with a central hole in applied

field

For various reasons, it would be useful to estimate
the applied field needed to pull a vortex out of a hole
(threshold field). If the hole is a designed feature of the
dot, then this can predict vortex stability with respect to
field variations, or, give an estimate of the field required
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FIG. 13: (Color online) Relaxed vortex potentials for disks
of radius R = 30a = 60.0 nm, height L = 6a = 12 nm, with
applied field hy = 0.004, both without and with a central
hole of radius Rh as indicated. Note the two minima for the
system with the smaller hole.

-60 -40 -20 0 20 40 60
x

0
 (nm)

5

10

15

20
E

/(
2A

L
)

no hole
R

h
=1.5a

R
h
=3.0a

L=6a,     h=0.006
R=30a,  a=2.0 nm
Dot with vortex

FIG. 14: (Color online) Relaxed vortex potentials for disks
of radius R = 30a = 60.0 nm, height L = 6a = 12 nm, with
applied field hy = 0.006, both without and with a central hole
of radius Rh as indicated. The minimum at the smaller hole
has destabilized.

to liberate the vortex in a controlled way. Further, the
threshold field could be important for vortex switching
between pairs of holes.

For dots with R = 30a = 60 nm, L = 6a = 12 nm,
some vortex-dot potentials with applied field hy = 0.004
are shown in Fig. 13, at the two holes sizes used above.
For the smaller hole size, Rh = 1.5a = 3.0 nm, one
sees that the vortex will be confined either in the hole
or at a position x0 ≈ −22 nm, with only a very low
potential barrier between the two states. Clearly this
situation offers an opportunity for bistable operation be-
tween these two vortex states. For the larger sized hole,
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FIG. 15: (Color online) Relaxed vortex potentials for disks
of radius R = 30a = 60.0 nm, height L = 6a = 12 nm, with
applied field hy = 0.008, both without and with a central hole
of radius Rh as indicated. The system with the larger hole
has two minima, however, the outer one is nearly unstable.

Rh = 3a = 6.0 nm, the only stable minimum is when the
vortex is confined in the hole. Upon increasing hy, if the
minimum at the hole disappears, then the threshold field
has been surpassed.

If the applied field is increased to hy = 0.006, as shown
in Fig. 14, now the system with the smaller sized hole
(3.0 nm radius) does not confine the vortex to the hole.
Instead, the vortex has only the stable minimum near
x0 ≈ −30 nm. Thus hy = 0.006 is above the threshold
field. One can see that a slight change in applied field
should be able to switch the vortex reversibly between
the hole-confined state and this other state about halfway
out in the dot. At this same applied field, the dot with
the larger radius hole (6.0 nm) now has acquired a mini-
mum near x0 ≈ −30 nm, as well as the deeper minimum
in the hole. However, the reversible switching might not
be possible there, because the change in the shape of the
potential with increasing field will destabilize the outer
minimum before the minimum at the hole disappears.
This is suggested in Fig. 15 where the results are shown
for hy = 0.008; the outer minimum is very weakly sta-
ble for both hole sizes there. A slight perturbation could
cause the vortex to get expelled from the dot. Still, these
results demonstrate the possibility for reversibly switch-
ing between a stable vortex within the dot and a quasi-
single-domain vortex-free state. Note that the curves in
these diagrams do not extend to x0 → −R because those
regions do not have stable vortex solutions.

The possibility for vortex-bistability can be improved
by using a larger radius, R = 40a = 80 nm, as indicated
in the potentials in Fig. 16, for hy = 0.004 . In this case,
both the system with the smaller hole and the system
with the larger hole possess two minima for the vortex
within the dot. With a slightly weaker field hy, the sys-
tem with Rh = 3.0 nm will have the outer minimum
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FIG. 16: (Color online) Relaxed vortex potentials for disks
of radius R = 40a = 80.0 nm, height L = 6a = 12 nm, with
applied field hy = 0.004, both without and with a central hole
of radius Rh as indicated. Here there two minima for both
systems with different hole sizes.
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FIG. 17: (Color online) Relaxed vortex potentials for thinner
dots of radius R = 40a = 80.0 nm, height L = 2a = 4.0 nm,
with applied field hy = 0.002, both without and with a central
hole of radius Rh as indicated. Here there two minima for
both systems with different hole sizes. If the field is increased,
the outer minima will destabilize before the hole minima.

energy nearly equal to the minimum energy at the hole.
With a slightly larger field hy, the system with Rh = 6.0
nm will have two equivalent energy minima. In addition,
the outer minima here will be fairly stable, with little
chance of the vortex escaping from the dot, due to its
larger diameter and deeper overall potential. It is clear
even from these limited results that by adjusting the dot
diameter, thickness, and hole size, bistable systems with
different responses and switching fields can be designed.

One further example is shown for a thinner dot, L =
2a = 4.0 nm, of radius R = 40a, in Fig. 17, for
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hy = 0.002. The background potential, without the hole,
is shallower than that for the thicker dots. Stated dif-
ferently, the local potential due to the hole is empha-
sized compared to the background, as already seen in
Fig. 12. Even so, there are two minima present, for both
hole sizes, although the outer minimum is close to being
unstable. The outer minimum will destabilize around
hy ≈ 0.0024 (see Fig. 9), reaching a field that will expel
the vortex from the hole. Thus, the threshold field, which
is greater than 0.0024, will simply remove the vortex en-
tirely from the dot, without bistable switching between
internal vortex states.

Still, the above results are useful because they describe
the typical field strengths needed for these transitions.
For the cell size a = 2.0 nm and Permalloy exchange
length, the physical field strength relative to saturation
magnetization is Hy/MS ≈ 7hy. These switching events
take place at very modest field strengths, which are even
lower in the thinner disks.

VII. DISCUSSION AND CONCLUSIONS

A modification of the usual micromagnetics approach
is developed here, constraining a desired vortex location
so the the vortex-in-nanodot effective potential energy
could be mapped out. For thin enough disks, the 3D
demagnetization problem is replaced by a 2D problem,

with special Green’s functions ~Gxy and Gz to give the
in-plane and out-of-plane components of the demagne-
tization field. An averaging procedure on Gz near the
origin is used to remove its divergence. The micromag-
netics is carried out on a grid with cells of size a× a×L.

The Lagrange undetermined field ~λ is included to en-
force the vortex core position; it is applied over a selected
core region of 24 cells in most of the calculations. With-

out ~λ present, the vortex would simply move to its lowest
energy position. The coupling of the vortex circulation

with ~λ leads to the result that a vortex displacement

along one axis requires ~λ along a perpendicular axis. We

can define a circulation vector of the vortex as ~C = Cẑ,
where C = ±1 is the sense of its rotation in the xy-
plane. Then it can be seen that the force on the vor-

tex, due to the constraint field ~λ acts in the direction of
~Fλ ∝ ~C × ~λ. If the constraint is removed, we can expect
that the instantaneous dynamic force on a vortex should
act oppositely to this result. However, the coupling of the
force with the vortex gyrovector leads to dynamics that
involves a Magnus type interaction, hence, the vortex ac-
celeration could be perpendicular to the directon of that
force.

For small displacements x0 from the disk center, the
constraint field component λy is roughly proportional to
the displacement, and reverses sign with the circulation.
It is helpful to write this in the form x0 ≈ −αCλy , where
α is a proportionality constant that depends on the disk
radius, thickness, and core area used. α can be obtained

as the reciprocal of the slope near the origin of the curves
in Figs. 5 and 6. Transforming λy into its equivalent
magnetic field intensity Hλ, via relation (96), leads to a
relation,

x0 = −αC
a2

λ2
ex

Hλ

MS
(97)

The relation suggests the constraining field needed, as
a fraction of the saturation field, necessary acting on
the core to hold the vortex at x0. For instance, for a
disk with R = 40a, L = 6a, the inverse slope in Fig. 5
gives α ≈ −650 nm, while the ratio a2/λ2

ex ≈ 1/7. Then
x0 ≈ −(90 nm) (Hλ/MS); a constraint field at 10% of
saturation would secure the vortex about 9 nm from the
disk center. On the other hand, to secure the vortex
near x0 = 70 nm requires Hλ approaching saturation.
In fact, the curves in Fig. 5 turn over close to satura-
tion, whereas, for the thinner disks of Fig. 6, values of α
are larger and the core constraint field does not get close
to saturation. This shows how in fact the calculational
procedure is more reliable for thinner disks, as expected.
The constraint field, however, is just a calculational de-
vice, and the values estimated here are not expected to
have a real existence in experiments.

The effective potentials found with an applied field
have minima at the unforced equilibrium vortex location.

When the vortex is there, the constraint field ~λ required
is zero. A relation for the vortex equilibrium location
in terms of applied field holds approximately, similar to
(97), but with a different proportionality constant, β:

x0 = −βC
a2

λ2
ex

Hy

MS
(98)

This results from a basic definition, x0 = −βChy. Values
of β can be estimated from the slopes near the origin in
Figs. 8 and 10. For instance, again for R = 40a, L = 6a,
one gets β ≈ 8500 nm, whereas, for R = 40a, L = 2a,
the value is much larger: β ≈ 24000 nm. This quanti-
fies the much greater ease with which the vortex position
can be shifted in the thinner disks. For the thicker disks
with L = 6a, we get x0 ≈ −(1200 nm) CHy/MS, and
the vortex is pushed out of the disk at Hy/MS ≈ 0.056.
For the thinner disks with L = 2a, the relation is
x0 ≈ −(3400 nm) CHy/MS, and the vortex is pushed
out at Hy/MS ≈ 0.016. Control of vortex position in
these examples, then, requires very modest applied fields,
that increase with disk thickness and decrease with disk
radius, see Figs. 8 and 10.

Our calculations with a central nonmagnetic “hole re-
gion” confirm earlier works that show their pinning ef-
fects. In addition, the depth of the pinning potential is
seen to increase quickly with the hole size. When an ex-
ternal magnetic field is applied, for appropriate parame-
ters it is possible to create an effective potential with two
minima for the vortex position. It should be possible to
switch the vortex reversibly between these states, with-
out expelling it entirely from the nanodot. Really, the
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potential in this case is two-dimensional; the dynamics
during such a switching process would likely cause the
vortex to move in some complex two-dimensional path
between the minima.

The calculations here used only a single central hole,
but can be extended to analyze systems with an off-
center hole or multiple holes. For example, a pair of
non-symmetrical holes will have an asymmetrical effec-
tive potential for the vortex. That arrangement could

be used to to switch easily in one direction, with a more
difficult switching in the opposite direction. An asym-
metric metastable detection device could be designed to
sense one direction of magnetic field pulses above some
desired threshold, while being relatively immune to the
opposite field direction. For any devices based on vortex
manipulation, however, the challenge may ultimately lie
in finding easy ways to discriminate the multiple states
of the vortex in the dot.
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Schüttler (Springer-Verlag, Berlin, 1988).

20 G.M. Wysin, Phys. Rev. B 49, 8780 (1994).
21 C.E. Zaspel and D. Godinez, J. Magn. Magn. Mater. 162,

91 (1996).
22 G.M. Wysin, Phys. Lett. A 240, 95 (1998).
23 A.R. Pereira, Phys. Lett. A 314, 102 (2003).
24 A.R. Pereira, L.A.S. Mól, S.A. Leonel, P.Z. Coura, and

B.V. Costa, Phys. Rev. B 68, 132409 (2003).
25 F.M. Paula, A.R. Pereira, L.A.S. Mól, Phys. Lett. A 329,

155 (2004).
26 L.A.S. Mól, A.R. Pereira, and W.A. Moura-Melo, Phys.

Rev. B 67, 132403 (2003).
27 M. Rahm, J. Biberger, V. Umansky, and D. Weiss, J. Appl.

Phys. 93, 7429 (2003).
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