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Los Alamos, NM 87545, USA
and
€. Kawabata
Okayama University Computer Center
Okayama 700, Japan
ABSTRACT
The XY- and the anisotropic-Heisenberg models are considered above
the HKosterlitz-Thouless transition temperature. Assuming a gas of
freely moving vortices, it is shown that the dynamic structure factor
exhibits a central peak for both in-plane and out-of-plane correlations,
in good agreement with the results of a combined Monte Carlo - molecular
dynamics simulation. These results are also consistent with recent

neutron scattering data on sztrtl4 and EaCn2(A504}2, which show

qualitatively the same wavevector and temperature dependencies.

* permanent address: Physics Institute, University of Bayreuth,
D-8580 Bayreuth, Fed. Rep. of Germany



The Kosterlitz-Thouless (K-T) theuryl of topological phase transi-
tions in two spatial dimensions (2-d) has found many successful appli-
cations.z However, the phenemenological scenario of vortex-antivortex
pairs unbinding above a transition temperature T: has been difficult to
probe dynamically -- with the important exceptions of 2-d superfluid53

4 The emergen:eﬁ-? of well-char=

and superconducting granular films.
acterized quasi-2-d easy-plane magnetic materjals and relevant inelastic
neutron scattering opens the way to studying dynamic signatures of
nonlinear spin excitations in 2-d, including vortices.

As a first step, we have considered quasi-2-d Heisenberg ferromag-
nets with easy-plane anisotropy. The opportunity here is comparable to

that exploited recently in quasi-1-d easy-plane magnetsﬂig

and we have
adopted a similar philosophy -- extensive Monte Carlo - molecular
dynamics (MC-MD) simulations, and comparisons with a phenomenology of
"jdeal gases" of unbound vnrticeslu and spin-waves (above Tc}, and with
experimental data. According to K-T theory the unbound vortices above
Tc move in a screening background of the remaining bound pairs; such
effects are grossly incorporated via equilibrium thermodynamic input.ll
For simplicity we have assumed Hamiltonian (Landau) spin dynamics
g8 /dt = {3 M} (with spin 3 at site n). The MC-MD studies'? were
performed on isotropic square lattices with dimensions up to 100x100
giving accurate access to wavevectors > (0.02)n/a. Previous atud12513
have demonstrated the weak sensitivity of Tc to the easy-plane symmetry-
breaking strength, as well as interesting features in out-of-plane
static correlations. Here also we find that dynamic signatures of
spin-waves and vortices carry quite distinct structure and information

8-10 Qur

for in-plane and out-of-plane correlations. major conclusions
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are the striking agreements between ideal gas phenomenology and MC-MD

simulations, and the strong qualitative similarities with available

inelastic neutron scattering data.ﬁ'ﬁ
Specifically, we consider the anisotropic Heisenberg
Hami!tanian12'13
H=-J gt glt 5 Mgl oy gl
(mfn} xS ¥ d 2 %) {1}

where the nearest-neighbor pairs (m,n) span a 2-d square lattice (x,y)

and 0 € A < 1, Continuum vortex spin configurations uheyl¢
o = tan *(y/x)
o= BNV e, 2)

0 , r=+0

with SI =S cos ¢ sin @, 51 = S cos @, r2 = xz + yz, and r, 2 vortex

core "radius" a[Z(l-h]I_h (lattice constant a). We find below that Sz
is only locally sensitive to vortices, whereas 51 (or SY} is globally
sensitive. Thus, in-plane and out-of-plane correlations reveal mean
vortex-vortex separation and vortex shape, respectively (c.f. l-da‘g}.

Qut-of-plane correlations. We approximate an arbitrary field

configuration by a sum of spin-wave and vortex contributions. The
vortex contribution is taken as an ideal gas of Nv free vortices with

positions ﬁu and velocities ﬁu:

N
S,(F,t) ~ S 3V cos e (+-R

-ut) . (3)
v=1 ’

v

The vortex dynamic correlation function Szz{?.t} = (EI{F,t}Sziﬁ,D}> is

Evaluated3
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with incoherent scattering from the independent vortices,



assuming a Maxwellian distribution of [Eul' Transforming in roand t

gives

-l
n 2 =S -
o o RS R (4)

a2y @

2

5,.(qw) =

with Ny the vortex density and u the rms speed. The vortex form factor
f(q) (the Fourier transform of cos 8(r)) is evaluated approximately by
extending (2) to small r and expanding about & = n/2: in first order
this gives

-3/2
f(q) ~ nzrﬁ [1+(qr”)21 y qr, << E . (5)

From studies of XY model thermudynami:s,1-4'11

we expect nu(T}= E-E(T},
with correlation length £ = gu exp(br'h), T = {T-TC}HTC, £y = 0(a), and

10 has calculated

b ~ 0.3-0.5 for temperatures considered below. Huber
u(T) = {nb}% JSEEEH-I nvai t_k (in the absence of dissipation).

Figs. (1-4) compare ideal gas predictions with our MC-MD simulation
results for the XY limit (A = 0).1% Below T_(z 0.83 in units of J/ky)
there is only a spin-wave component. This is not strongly affected for

T> T: but an additional central peak (c.p.) appears (Fig. 1; T = 1.1).

From (4), the c.p. width I, is predicted as ug. This linear form is
well supported by the MC-MD data (Fig. 2(a)) -- the observed slope is
greater by a factor of ~2; however width estimates from the data are
upper bounds and theoretical estimates of b are very approximate. We
could fit the slope with another gﬂ (for which only the order of magni-
tude is known). Interestingly, we predict r, to saturate as t = 0.5-

(for b =0.5), and we observe a nearly constant [, for T 2 0.1. The
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c.p. integrated intensity Iz is predicted from (4) as Iz{q] =

nvsz{zn}uzif(q}}z. Using the continuum theory va]ue14

r, = a/J2, we
find good agreement with MC-MD data for q < (Erv}-l (Fig. 2(b)). This
agreement is not expected for larger g since we approximated 8(r) for
small r. Note that G 0.7a implies that spins are strongly con-
strained to the XY-plane even near the vortex core -- consistent with
our simulations. The observed absolute values of Iz are an order of
magnitude smaller than predicted, probably because of destructive inter-

16

ference with magnons. The predictions that Fz saturates at finite t

. 2
and Iz & 0, differ from those of Ref. 10, where Fz N, Iz =n, .

In-plane correlations. Correlations of Sx{?,t} with SE{ﬁ,ﬂ} are

globally sensitive to vortices. All vortices with centers passing
between 0 and ¥ in time t diminish the correlations, changing cos ¢ by
~(=1) (except for a measure zero set moving along the x- or y-axes):
vortices act like 2-d sign functions. Considering length scales >> L

17 NCF,t),

we assume the ideal vortex gas form™ : Sxx(F’t] = 52<:usz¢><{-l}
where N(¥,t) is the number of vortices passing an arbitrary, non-inter-
secting contour connecting (ﬁ,ﬂ} and {F,t}.la In the spirit of Ref. 18,
we use a velocity-independent contour (6,0) = (v,0) + (¥,t) and make use
of various cancellations (depending on whether or not part of the

contour is in the "light"-cone r=|ult). Assuming again a Maxwellian

velocity distribution, we find
» ux o 122 _gr . 1lkult i
SexFit) = 5% exp - (f + g EherfeD) (6)

An excellent analytic approximation for the argument of the exponential
in (6) is {(r/8)% + (y)]", where y = 2%/t [c.f. Ref.13]. This ap-
proximation preserves the correct asymptotic behaviors as |t| or r =+ =,
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and also the integrated intensity Ix = {52f4n}£z[1+(§q}2]‘3f2. The

approximate dynamic structure factor is

2 3.2

+ -
5. (G =3 e (7)
= 2n% ity oI1+(EQ) 212

Comparing (4) and (7), note the characteristic length scales v and £
for Szz and sxx' respectively, and the Gaussian versus (squared)
Lorentzian c.p. shapes.

Comparisons of (7) with our MC-MD data are again extremely good.
Contrary to 5;1- the spin-wave peaks are strongly snftened,zn producing
24

a central peak (Fig. 3): a proportionality te [1+(£qg) is indeed

observed for its width Fx (Fig. 4(a)), with good guantitative agreement
using the theoretical estimates for U and £ (from b = 0.5, gu = a).ll
Further, Fx is predicted to increase with t and saturate at t ~ 0.5 for
gf >> 1 and at high t for gf << 1. These behaviors are observed. The
temperature dependence of the intensity I is governed by n;l. Using
the theoretical prediction for £, we find good agreement (Fig. 4(b))
with the simulations for I (q), with g < ¢l (Our approximations are
best for large r.) The absolute values of Ix are about a factor of 5
larger than obserued.l?

Experimental inelastic neutron scattering results on XY-1like mag-
nets are presently incomplete. However, certain encouraging comparisons
are worth remarking. The materials Eaﬂuz{ﬁs}‘}z (Ref. 5) and Hbztrm4
(Ref. 6) appear to be good candidates. (Other potential examples
inc?ude? KZCuF4 and high-stage magnetically intercalated graphite.)
There is qualitative agreement between the observed and predicted tem-
perature dependence of I' in both BanZ(A5ﬂ4}2 and RhZErC14 and orders

of magnitude are also consistent. For instance, in Rb,CrCl,, ra =20,
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T ~ 0.015) ~ 0.014 meV, whereas (8) gives ~ 0.005 and 0.05 meV for b =
1.5 and 1.0, respectively. In addition, the reported g-dependence of P
for RbZCrE'I4 is in gualitative agreement with (7). It will be important
to fitE existipg and future experimental data to (7). Complementary
measurementsﬁ of Szz{ﬁ,m}, although difficult, are needed to isolate
more clearly unbound vortex and spin-wave (and multi-spinwave)
contributions.

In conclusion, our studies demonstrate the coexistence of spin-wave
and wvortex contributions to S{E,m} above Tc in qualitative agreement
with inelastic neutron scattering experiments: free vortices give rise
to central (w ~ 0) scattering components of very different character for

S and §

Y3 72° Ideal gas

Spin-wave softening occurs (at Te) only for S,

phenomenology provides successful fitting forms. These results support

the upportunit1e55'13

for studying nonlinear excitations and dynamics in
quasi-2-d magnets more generally--including effects of in-plane crystal-
line fields and competing intera:tiuns,E which will provide additional
low frequency scattering from coherent structures. Future theoretical
studies include vortex-vortex and vortex-spinwave interactions and ex-
trinsic dissipation (lifetime) mechanisms. In addition, several
quasi-2-d magnets are low-spin (e.qg. I{ZCuF4 and Batnztﬂﬁ}4}z are S = %}+
Thermodynamic studies suggest that the main quantum effects are sub-
stantial renormalizations (reductions) of intensities (of specific heat,

21,22

etc. ). Describing quantum dynamics remains a major theoretical

challenge in both 1-d and 2-d.
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Figure Captions

Smoothed dynamic structure factor for out-of-plane correla-

tions from MC-MD; q in units of 2n/L, with lattice size
L =100 a. Temperature T =10.5 (---) and 1.1 (—), with
T, ~0.83.

Width r, and intensity Iz of 5__ central peak. Data points

Iz
and error bars result from estimating r, and Iz from plots
like Fig. 1. Solid lines result from the Gaussian(4), with-
out parameter fitting; dashed line in (b) is a guide to the
eye.

Smoothed dynamic structure factor for in-plane correlations
from MC-MD; details as in Fig. 1.

Width r, and intensity Im= of S5 _ central peak. Data points

XX
and error bars result from estimating Fx and Ix from plots
like Fig. 3. Solid lines results from the squared Lorentzian

(7), without parameter fitting.
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