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INTRODUCTION

We consider a classical 2D Heisenberg model with easy-plane symmetry. Koster-
litz and Thouless! showed that such a system has a topological phase transition: at
low temperatures there exist bound vortex pairs which start to dissociate above a
critical temperature Txp. Just above T we can assume that there are only a few
free Vortices which move ballistically between their interactions. A model of dynam-
ics built on such a “vortex gas” has been constructed assuming a Gaussian velocity
distribution.? Here we use effective equations of motion for the collective (center-
of-mass) vortex variables and compare these analytical results of vortex-vortex and
vortex-anitvortex interactions with molecular dynamics simulations of the full spin
system.3 We investigate both ferromagnets (FM) and antiferromagnets (AFM) with
an anisotropy parameter A varying from zero to one.

Theory

Our system is described by the Hamiltonian

H = —J ) (SFS7 + SYSY + Xsisi), (1)

(i.5)
with the sum running over all the nearest neighbor pairs in the plane and a posi-
tive exchange parameter J for the FM and a negative one for the AFM. Assuming
Landau-Lifshitz dynamics we obtain two different single vortex solutions from the
equations of motion:? for A < A¢ (FM: A¢ & 0.72; AFM: A, & 0.71) static vortices are

purely in-plane; for A > A; an additional out-of-plane component develops, allowing
a continuous crossover to the isotropic Heisenberg limit (A = 1) where the topological

excitations are merons and instantons.

Following a general procedure for magnetic systems,® and allowing also some
damping, an equation of motion of a single vortex in the presence of another vortex
in the center-of-mass coordinates and the continuum limit is

Gxv+Dv + L F =0. (2)
m
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Here G and D are the gyrovector and the dissipation matrix, respectively, and both
contain informatjon about the actual vortex structure. F is the static force between
the two vortices,! 4 is the gyromagnetic ratio, and my is the local magnetic moment
per unit area.

Simulations

For the simulations we considered a 50x50 square lattice with free boundary
conditions. The integration was performed with a fourth-order Runge-Kutta method
with time step 0.04 A/JS. For A < A, we initialized the simulations with two static
in-plane vortices while for A > ). the four spins surrounding the vortex cores were
given a small z component to guarantee the desired sign of the out-of-plane structure.

Ferromagnet

For A < A. the vortex is purely in-plane with small z components pr-oportional. to
the velocity. For this case the gyrovector is vanishing and Eq. (2) predicts a motion
of the vortices along straight lines: if the two vortices have equal vorticities they
repel each other while a vortex and an antivortex attract each other._ quever_, the
simulations were performed on a discrete lattice which acts like a periodic “Peierls-

Nabarro” pinning potential.® Thus the vortices have minimal energy if they are in
the middle of a plaquette of four spins and they have maximal energy if they are at
a lattice site. The resulting trajectories show therefore some fluctuations around the
straight lines expected from Eq. (2). Moreover, the vortices will stop moving if their
mutual distance is so large that the force between them is too weak to push them
over the lattice potential. This scenario agrees very well with our simulations (Fig.
5%

; For A > ). the vortices have a large ferromagnetic ordered out-of-plane structure
which is extended over several lattice constants and which makes these vortices less
sensitive to discreteness effects. The out-of-plane structure also acts like an effec-
tive magnetic field on the other vortex described by a nonzero gyrovector. In addition
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Fig. 1. Trajectories of vortex pairs on a FM with A < A; (square: A = 0.0; triangle:
A = 0.3; star: A = 0.6), ¢1 = g2 = 1 and initialized with two static in-plane
vortices. Only a part of the lattice is shown: 18.0 < z,y < 30.0, and the
time between two successive points is four in our units.



eab(jh other J(Fig. 2a) while for p;ql =,-—-p2q2 ‘tflé;’ m:):r:p-e;x_'é.llel to each other (Fig.
2b).

Antiferromagnet

In the AFM the static vortices have, for all A, a local antiferromagnetic order,
and deviations from this structure due to the vortex motion are in the same direction
for adjacent spins.

For A < A; this gives almost the same behavior as in the FM for the same )
range, and the simulation yields a picture which is very similar to Fig. 1. For A > ),
however, the behavior is quite different to the FM: here the out-of-plane structure is
antiferromagnetically ordered which gives no contribution to the gyrovector. Thus,
also for A > A the vortices will feel only the static force between them and move on
straight lines, but without the strong dependence on the discrete lattice (Fig. 3).

CONCLUSIONS

Considering pairs of unbound vortices in a classical easy-plane Heisenberg model
we found that the resulting trajectories depend strongly on the anisotropy parame-
ter A and the exchange parameter J (FM or AFM). For A < A, the mainly in-plane
structure gives a zero gyrovector in Eq. (2) and therefore the vortices move on
straight lines caused by the static force (attraction or equal, repulsion for different
vorticities). The discreteness effects are strong in our simulations which were per-
formed at T' = 0. For T 2 Tk, where we expect ballistically moving vortices, the
thermal fluctuations should be large enough to cancel this lattice effect. For A > A,
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Fig. 2. Trajectories of vortex-vortex simulations on a FM with A =0.9,p; =py =1
and initialized with two static out-of-plane vortices at positions (23.5, 23.5)
and (24.5, 25.5) (star: start positions; circle: vortex 1; triangle: vortex 2);
a) q1 = ¢2 = 1, the dashed line is a guide to the eye and connects successive
points by straight lines; b) ¢ = —¢2 = 1.
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Fig. 3. Trajectories of a vortex-vortex (¢; = ¢ = 1) simulations on an AFM with A
= 0.9 and initialized with two static in-plane vortices.

we must distinguish between J >0 and J < 0. For the FM the out-of-plane structure
results in an additional rotation to a translation of the vortices depending on the
products p;q; and pogy. This behavior is similar to scenarios in 2D incompressible
fluids,” superconductors® and s1.1perﬂ1.1.ids.g In the AFM for A > A, however, the out-
of-plane structure has no additional effect on the motion and we find only attraction
or repulsion due to the static force.
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