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ABSTRACT

The structure and dynamics of vortex spin configurations is considered for a two-
dimensional classical Heisenberg model with easy-plane anisotropy. Using both ap-
proximate analytic methods based on a continuum description and direct numerical
simulations on a discrete lattice, two types of static vortices (planar and out-of-plane
) are identified . Planar ( out-of-plane ) vortices are stable below ( above ) a critical
anisotropy. The structure of moving vortices is calculated approximately in a contin-
uum limit. Vortex-vortex interactions are investigated numerically. A phenomenoclogy
for dynamie structure factors is developed based on a dilute gas of mobile vortices above
the Kosterlitz-Thouless transition. This yields a central peak scattering whose form is

compared with the results of a large-scale Monte Carlo-Molecular Dynamics simulation,
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INTRODUCTION

Two-dimensional magnetism has attracted heightened interest in the last few years
because of: (i) the availability of much improved quasi-two-dimensional ferromagnetic
and antiferromagnetic materials, including layered structures, magnetically-intercalated
graphite and, most recently, Cu-based high-temperature superconductors ; (ii) rapidly
increasing information on spin dynamics from inelastic neutron scattering, particularly
at low frequencies and long wavelength ; and (iii) advances in numerical simulation
capability on large lattices which can guide and test modeling of nonlinear structures
and their dynamics.

Classical, anisotropic Heisenberg models are important for a large class of mag-
netic systems. Easy-plane (XY) symmetry is especially interesting because it admits
vortex-like spin configurations and the possibility of a topological vortex-antivortex un-
binding transition, as proposed by Kosterlitz and Thouless. The advances outlined
above now allow us to seriously probe the dynamics associated with such a transition
in real magnetic matenals.

In this paper we consider the classical Heisenberg ferromagnet in two spatial di-
mensions and with easy-plane exchange anisotropy,

H=-J ) (S55:+8%5%+ASL8%), (1.1)
{mn)
where J is a coupling constant and the summation is taken over the nearest neighbour
square lattice sites. Our principal concern is to understand in detail the structure and
dynamics of vortex spin configurations and their signatures in dynamie structure factors,
5(¢,w), as measured by inelastic neutron scattering.
In section (IT) we review existing literature and show that continuum theory vields

I
two types of static vortices: viz. "planar” (in which spin components are confined to
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the XY plane) and "out-of-plane” (in which there is a pulse-shaped S, distribution ac-
companying the vortex shape in S; and S, ). In section III we study these vortices via
a direct numerical simulation of the discrete system (I.1), using Landau dynamics and
Landau-Giibert damping. We find a critical A (A.): for A > A, (< A.) the out-of-plane
(planar) vortex is stable, By studying square, triangular and hexagonal lattices, we con-
jecture that A, increases with lattice coordination number. The exact numerical studies
also support the qualitative vortex energy dependence on A obtained in a perturbative
continuum calculation.

Turning to vortex dynamics, an approximate analytic calculation in the continuum
limit (section IV) suggests that asymmetric out-of-plane spin components develop for
both vortex types, with the asymmetry occuring about the direction of vortex motion.
This is confirmed by numerical studies on the lattice. Preliminary numerical studies
of vortex-vortex interactions (Section V) reveal that the anisotropy parameter A is also
important for the competition between the attractive/repulsive force existing between
a vortex-(anti)vortex pair and the pinning forces due to the discreteness of the lattice.
For A > A, the forces between the pair easily dominate the pinning forces of the lattice
but, for A < A, unless the pair separation is rather small, or A is very near A, the
pinning forces of the lattice are predominant.

Finally, in section (VI) we consider a phenomenology based on a dilute gas of mobile
vortices to calculate S(§,w) above the Kosterlitz-Thouless transition temperature. This
suggests an intrinsic "central peak” component (i.e. spectral weight at w ~ 0). In
particular we note that the correlation of 5 spin components (5, .(q,w)) is very sensitive
to the vortex shape. Thus the velocity-dependence of the shape noted above has a direct
influence. We compare our predictions with numerical simulations on a 100 x 100 square

lattice using a combined Monte Carlo-molecular dynamics technique, and discuss the
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relevance of dynamic vortices to the observed central peak structure.

Section VII contains a summary and concluding remarks.
II. Equations of motion and static solutions

The Hamiltonian given by (I.1) reduces to the well known isotropic Heisenberg and
XY models for A = 1 and 0, respectively. The classical spin vector, 5, = {§Z,5¥, 57} ,

can be specified by two angles of rotation 4, and &,
Sn = S|[cos by cos Py, cos b, sin ®,,,sinb,]. (I1.1)

In a continuum approximation, Hamiltonian (1.1) can be written as

”2/&“ [1—-.51-m }][IE il +(1—=m 3}(?@}’+45m?] (I1.2)

m?)

whers

b=1-2A (I1.3)

and m = sinf. The variables m and ® constitute a pair of canonically conjugate

variables, which means that

(11.4)

where H is the Hamiltonian density in (11.2).

The equations of motion obeyed by m and @ can be obtained by using (11.4)

1 9m

S5 = (1-m?)A® —2mVm. Ve (I1.5a)
1 0% Am 2 m 2
TS B = (T T OAm + midh = (V)] — e (Vm). (11.5b)

These equations agree with the ones obtained by Takeno and Homma! after an appro-

priate change of variables is performed. Those authors presented a general theory to
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derive a classical spin system from the original quantum Hamiltonian for generalised
Heisenberg models. However, only the one dimensional case was studied in detail.

We are mainly interested in studying nonlinear excitations in this two-dimensional
system and we will start our discussion by considering static solutions to eqs.(IL5).
Later in this pn.pe::, we will study the small distortions suffered by these objects due to
their motion.

It can readily be seen that the set of expressions
my =10 (I11.6a)

&, =qtan™! (%) g=41,42,... (I1.6b)

corresponds to a particular solution to egs. (IL5). The condition expressed by (I1.6a)
requires 5% = 0, in which case Hamiltonian (I.1) reduces to the planar model and (I1.6b)
describes the usual vortex of the Kosterlitz-Thouless theory, Hereafter, we will refer to

this solution as a planar vortex. The energy of a single planar vortex,
E, = xJS%1n(R,/ra) , (11.7)

has the well known logarithmic dependence on R, , the size of the system. r, is a
constant of the order of a lattice spacing and corresponds to a cut-off for the radial
integration.

Another particular static solution of eqs.(IL.5) (for the two-dimensional case) has
been obtained by other authors®* by noticing that taking (I1.6b) for @ one can obtain a
static solution of (II.5a) by requiring m to be a function of the radial polar coordinate,
i.e.,,m = m(r). The explicit expression for m(r) should be obtained from the remaining

1
equation (I1.5b). Analytical (instantons) solutions for the isotropic Heisenberg model
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(A = 1) have been obtained by Belavin and Polyakov* and also by Trimper®, Un-

fortunately, eq. (IL.5b) cannot be solved analytically for general A, However, for the

conditions
+5, forr =0,
m(r) = {ﬂ, fc: :: o (I1.8)
asymptotic solutions can be given:
azrz
PS(i— Erz)- for r— 0 (11.9a)
Moue = 1/2 %
c.‘j’(ﬁ) exp(r/ry), forr — co (11.9b)
T

where p = +1 depending on the sign of m,,, at the origin, and r, is defined by

o (I1.10)

e

Y
and is interpreted as being the "radius” of the vortex core. a and ¢ are constants that
can be fitted by matching the asymptotic solutions (I1.9). [ If we match at r = r, we
obtain a = 7e/3 and ¢ = 37/10]. Eqs.(11.9) were obtained for g = %1 since this is the
case of main interest. We will refer to this solution as the "out-of-plane” vortex.

The asymptotic solutions obtained by Takeno and Homma® are of similar form
although there are some differences between their expressions and ours, partially because
they included an external field applied along the z-axis. Hikami and Tsuneto? arrjved
at slightly different vortex-like solutions because they neglected the contribution of a
term &sinf cosfV8 in their continuum Hamiltonian, Expressions identical to those in
eqs.(I1.9) were obtained by Nikiforov and Sonin® for the Hamiltonian

H=-J]) [SESI+ 5%SY + S5 57] —8J ) (S5)%, (I1.11)

m,n m
i.e., with local instead of exchange anisotropy. For this model, the vortex radius is

7, = 1/V/26. Hamiltonians (1) and (I1.11) become equivalent for A — 1, § — 0 and, in
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this limit,r, and 7, diverge. The difference between these two models becomes greater
in the opposite limit, A — 0 and § = 1. In particular, we have r, =0 and 7, = lfv"i
for A =0 and § = 1, respectively.

If we insert A = 0 into (11.5), we do not obtain a decaying solution as in eq.(I1.9b).
Thus the only me;niﬂgful static vortex solution is the planar one — which is in agree-
ment with our vortex radius definition [r,(A = 0) = 0]. It should be stressed that r, is
less than one lattice spacing for an appreciable range of A (ry, < 1 for A < 0.8). This
leads us to consider whether the discrete nature of the lattice introduces effects that
invalidate a continuum approach. Numerncal simulation studies on a discrete lattice
have been performed (section I11) in order to obtain information about the behavior of
vortex solutions as functions of A. In particular, we have determined the ranges of A for
which the static planar and out-of-plane vortex solutions are stable.

The energy of a single out-of-plane vortex,E,,, is calculated in the Appendix. We
find that, for A € 0.8, E,,; is higher than ¥, and increases with A. This A dependence

of Egy¢ is in agreement with our simulation results, presented in section IIL.

III. Single-Vortex Simulations

In order to clarify the behavior of the two static vortex solutions identified in section
IT as functions of the anisotropy A and the location of the vortex center on the lattice,
simulation studies were performed on a 40 x 40 square lattice. The discrete equations

of motion used in the numerical simulations are

Si =8 x F; — e§; x (§; x F), (III.1)
Fi=J0) (Siz+SVg+A5:2). (I11.2)
i
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The sum on j only runs over the nearest neighbors of i. The parameter ¢ is the strength
of a Landau-Gilbert damping, which was included for testing vortex stability and for
damping out spin waves generated from non-ideal initial conditions. Neumann or free
boundary conditions were used for simulating single vortices. The equations for the xyz
spin components were integrated using a fourth order Runge-Kutta scheme with a time

step of 0.04 (in time unit %/JS). Conservation of energy and spin length (to about 1

part in 10°) served as checks of numerical accuracy.

The first set of simulations used a single planar vortex in a unit cell of the lattice
as the initial condition. ' The equations of motion were integrated for several hundred
time units, using a damping strength ¢ = 0.1, for 0 €< X < 1. We observe that for all
A < (0.72 £ 0.01) the planar vortex remains as the stable configuration; a bell-shaped
out-of-plane spin component centered at the vortex center is seen to develop only for
A > 0.72. Figures [1(a,b})] show the stationary long-time configuration obtained for
A = 0.80,0.90. They agree rather well with the asymptotic expressions given by (11.9).
The radius of the area where m differs appreciably from zero —~ 3 lattice sites for
A = 0.80 [ru(X = 0.80) = 1] and ~ 4.5 for 0.90 [r,(A = 0.90) = 1.5] — increases with A
in the same way that r, does. Fitting eqs.(IL.9) to the resulting out-of-plane structure
we obtain @ = 0.397 and ¢ = 0,657 which are close to the values we find when matching

the asymptotic solutions at r = r, (section II).

The stability of the planar vortex for small A (A < 0.80) can hel established analyt-
ically by considering small perturbations, ($;,m;), to the static vortex (®,,m,). We

use the ansatz

'§=‘§P+‘i.‘;m=mp+mi (II1.3)
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in the Hamiltonian (I1.2) obtaining
R,
SH = H(®,m) = B(®,my) = =IS? [ rdr(\(@ma)? 4 md (46 - 5 ) +
+(V2;)*). (II1.4)

The first and I:h.in.'l terms in the integrand of (II1.4) are always positive but the second
term is positive only if 7 > rp, where rg = 1/v/28. For 0 < A < 3/4,r, is inside the
vortex core and integration from r = r, to R, always yields §H > 0, i.e., the planar
vortex 1s stable here.

Another set of single-vortex simulations was performed using a static out-of-plane
vortex as initial condition. The initial configuration was specified by eq.(11.6b) for &
and (A-3) for m ( only the first two coefficients,or; and a; were taken). We find that
the initial out-of-plane vortex relaxes to a planar one for A < 0.72, Again, only for
A > 0.72, does the out-of-plane vortex stay as a stable confizuration.

Complementary simulations were performed using triangular and hexagonal lat-
tices. Similar behaviors were found: viz., there is a "critical” value A, above which the
static out-of-plane vortex solution is the stable configuration; for A < A, the stable
configuration is the planar vortex. The static limit of the equations of motion derived
for these non-square lattices leads to asymptotic solutions identical to the ones given by
eqgs. (I1.6) and (I1.9) — this result could be expected since these equations are obtained
in a continuum theory. Our numerical simulations give A. = 0.62 for the triangular
lattice and A. & 0.86 for the hexagonal lattice. This suggests that the static planar
vortex stability decreases with increasing coordination number.

A fourth set of single-vortex simulations using an out-of plane vortex as initial
condition but considering different positions of the vortex-center was performed to give

insight into how the energy of this vortex depends on the location of its center—relevant
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for vortex dynamics. Three positions in a square lattice were considered: (a) at the
center of a square formed by four neighbors; (b) at the center of a line joining two
nearest neighbors; and (c) at one of the lattice sites. For small A, the total energy is
different for each of the cases, being lowest for case (a) and highest for (¢). As A increases
the differences hetIchn these energies decrease , and for A = 0.7 all these energies are
close to each other. The A-dependence of the energy can also be extracted from these
simulations and agrees qualitatively with the behavior predicted by the calculations

given in the Appendix.
IV. Single Moving Vortices

Above the Kosterlitz-Thouless transition temperature the system is in a disordered
phase characterized by unbound vortices interacting with each other. Equations of
motion for single moving vortices were derived by Huber” and Nikiforov and Sonin®. In
this section we will study the distortion suffered by the static vortex solutions given in
Section III due to their motion. The procedure chosen is the one adopted in ref.[d} for
Hamiltonian (I1.11). We will also be interested in obtaining the energy of these moving
vortices as a function of their velocity v.

We use an ansatz similar to the one given by eqs.(II1.2) writing
P=F; +P;,, m=mp+my, (I'V.1)

where (®q,mg) denote the static solutions given by eqgs.(I1.6) and (11.9) and (®,,rn,)
are the distortions (assumed small) due to the vortex motion. Inserting (IV.1) into

(IL.5) , we obtain

7.V, _ Amy 2mpAmy 2y , 4m3(Vmg)?
TE e (ol o [(1 —mgye ~ = (VBT s
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(Vm,)? 2mg
+ (1_—-;55 my + 2myV@, - VI, + mvﬂiu - Vmy, (Ivzﬂ}
—2 ';m“ = (1 =m2)A®; — 2myVmg - Vmy — 2meVm, - V&, (IV.2b)

after linearizing in m;,®; and also in v. In eqs.(IV.2) we have used

*

8
%:—i?@,%:-—ﬁ'-?m (Iv.3)

for a steady state vortex motion with velocity .

It is clear from eqs.(IL.5) that a moving vortex cannot be confined to the XY-plane,
The moving structure must develop some out-of-plane spin component. Using eqs. (I1.7)
into (IV.2) we have .

OBy
JSr

= —AAmyp+mp [45 = i] (IV.4a)

1
0=A%p, (I'V.45)

where €4 is the unit vector for the ®#-coordinate. A particular solution of eq. (IV.4b) is

given by @,p = 0 and the asymptotic behavior of m; p can be obtained from eq. (IV 4a)

et u};"r:—;—srsin(é-u), r—0 (IV.5a)
i F-ésl v sin(¢—a) ]
et — r— 0o {IV.5b)

T48JSr 4678 r :

where « is the angle between the direction of the velocity ¥ and the x-axis. We notice
that the moving vortex does not possess the circular symmetry exhibited by the static
vortex since it depends on the polar coordinate ® and is symmetric about the v-direction.
This symmetry could be expected if we want the profile to define a distinct direction
for the velocity and is confirmed by our vortex-antivortex pair simulation (section V).

We note that eq. (IV.4a) can be solved exactly in the A = 0 limit leading to

v rsin(¢ — a)

JS 45rz—1 ° ' {1V.6)

mp =
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which has the asymptotic behavior predicted by eqs. (IV.5). The above equation is an
exact solution to (IV.4a) only for § = 1 but we can expect that it is a good approximation
for § & 1. Eq. (IV.6) has a singularity (and changes sign) at r* = (1/46)"/? which for
6 & 1 is less than a lattice constant away from the vortex center. It is reasonable to
assume that keepi;lg the neglected nonlinear terms would suppress the divergence and
force myp to cross zero near r* to justify the assumption of small spatial derivatives.
The reliability of our asymptotic r — 0 solution is questionable but this will not affect
our calculations because this solution will be used only in a negligible regime [0 < r < ry,
and ry < 1 for A < 0.8]. Also, we will be interested in correlation functions for small
q only (section VI) , where the asymptotic r — oo solution is sufficient, Nevertheless,
this question will be properly handled using a numerical simulation (section V).
Asymptotic expressions for the small corrections to the out-of-plane vortex due to

its motion can be determined by substituting eqs. (IL.6b) and (11.9) into eqs. (IV.2).

We obtain
b
miop = —;Jusrasin{é—&) (I'V.7a)
u
= p—s - VIT
Piop PJST'CDSM ) (VI.75)
for r — 0 and
y_Sin(d=2) (IV.7¢)

THOP=sTe: v ‘

cvry!? e=riruy cos(¢ — a)
JS rif?

$i10p = (IV.7d)

for r — co. As before, the out-of-plane component m is asymmetric about the direction
of motion but now this asymmetry is a small correction to be added to the core shape
given by eq. (I1.9a), while in the previous case, eq. (IV.5) corresponds to the predicted

I
shape for the out-of-plane component of a vortex moving with small velocities. The
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motion also destroys the circular symmetry of the in-plane component. If the procedure
we have adopted is a good approximation, the vortex radius will not be strongly affected

by the motion.
The energy of the moving vortex given by egs. (IV.5) can be evaluated using
Hamiltonian {II.E]’. For small A, we can use eq. (IV.5b) and expand the integrand in

eq. (I1.3) obtaining
2
TU
= — V
Euyp=Ep+ 357 In(R,/ra), (IV.8)

which is valid only in the low velocity regime. According to eq. (IV.8), the energy of
this moving planar vortex, Ejp, increases with its velocity.

The energy of a moving out-of-plane vortex, i.e., the one specified by egs. (IL9),
(IV.1) and (IV.7), is calculated by the same procedure. Keeping terms up to second

order in myap and ®,4p, we obtain from eq. (11.3)

(Vmiop)?

T—mi) ~ 2(Vmior) +(1 - m§)(Vei0p)*+

JS5?
Epmor = Eoue + —— /ﬂ’:r [

(Vma)* Vmy - Vmyop

1
Ry R s S . i -4 v
+(“ ﬂ)’”“"" (1= m3) 0P = Ao Ty Moe

— dmgmyopV e - VPi0p] , (IV.9)

where mg is the static out-of-plane vortex solution. The terms in first order in myop
and @, p are not shown in eq. (IV.9) because they give zero contribution to the energy.

Here, we will be interested in A > A.. The calculation is straighforward and gives

mv? [ 1 8¢ 4. a2 2a* (41 -39% 6r2\ ,
Esop = Eout VA {2—5 In(R,/r.) + vt - 3 ( <3 T = ) rl']
(IV.10)

where the logarithmic term is clearly the dominant one. Thus, the energy of a moving
out-of-plane vortex increases with the velocity in essentially the same way as the energy

K
of a moving planar vortex.
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V. Vortex-Antivortex Pair Simulation

In thermodynamic equilibrium a given vortex (or antivortex) will be influenced by
neighbouring vortices, and the idealized simulations of isolated vortices in the previous
section III are oversimplified. We can make an attempt to understand vortex-vortex or
vortex-antivortex interactions by simulations of isolated pairs (either vortex-antivortex
or vortex-vortex). Here we report on vortex-antivortex simulations. The results of
these simulations may give insight into how the interactions lead to corrections to ideal
gas phenomenologies, In particular, vortex pair simulations provide an opportunity for
observing attractive forces and, additionally, forces transverse to the line connecting the
centers of the pair. Such -ﬂ. transverse force has been suggested by Huber (eq.(2.2) of ref.
[7]). These simulations also can indicate how the stability of a planar or out-of-plane
vortex might be affected by the fields of neighbouring vortices. Finally, we note that
this is an attempt to generate out-of-plane vortex profiles due to the motion . These
profiles can be fitted to analytic expressions for moving vortices, such as those derived

in the last section.

We consider simulations where the initial condition is a planar vortex-planar an-

tivortex pair, separated by a distance ry between their centers,

¢ = tan™" (r’iuﬁ) — tan™! (;?%w‘_?) (V.1)

A square lattice of side R = 100 with periodic boundary condition was used. For
a large initial separation,ro = R/2, the equations of motion with damping strength
¢ = 0.1, were integrated out to time ¢ = 400 units. (The damping produces a slowing
down of the motion and leads, eventually, to anaihilation of the vortex pair ) We

find that the behaviour of the solutions depends on whether A > 0.8 or A < I{}.T. In
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either case, there is ac initial relaxation of the configuration on the boundaries, because
the initial condition used involved an expression for a pair in an infinite system, which
necessarily was spatially truncated to fit on a finite system. During this initial boundary
adjustment period of about 10 time units, the total system energy decreases because of
the damping, while the configuration re-organizes slightly to adapt itself to the finite
system size. During this short-time relaxation the pair remains planar, so that near
t = 10 we have a configuration for a planar pair confined in a finite system. The longer
times of the simulation can be thought of as testing the stability of this confined planar
pair.

We found that for A < 0.7 the final configuration at ¢ = 400 units is essentially
unchanged from the "initial” (planar pair in the finite sysytem) configuration at ¢ = 10.
The pair remains planar and neither vortex develops any velocity. The configuration
was determined to be stable by the fact that the energy had become independent of
titne. It is probable that there is a weak long-range attractive force between vortex
and antivortex (force decaying as 1/r for XY model), that can be cancelled out by
pinning forces due to the discreteness of the lattice, We note that for much smaller
initial separations, and A = 0.7, it is possible for out-of-plane components and velocities
to develop (see below).

On the other hand, for A > 0.8,0ut-of-plane spin components develop, even for
large initial separations, and the vortex and antivortex both develop velocity. In the
time interval 10 < t < 100 [fig.2], the out-of-plane spin components have an (anti-)
symmetry about the line connecting the vortex and antivortex; the z-components for
both vortex and antivortex are positive on one side of the line and negative on the
other side. This sort of configuration is consistent with expectations for moving planar

vortices as discussed in Section IV. The vortex and antivortex move toward each other,
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and at the same time they develop equal velocity components transverse to the line
joining their centers. In terms of §;, a unit vorticity vector with only a z-component,
whose direction is given by a right hand rule, the direction of the transverse velocity

unit vector U3¢ can be given by
v = (F12 X @1)p1 (V.1)

Subscripts 1 and 2 refer to the vortex and antivortex respectively, and 75 is a unit vector
from particule 1 to 2. p; was defined in eq.(11.9a). (This direction is consistent with
the prediction by Huber’. The equation is also valid with the interchange of subscripts
1 and 2 ;73 = —712 and §@; = —q, with 03¢ = ¢3,). For intermediate times ¢ > 100
,the particles develop much larger out-of-plane profiles, similar to those found above in
the single-vortex simulation. In this case, however, we expect that the profiles are not
rotationally symmetric (Gaussian shaped), since some spatial asymmetry is necessary in
order for the profile to define a specific velocity direction, as discussed in Secticn IV, A
small asymmetric part exists in addition to a larger symmetric part; asymmetry is not
obvious in our results, and would be difficult to measure due to large lattice discreteness
effects. Estimates of the vortex radius for these moving (and interacting) vortices are
comparable to those found in the single-vortex simulations. Finally,at larger times, the
particles continue to move toward each other, the total energy continually decreases,
and eventually, annihilation occurs.

For A = 0.7, we considered how the initial separation of the pair would influence the
apparent stability of planar pair configurations seen above. We found that with initial
separations 4 < ry < 10 [fig.3] , the pair aquired equal and opposite velocities and
quickly annihilated. The out-of-plane spin components were (anti-)symmetric about

3 * - - - - - r k]
the line connecting the particles' centers, being positive on one side and negative on
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the other side (as found above for 10 < ¢ < 100 with A > 0.8). The time intervals until
annihilation were approximately 6,10,16, and 25 time units for initial separations of
4,6,8, and 10 lattice units, respectively. For an initial separation of 12 lattice units, the
pair also aquired velocities, which became appreciably only after 200 time units, but the
motion was not rectilinear. Instead, the pair aquired an orbital motion, moving through
less than half a revolution in 100 time units before annihilating. Also, the out-of-plane
spin components were more like those of an out-of-plane vortex as in Section IV. These
results suggest that at small separations, the attractive forces between the pair can
overcome the pinning forces due to the lattice, and there is a well-defined eritical radius

beyond which pinning is the dominant force.
VI. Dynamic Form Factor for the Out-of-Plane Correlation Function

A phenomenological model has been proposed by some of us? to explain the dy-
namic properties of spin vortices in two-dimensional easy-plane ferromagnets. This phe-
nomenology assumed an ideal, dilute gas of free vortices above the Kosterlitz-Thouless
transition temperature moving in the presence of renormalised spin-waves and screened
by the remaining vortex-antivortex bound pairs. Using that model one can calculate the
vortex contributions for the wavevector and frequency dependence of in-plane,S, . (7, w),
and out-of-plane,S,.(§,w), dynamic structure functions.

The in-plane and out-of-plane correlations must be carefully distinguished®: the
in-plane correlations are globally sensitive to the presence of vortices while the out-of-
plane correlation function is sensitive to the vortex shape and size. It is clear from
the previous sections that, for the XY model, the correlations of the out-of-plane spin
movements must derive from moving planar vortices which have non-zero out-of-plane

H
spin components. The previous phenomenology® used only the out-of-plane vortices
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but, as discussed earlier, out-of-plane vortices are unstable for the XY model and also
for the anisotropic Heisenberg model with A < 0.72. In this section, we calculate the
out-of-plane correlation function,S.,(§,w), taking into account moving planar vortices.
The modifications due to vortex motion affect only the vortex shape and size. The
in-plane r.nrrelatir;n function is not sensitive to these features and, for §;.(§,w), the
results given in ref.[8] will not be changed.

The procedure is the same as in ref.[8]. The spatial Fourier transform of the out-

of-plane correlation function is given by
St
" (2n)?

where n, is the density of free vortices,P(%) is the single-vortex velocity distribution

Se:(q,1) /d“uP (7)[f(F, 7)])2e" 77" (VI.1)

and

flg,v) = /dzrm[rjﬂ‘if'ﬂr (VI.2)
is the velocity-dependent " vortex form factor”. Any modifications concerning the vortex
shape and size will directly affect this vortex form factor.

We know from previous sections that for A < A, the static configuration has no
out-of-plane component, which gives f(g) = 0. However,for the moving planar vortex,
m is given by

m(r) = vg(r)sin(¢ — a) (VI.3)
where g(r) is some radial function whose asymptotic behavior is known (eqs.IV.5).

Inserting eq.(V1.3) into eq.(V1.2) we obtain

f(q,¥) = t27v siucxf rg(r)Jy(qr)dr. (VI.4)

o

For small q, it is a good approximation to use g(r) ~ [46J5r]~! and we obtain

wusmal

&) =i = A< A '(V1.5)
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Insert for page 19:
In order to compare with the autocorrelation function of Huber! we

integrated over q

mn FE

[ 1,(a)d%q = —5— en(ne/a). (V1.10)
16624

n depends on the cut-off, e.g., n = n/4¢ using (VI.Bb) for 0 < q < n/a, or
n=1if we simply restrict (V1.7) to n/€ < q < n/a.

Equ.(I1.12) of Huber’ for the autocarrelation function reads in our

notation

mn

z z Wi
<5n{t}5n{ﬂ}> = iﬁﬁzdz < v(t)v(0)> En(L/a): (V1.11)

where a cut-off at | (size of the system) was made. Huber calcuiaied
<v(t)v(0)> assuming a diffusive rather than 2 ballistic motion of the
vortices. Therefore the freguency dependence of the Fourier transform
(footnote 28 of Ref. 7) is different from that of our central peak in (VI.6).
However, the integrated intensity is independent of the kind of motion and can
be compared directly with our result. In fact. (VI.11) for t=0 is identical

to (V1.10), apart from the logarithmic term bscause of the different cut-off.



and

o Tty 1 —luZ i oa)?
S"I:QTUJ:I 1) 32{5_?}1 “I{EQJE [ H 7 I 1 {I-"Iﬁ}

where @ is the root mean-square velocity.S::(§,w) exhibits a Gaussian central peak with
width I'; = #¢q. The integrated intensity is

Ny D2

L) =g5anga

(VI.7)

The integrated intensity, as well as the form factor, diverge when ¢ — 0. This divergence
occurs because we have been considering infinitely extended isolated vortices [eq.(V1.3}].
The actual radius of a vortex is limited by the presence of other vortices and therefore
must be of the order of It.]:u:: correlation length €. This can be taken into account by
the inclusion of a cut-off function like exp[—er /€], in the integrand of eq.(V1.4), with

g = 0O(1). Proceeding in this way we remove the §= 0 divergence, obtaining

(g, %) = £(3. 9)x(a), (V1.8a)
I.(q) = I.(q)x*(q) (V1.3b)
where
| x(g) =1—[1+(Eq/e)*]1/2 (V1.9)
InseryT v~ Inerdecde LA .,

For A > A., the main contribution to the form factor comes from the stable static
out-of-plane vortex structure. The expressions for f(g),5:.(g,w) and I.(q) are then
those given in ref.[8]. However, the expression for the vortex-radius must be replaced
by our eq.(I11.10).

Now we compare the predictions of this theory with the results of our MC-MD
simulations for the XY model. The simulations used a 100 x 100 square lattice with

periodic boundary conditions, allowing access to ¢ > 0.02(w/a). First, an MC ai'g'nrithm
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of 10* steps per spin was used to produce three equilibrium configurations at a desired
temperature. These were used as initial conditions for MD using 4th order Runge-Kutta
time integration with time step 0.04, sampling time At = N, x 0.04, with N, =4 or 8
depending on the wavevector of interest. A Gaussian window function was applied to
S(g,w) before usir;g an FFT algorithm for the Fourier transform. S(¢,w) was averaged
over the three initial conditions.

The simulation data show a central peak for temperatures above T} ~ 0.8J58%, We
cannot unequivocally decide whether it has a Gaussian structure but we can estimate
upper bounds for its width I'; and intensity I. and compare those to our predictions.
The half-width q-dependence,I’; = g, is very well supported by our MC-MD data
[fig.4]. Figs.(5) give the integrated intensity I.(q) as extracted from our data. The
dashed line corresponds to eq.(VL.7) and the solid line to eq. (VI.8h) where we used

e = 0.28. In order to estimate the free vortex-density we used®
ny ~ (26)7? (VI.10)

and the values for £ and © were taken from fittings performed in ref.[8]. We remark that
the orders of magnitude for I, agree well with our predictions for both temperatures.
However other processes can also contribute to the central peak. Likely candidates are
multi-spinwave processes and other effects due to vortex-vortex and vortex-spinwave
interactions . In particular, vortex-spinwave interactions should become more important

as the temperature increases.
VII. Discussion

In this work, we study static and dynamic properties of vortices in a 2D-classical
Heisenberg model with easy-plane anisotropy [eq.(1.1)]. Two static vortex spin configu-

I
rations, planar and out-of-plane, are obtained via a continuum theory. Our continuum
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treatment associates a parameter r, to the out-of-plane vortex. This parameter gives
an estimate of the vortex radius. However,r, as given by eq. (I1.10), is smaller than one
lattice constant for A < 0.8. Numerical simulations were performed on different discrete
lattices (square, triangular, and hexagonal) and they show us that planar and oui-of-
plane vortices are stable configurations of the model we are considering but through
distinct A-ranges; i.e.,out-of-plane (planar) are only stable for A > A. (A < A.). The
critical values M., obtained from our simulations, are different for each of the three
lattices: A, &~ 0.62,0.72 and 0.86 for triangular, square and hexagonal lattices, respec-
tively. This A. behavior suggests that A, increases with lattice coordination number.
A continuum theory cannot explain this behavior but it is notable that the A, listed
above are comparable to A = 0.8 — the critical value we obtained from our continuum
approach.

Concerning vortex dynamics, we considered how the vortex shape changes when
the vortex is moving. The vortex shape is important when the cerrelation of 5, spin
components is calculated and its modifications due to vortex movement must be taken
into account. We adopted an approximate analytical treatment which assumes vortices
moving at small velocities, At this time, a detailed study to determine velocities of vor-
tices (i.e., velocity distribution functions) in models like the one described by eq.(1.1)
has not been made and this assumption cannot be tested. However, in order to get some
understanding of moving vortices, we simulated isolated vortex-antivortex pairs. These
simulations qualitatively confirm our analytical results showing that an asymmetrc
out-of-plane structure develops. Some information concerning vortex-(anti)vortex in-
teractions can also be extracted from these simulations . For A > ., effects of the
out-of-plane structure on the vortex-vortex interactions can be rather strong and cor-

rections to ideal-gas phenomenologies could be important. r
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For A < A , the effects of the out-of-plane structure are small and we assumed an
ideal gas of unbound vortices with a Gaussian velocity distribution above the Kosterlitz-
Thouless transition temperature to calculate out-of-plane correlations. In this A-range,
the static vortex does not have an out-of-plane spin compeonent and the vortex contribu-
tion to S.:(q,w) comes from moving vortices. The phenomenology predicts a Gaussian
central peak for S..(q,w) whose width I'; increases linearly with the wavevector q. We
compared our theory to MC-MD simulation data obtained for the XY (A = 0) model
and find good qualitative agreement. However, it is clear that other processes must be
taken into account if one wants to improve the description. Due to the local nature
of S.. correlations, we can expect that multimagnon processes and vortex-magnon in-
teractions also give appreciable contributions to the central peak. These features have
been studied by us and will be reported in future publications. On the other hand, in-
plane correlations are globally sensitive to the presence of vortices and we believe that
the main contribution is properly given (at least for A < A.) by the phenomenological

treatment of ref.[8].
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APPENDIX

We will estimate the energy of a single out-of-plane vortex by using the continuum
version of our Hamiltonian, eq.(I1.2). We split the integral into two contributions:
one from the region inside the vortex radius, the core region, and the other from the
contribution from the rest of the system

re R,
H=nJ§? f Hedr e nTSE b Hnde, (A.1)
li]

T

Egs. (I1.9) correspond to only the first term of an asymptotic expansion and, in evalu-
ating eq. (A.l), it is necessary to take into account higher order terms so that we can
find the order (1/r?) of the second term in the integrand of eq. (I1.2). One can easily

verify that the expressions

— L~ ‘419
@ e + dr r—0 (4.2)
m (n.)u: e 1+i =21 (4.3)
> —— —_— pubink —f D e i
el nzlﬁrn > r — oo
where
ad a’
d= o= + (1= 3) (4.4)
44(2n—-1)°%X
a,,:an_,{ (E:n ) % (—=1)" (4.5)
and
44+ A

constitute asymptotic solutions of the equations of motion, eqs.(I1.5). The expansion
(A.3) does not converge, the optimal number of terms depends on r and on the \
parameter. In the denominator of each term of eq. (A.3) we have [A(1—1)]"? and the

]
expansion diverges in both limits, A — 0 and A — 1.(For A = 0, we have m = 0 due to
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ri/? multiplying the whole expansion.) The optimal number of terms is obtained at the
minimum which is approximately situated where two successive terms have the same

magnitude.

For A < 0.8, we can assume that m, as well as its derivatives, are small through

the whole region of integration so that the integrand in (I1.3) can be expanded as
A,
Eop = frJS/ rdr(AM(Vm)? 4+ 46m? + (V@) (1 — m?)] . (A.7)

We have replaced r, by r, [as in (IL7)] in the lower limit of the integral. For A < 0.8,
the best tractable truncation in (A.3) keeps only the coefficients up to aj.(The resulting

expansion will be valid for 0.01 < A < 0.71.) The calculation is straightforward and

yields

Eop = Ep + nJ5% r e 2m/r [i - (42

Fu ir,

(32 + 322\ + 15:3.1’}J , (A.8)

so that the energy Eop increases with A and is higher than Ep, the planar vortex

energy.

For A > 0.8 the best truncation in (A.3) includes only the a; and as coefficients.

Here the energy of the out-of-plane vortex is given by

2 2
Eop=Ep—nJS5? [{ln{r;’r,} + E;—*i:‘l —A) = (25 + 'i—?) :I"3,+

L

2 4
+ (2£+ I ‘}“: )rf_] . . (A.9)

2
¥y - re

Egop is lower than Ep and decreases as )\ increases.
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Figure 1.

Figure 2.

Figure 3.

s Fig“u.rﬂ 4.

Figure 5.

FIGURE CAPTIONS
Single vortex for a)A = 0.80 , and b)A = 0.90 ,after integration time for 400 time
units starting from a planar vortex (8 = 0). The arrows (inside the upper square)
represent the spins projected on the xy-plane. The out-of-plane angles # are shown
in rhe lower square. The lengths of the lines are proportional to 8; the angles from
the horizontal axis are 8,
Vortex-antivortex pair motion for A = 0.8 at t = 70 starting from a planar pair [eq.
(V.1)] at t = 0. Black and white arrows denote positive and negative out-of-plane
spin component. Note the dependence of 8 on the azimuthal coordinate for each
vortex. Only a segment of the 100 x 100 lattice simulated is shown. The initial
separation was 25 llatti-::e units.
Vortex-antivortex pair for A = 0.7, at ¢t = 15, starting from a planar pair at
t = 0(6 = 0). The initial separation was 10 lattice units. Upper and lower squares
as explained in fig. 1,
Width of the central peak in S,,(d,w) for T = 1.0. Data points and error bars
result from estimating I', from MC-MD data. The solid line represents I'; = ig
(using @i = 1.6) from the Gaussian (VL6).
Intensity I, of the central peak in S, (§,w) for two temperatures: a) T' = 1.0 ;b)
T = 1.1. Data points result from estimating I, from our MC-MD simulations on
a 50x50 lattice (circles) and a 100x100 lattice (squares), assuming
a Gaussian form of the central peak. Dashed 1ines represent (VI. 7),

solid lines are fits to (VI. 8b) with e=0.28.
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