
Instability of In-Plane Vortices in Two-Dimensional Easy-Plane Ferromagnets

G. M. Wysin
Department of Physics
Kansas State University

Manhattan, KS 66506-2601
(November 9, 1993)

An analysis of the core region of an in-plane vortex in the two-dimensional Heisenberg model
with easy-plane anisotropy λ = Jz/Jxy leads to a clear understanding of the instability towards
transformation into an out-of-plane vortex as a function of anisotropy. The anisotropy parameter
λc at which the in-plane vortex becomes unstable and develops into an out-of-plane vortex is
determined with an accuracy comparable to computer simulations for square, hexagonal, and
triangular lattices. For λ < λc, the in-plane vortex is stable but exhibits a normal mode whose
frequency goes to zero as ω ∝ (λc − λ)1/2 as λ approaches λc. For λ > λc, the static nonzero
out-of-plane spin components grow as (λ − λc)

1/2. The lattice dependence of λc is determined
strongly by the number of spins in the core plaquette, is fundamentally a discreteness effect, and
cannot be obtained in a continuum theory.

PACS numbers 75.10.Hk, 75.40.Gb
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I. Introduction: In-Plane Vortex Instability

The easy-plane anistropic Heisenberg ferromagnet on a two-dimensional lattice has been
studied for many years, for its relation to the Kosterlitz-Thouless vortex unbinding transition1.
More recently the model is still studied, especially for the dynamics of individual and pairs of
vortices2, and their contributions to dynamic correlation functions3. It has been known for some
time that the classical model supports two distinct types of vortices, termed “in-plane” and “out-
of-plane”, depending on the absence or presence respectively of nonzero out-of-easy-plane spin
components in the static vortex4,5. The interest here concerns the question of why are there two
types of vortices possible, and what determines the stability of these excitations. Because the
type of stable vortex is determined by the anisotropy strength6,7, which may cover a wide range
in available materials8, this discussion is relevant for the interpretation of dynamic correlation
measurements, such as neutron scattering experiments. Especially the vortex contributions to
dynamic correlation functions for the out-of-plane spin components may be influenced by the
type of vortices present in the system.

This discussion of instability also is analogous to the similar problem of normal modes and
instabilities in solitons in one-dimensional magnets9,10. Instabilities of one-dimensional magnetic
solitons have been found using continuum theory, for ferromagnets9 and for antiferromagnets10.
However, generally, solitons can be well-described by a continuum field, except perhaps for certain
parameter ranges. This is not true for vortices on a lattice, in the sense that the region close to
the vortex center cannot be described very well by a continuum field, for any parameter ranges.
This is because the spins near the vortex “core” vary rapidly over small distances, which is
represented by a singularity in a continuum theory. On the other hand, there is usually no such
singularity at the center of a soliton. The calculations here will avoid the problem of how to deal
with the singularity at the vortex core by treating the discrete degrees of freedom in the core
region exactly on a lattice, without any continuum approximations.

Specifically in this paper we consider the following easy-plane Hamiltonian for classical spin
variables ~Sn:

H = −J
∑

(Sx
nSx

m + Sy
nSy

m + λSz
nSz

m) (1)

where 0 ≤ λ < 1 determines the degree of easy-plane anisotropy, and the spins ~Sn are located on
sites of a lattice in two dimensions, such as square, hexagonal or triangular. It will be convenient
to describe each classical spin variable by an angle in the xy plane, φ, and the canonically conju-
gate out-of-easy-plane spin component, Sz. In Eq. (1) the coupling of x and y spin components
will be refered to as “in-plane exchange,” and the coupling of the z components as “out-of-plane
exchange.” The static vortices have an in-plane angle given by

φ = q tan−1(y/x), (2)

where q is an integer charge.
The two different vortex types correspond to two separate solutions of a nonlinear equation

of motion for the out-of-plane component7. However, the stability of these solutions has only
been determined via computer simulations by placing the solutions on a discrete lattice. It has
been found that the in-plane vortex is numerically stable provided λ < λc, where λc is a critical
anisotropy that depends on the lattice6,7. For the square lattice, λc ≈ 0.72, similarly λc ≈ 0.86
for the hexagonal lattice and λc ≈ 0.62 for the triangular lattice. Conversely, when λ > λc, the
in-plane vortex becomes unstable, and develops into an out-of-plane vortex, whereas the out-
of-plane vortex becomes the only stable vortex solution. For a particular choice of easy-plane
anisotropy parameter λ, only one type is found to be stable. The dependence of these critical
values on the lattice was not understood.
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There have been some attempts to describe the vortex stabilty and make a normal mode
analysis in a continuum limit. For example, Costa et al.11 considered a linear stability analysis of
vortices in the XY model (λ = 0). This type of calculation determines the normal modes of the
spin field about the static vortex structure, but in the process it must make certain assumptions
about the structure of the vortex core. This is difficult because the vortex core is a singularity
in a continuum limit. Usually this means that a short distance cutoff must be applied ad hoc to
integrals over the spin field, but the cutoff radius itself is not well-known. In addition to this any
inherent effects of the particular lattice must be lost in the continuum limit. For this magnetic
vortex problem, and correspondingly for any other vortex problems on lattices, it is found that
the vortex structure is strongly affected by the discreteness of the lattice, especially near the core.
Since the vortex core is the region where the energy density of the vortex is highest, it is essential
to take these discrete effects accurately into account. Any continuum limit will breakdown at
small distance near the core, and be incapable of correctly describing these important discrete
effects.

The philosophy of the present calculation is to try to take the core region of the vortex more
precisely into account, at the expense of treating the far field only approximately. The deviations
away from the static in-plane vortex will be assumed to be small so that linearization is possible,
and included only for a finite set of spins near the core. We know from simulations that a vortex
on a discrete lattice energetically prefers to be centered within a unit cell. This adds considerable
symmetry to simplify the calculation. Also the deviations are assumed to depend only on the
radial coordinate away from the vortex center.

In the first part of this paper, the static vortex structure is considered, by allowing perturba-
tions away from the structure of the static in-plane vortex. The energy of a set of spins near the
core is minimized, with a boundary condition that spins outside this core region are held in the
easy plane, but the spins in the core region can tilt out-of-plane. The minimization directly leads
to a critical value of anisotropy λ, below which the minimum energy configuration lies purely
in the easy plane, and above which the minimum energy configuration has nonzero out-of-plane
spin components. This behavior can be seen in different levels of approximation using different
numbers of core spins that are allowed to move. Using a larger core region with more spins being
allowed to move out of plane leads to successively lower estimates of λc, which converge to a
limit. For two digit accuracy in λ, about 12 spins near the core are needed, regardless of whether
the lattice is square, hexagonal or triangular.

In the second part of the paper, the dynamics of the instability of the in-plane vortex is
considered, for λ < λc. Once again, a continuum theory is inadequate. On the other hand, a
complete description of the spin wave normal modes about the static in-plane vortex structure
on a lattice is intractable. However, A. Volkel2,12 has made preliminary numerical studies on
small lattices of the discrete normal modes on a square lattice. These suggest that as a function
of increasing λ, there is one mode in particular whose frequency goes to zero at a specific value of
λ, i.e., at the critical anisotropy or unstable point of the in-plane vortex2. This special instability
mode is seen to have a circular symmetry around the vortex center (see below). Thus it makes
sense to use this fact in a model of the spin motions near the vortex core.

A Lagrangian will be constructed for the core region under the assumption of a circularly
symmetric normal mode, where the spin deviations depend only on the radial distance from the
vortex center, which itself is held fixed in position. In this constrained Lagrangian the normal
mode frequency is obtained as a function of λ. The basic result is only weakly dependent on
the lattice or on the number of spins allowed to participate in the core. The frequency of this
mode is found to approach zero as ω = A

√
λc − λ, with A and λc lattice- dependent. The spatial

structure of the mode’s out-of-plane component bears a strong resemblance to that of the static
out-of-plane vortex for λ > λc.
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II. Core Model for Square Lattice, Static Energy Functional

The vortex structure on a square lattice is considered first. We assume that the vortex is
centered in a unit cell, at the origin of a coordinate system, and the in-plane angles are given
by the usual in-plane vortex, Eq. (2). In the most crude approximation of the core region’s
out-of-plane spin components, we assume that only the first four spins nearest to the vortex
center have nonzero out-of-plane components, as indicated in Fig. 1. By symmetry these four
lattice sites are equidistant from the vortex center, at radius r1 = 1/

√
2, and they all have the

same Sz, taken to be Sz = Sm1. All other sites have Sz = 0 by assumption.
Then by using Hamiltonian (1), and only including the m1 degree of freedom, leads to the

following core energy functional due to the 12 bonds nearest to the vortex center:

Ecore = −4JS2

[

λm2

1
+

4√
5

√

1 − m2
1
− 3

]

(3)

The first term is the out-of-plane exchange energy, the second term is the in-plane exchange
energy, and the constant ground state (in-plane exchange) energy −12JS2 has been subtracted
out. The factor

√

1 − m2

1
reflects the fact that as the out-of-plane components increase, the in-

plane components are reduced, an important effect controlling the competition between in-plane
and out-of-plane exchange energies. For small m1, an expansion leads to

Ecore ≈ −4JS2

[

4√
5
− 3 + (λ − 2√

5
)m2

1 + O(m4

1)

]

(4)

It is clear that the energy can be reduced by creating an out-of-plane component provided λ >
2/

√
5, defining the critical anistropy, λc = 2/

√
5 ≈ 0.894 in this approximation.

More generally, for arbitrary m1 < 1, the extrema of the core energy are determined by a
nonlinear equation:

∂Ecore

∂m1

= −8JS2m1

[

λ − 2√
5

1
√

1 − m2
1

]

= 0 (5)

The equation always has two solutions, either m1 = 0, which is the in-plane vortex solution, or

m1 =
√

1 − (λc/λ)2, (6)

which is the out-of-plane vortex solution. The in-plane solution exists for any λ, and has fixed
energy Eip = −8JS2λc. The out-of-plane solution exists only for λ > λc, and has core energy
Eop = −4JS2(λ + λ2

c/λ), which is lower than Eip. Thus we see that at λ = λc, the in-plane
vortex becomes unstable, and must grow into an out-of-plane vortex. The numerical value for
λc is rather high compared to the computer experiments’ value6,7 of λc = 0.72, but this is a
result of the crude approximation, not allowing more spins to participate in the energy function.
However, the results of this crudest approximation do not differ in substantial details from the
more accurate approximations involving more core spins.

It is interesting to re-write the out-of-plane component just above the critical anisotropy,
where approximately,

m1 ≈
√

2

λc
(λ − λc) (7)

This square root dependence on the deviation from the critical anisotropy is also seen in the
hexagonal and triangular lattice.
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In the next order of approximation, the next set of eight spins all equidistant at radius
r2 =

√
10/2 from the vortex center are included in the core energy, as in Fig. 1. This will include

a total of 32 bonds. When the first set of four spins has Sz = Sm1, and the next set of eight
spins has Sz = Sm2, the core energy with the ground state energy −32JS2 subtracted out is

Ecore = −4JS2[λ(m1 + m2)
2 +

4√
5

√

1 − m2

1

√

1 − m2

2

+
4√
5
(1 +

4√
13

)
√

1 − m2

2
+

4

5
(1 − m2

2) − 8] (8)

The term proportional to λ is the out-of-plane exchange energy, other terms are in-plane exchange.
Minimization with respect to m1 and m2 simultaneously leads to coupled nonlinear equations,
as follows:

−2λ(m1 + m2) +
4√
5

m1
√

1 − m2
1

√

1 − m2

2
= 0 (9a)

−2λ(m1 + m2) +
4√
5

m2
√

1 − m2

2

[

√

1 − m2
1

+ (1 +
4√
13

)

]

+
8

5
m2 = 0 (9b)

Again, there is the trivial solution, m1 = m2 = 0, which is the in-plane vortex, with energy
independent of λ. For λ large enough, there is also a nontrivial solution, that can be estimated
numerically, for example, by solving Eqs. (9) using a two-dimensional Newton-Raphson method.
One finds that m1 and m2 grow proportional to

√
λ − λc just about the critical anisotropy (not

shown here). Naturally, the approximation limits the out-of-plane motion strongly compared to
the results where a larger set of spins can have out-of-plane motion, but this effect is not too
large provided λ is not too far above λc.

The critical value of λ can be obtained accurately by supposing that λ is slightly higher
than λc, in which case m1 and m2 are small but nonzero. Then Eqs. (9) can be linearized, and
produce a nontrivial solution only when the determinant of the coefficient matrix vanishes. This
linearization is valid only in the limit λ → λc from above, and the determinant vanishes only at
the critical anisotropy. Doing so, we obtain the linearized system,

(As − λ)m1 − λm2 = 0, (10a)

−λm1 + (Bs − λ)m2 = 0. (10b)

As ≡ 2√
5
≈ 0.89443, Bs ≡ 4√

5
(1 +

1√
5

+
2√
13

) ≈ 3.58113 (10c)

The critical anisostropy at which the determinant vanishes is

λc =
AsBs

(As + Bs)
≈ 0.716 (11)

This agrees very well with the results of computer experiments, λc ≈ 0.72 . At the same point,
the ratio of core out-of-plane spin components is

m2/m1 = As/Bs ≈ 0.24976 (12)

This ratio characterizes the initial growth of the out-of-plane components just above the critical
point.
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One can continue to carry this calculation to higher orders, for instance, the next step is
to include an additional set of four more spins, all equidistant from the vortex center, at radius
r3 = 3/

√
2, as in Fig. 1. The energy functional is given in the Appendix. The critical value of λ

is determined by the zero of a 3 x 3 determinant. The result is λc = 0.7044, a value somewhat
lower than the numerical experiments.

Some results for that model are shown in Fig. 2 for the development of the out-of-plane
components for λ > λc. These results also are compared with a new simulation of the out-of-
plane vortex structure on a 50 x 50 lattice with free boundaries. In the simulation, the system
was allowed to relax to a local energy mimimum through the use of Landau-Gilbert damping13,
starting from an in-plane vortex initial configuraton, but with the four spins closest to the vortex
center given Sz = 0.5 . That is, an out-of-plane bias was included in the initial condition, and
then the time evolution was followed to see whether the stable vortex would be an in-plane
or out-of-plane vortex. Previous simulations6,7 relied on computer roundoff errors to initiate
the transformation from in-plane to out-of-plane vortex, thereby overestimating λc. This new
simulation shows that the critical anisotropy is actually less than 0.7044, which is to be expected,
since the boundary condition used in the model of Fig. 1 overly restricts out-of-plane motions.

The competetion between in-plane and out-of-plane exchange energies is also shown in Fig.
2. Although there are large changes in the in-plane and out-of-plane exchange energies, the total
core energy of the out-of-plane vortex is only slightly below the core energy of the in-plane vortex.

III. Core Model for Hexagonal Lattice

It is very instructive to consider how the instability depends on the underlying lattice, and
to see why the in-plane vortex apparently is more stable on a hexagonal lattice for a given λ
than on a square lattice for the same λ. That is, why is λc largest on the hexagonal lattice and
smallest on the triangular lattice? Clearly this must be due to the difference in the coordination
number of the lattice, but a further explanation is needed.

In the lowest approximation for a vortex on a hexagonal lattice, with coordination number
3, only the first 6 spins (at radius r1 = 1) nearest the vortex center are allowed to move out-of-
plane, with Sz = Sm1 (See Fig. 3). All in-plane angles are given by the static in-plane vortex,
Eq. (2). Then the core energy associated with the out-of-plane motion (12 bonds total) is

Ecore = −6JS2

[

λm2

1 +
1

2
(1 − m2

1) +
√

1 − m2

1
− 2

]

(13)

At this level of approximation, an expansion for small m1 leads to

Ecore ≈ −6JS2

[

−1

2
+ (λ − 1)m2

1
+ O(m4

1
)

]

(14)

This results in the estimate, λc = 1.
To a better approximation, an additional set of 6 more spins, at radius r2 = 2, are also

allowed to move out-of-plane, with Sz = Sm2 (See Fig. 3). Then the core energy (24 bonds) is

Ecore =

−6JS2

[

λ(m2

1
+ m1m2) +

1

2
(1 − m2

1
) +

√

1 − m2
1

√

1 − m2
2

+
5√
7

√

1 − m2
2
− 4

]

(15)

The energy extrema are determined by the nonlinear equations,
(

1 − 2λ +

√

1 − m2
2

1 − m2

1

)

m1 − λm2 = 0 (16a)
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−λm1 +

(

5√
7

+
√

1 − m2

1

)

m2
√

1 − m2

2

= 0 (16b)

Letting Ah ≡ (1 + 5/
√

7) ≈ 2.88982, the determinant of the linearized system goes to zero at
λc = −Ah +

√

A2

h + 2Ah ≈ 0.869, in good agreement with the numberical results of 0.86 . If an

additional set of 12 more spins at radius r3 =
√

7 are allowed to have out-of-plane components,
the critical anisotropy is found to be λc ≈ 0.8395, slightly lower than the numerical results. The
core energy function is given in the Appendix. The growth of the out-of-plane components with
λ is shown in Fig. 4, with results similar to the square lattice.

IV. Core Model for Triangular Lattice

Finally we turn to the triangular lattice, with coordination number 6. The spins in the
core plaquette of an in-plane vortex have 120o angles between them, or, they are starting to be
more antiparallel than parallel. This has a strong effect on the in-plane vs. out-of-plane exchange
energy balance.

Starting as before, the lowest approximation is to allow only three spins nearest the vortex
center, at radius r1 = 1/

√
3, to tilt out of the easy plane, with Sz = Sm1, as shown in Fig.

5. The in-plane angles are given by Eq. (2). Then taking the geometry into account, the core
energy (15 bonds) is

Ecore = −3JS2[λm2

1 −
1

2
(1 − m2

1) + (1 +
5√
7
)
√

1 − m2

1
− 5] (17)

An expansion for small m1 gives the first estimate, λc = 5/
√

28 ≈ 0.94, high compared to the
numerical experiment value of 0.62.

Next we can allow another set of three more spins at radius r2 = 2/
√

3 to have out-of-plane
components, Sz = Sm2. The core energy (27 bonds) is modified to

Ecore = −3JS2[λ(m2

1 + 2m1m2) −
1

2
(1 − m2

1) +
5√
7

√

1 − m2

1

+
√

1 − m2

1

√

1 − m2

2
+

(

4√
7

+
7√
13

)

√

1 − m2

2
− 9] (18)

When this system is linearized, the determinant goes to zero at λc = −At +
√

A2
t + 5At/

√
7 ≈

0.715, where At ≡ 1

4
(1 + 4/

√
7 + 7/

√
13) ≈ 1.1133. This is still rather high compared to the

numerical experiments, suggesting that another layer of spins around the vortex center must be
allowed to move out-of-plane. When an additional set of 6 more spins at radius r3 =

√

7/3 are
allowed to have out-of-plane components Sz = Sm3, a more tedious calculation (Ecore given in
the Appendix) gives λc = 0.6278 . In this latter model, the out-of-plane spin components grow
with λ above λc as indicated in Fig. 6. Of course, even here the out-of-plane components are
being underestimated because of the restriction that the next set of spins further out from the
vortex center are held fixed in the xy-plane.

By now it is clear what is causing the instability of the in-plane vortex with increasing
λ, which corresponds physically to decreasing the strength of the easy-plane anisotropy, or,
approaching the isotropic limit. The spins near the vortex core have in-plane exchange energy
above the ground state energy due to the fact that they are not close to being parallel. At the
same time, they have zero out-of-plane exchange energy. If there is strong easy-plane anisotropy
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(λ near zero), then out-of-plane spin components would cost too much additional total energy,
so they don’t occur. However, as the easy-plane anisotropy strength is reduced (increasing λ),
at a certain point these core spins can favorably tilt up out of the easy-plane. In fact, when
the out-of-plane components grow, the out-of-plane exchange energy Eout decreases, while the
in-plane exchange energy Ein increases, such that the total energy change comes out negative.
Of course, this can occur only if λ is large enough, such that the decrease in the out-of-plane
exchange energy dominates over the increase in in-plane exchange energy (which itself does not
depend on λ). These energy changes have been indicated in Figs. 2, 4 and 6, which show how
the two energy components vary with λ. The instability is driven mostly by the first set of core
spins nearest the vortex center (3 for the triangular lattice, 4 for the square lattice, 6 for the
hexagonal lattice). It is interesting to note that even though the changes in Ein and Eout with λ
are rather large, the total vortex core energy decreases very slowly for λ > λc. In this sense the
out-of-plane vortex is only slightly energetically prefered over the in-plane vortex.

The dependence of λc on the lattice is also clear, and again is determined primarily by the
first set of core spins. Consider an in-plane vortex on a triangular lattice, where the first three
core spins are starting to be antiparallel (120o angles between them), creating a large in-plane
exchange energy in the core. However, normally the easy-plane anisotropy prevents these from
tilting up out of plane. But it is clear that they will have a much stronger tendency to come out
of plane to avoid pointing against each other, than for the core spins of a vortex on the square
or hexagonal lattices, which are already closer to being parallel even when staying in-plane.
Essentially the core spins come out of plane to try to align ferromagnetically, provided they can
do so against the easy-plane anisotropy forces. They must come out of the easy plane at a lower
value of λ on the triangular lattice because they pay a small cost in additional in-plane exchange
energy (because the in-plane energy is already large) but get in the deal a larger reduction in
out-of-plane exchange energy. Conversly, the hexagonal lattice has the largest critical λ, since
the core spins do not have a large in-plane exchange energy (only a 60o angle between them
in-plane) and they stay in the xy-plane until the anisotropy comes much closer to isotropic.

V. Time-Dependent Symmetric Normal Mode of a Vortex

The dynamics of this instability can be understood to a certain extent, by looking for time-
dependent normal modes of the in-plane vortex. For example, previous calculations for the
XY model using a continuum limits11 considered the normal modes about the in-plane vortex.
However, it is clear from the calculations here that a continuum limit cannot capture the essential
features of how the core drives the instability. We want to stress that this is a discrete lattice
instability, the strongest evidence of this being the dependence of λc on the lattice.

To do a complete stability analysis of the in-plane vortex on a lattice requires a numerical
calculation of the eigenmodes for a finite system. Völkel12 has made a preliminary calculation
on a 10 x 10 square lattice, which showed that there is one mode in particular whose frequency
goes to zero as λ is increased towards λc , and is apparently closely related to the instability2.
The spatial structure of the mode involves a radially symmetric out-of-plane amplitude about
the vortex center, combined with a radially symmetric in-plane spin rotation. Indeed, this is
reasonably the simplest symmetrical mode of the in-plane vortex. If there are time-dependent
out-of-plane components then there must necessarily be time-dependent in-plane motions with
the same kind of symmetry, since Sz is the momentum that is conjugate to the in-plane angle φ.
In this mode, the time-dependent deviations in Sz and φ depend primarily on the radial distance
from the vortex center, which itself does not move. We can use this information to make a very
reasonable Ansatz for the mode, concentrating on the motion of the most important spins near
the core, in the same spirit as the calculations giving λc.
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So we proceed to consider only the properties of this one particular symmetric mode that is
responsible for the in-plane vortex instability. The Ansatz for the mode, on a square lattice, is as
follows. The first set of spins nearest to the vortex center, at radius r1 = 1/

√
2, have out-of-plane

component Sz = Sm1, and equal deviations φ1 from the static in-plane angles. This means they
all are rotated counterclockwise through φ1 relative to the static in-plane structure, Eq. (2).
Similarly, the next set of 8 spins at radius r2 =

√

5/2, have equal out-of-plane components Sm2,
and equal in-plane deviations φ2. All other spins further out from the vortex core are assumed
to lie in the xy plane, with in-plane angles being those of the static in-plane vortex. Then
by its design the Ansatz assumes a well-organized radially symmetric motion, with only radial
dependence of Sz and φ.

A Lagrangian is constructed for the system, by using the fact that Sz is the momentum
conjugate to φ, and modifying the core energy functional found above to include the in-plane
degrees of freedom, φ1 and φ2. The Lagrangian is

L =
∑

n

φ̇nSz
n

− Ecore (19)

where the sum is over the lattice sites in the core region participating in the motion. Making the
appropriate changes to the energy to include the φ1 and φ2 degrees of freedom, we have,

L = 4S
(

m1φ̇1 + 2m2φ̇2

)

+4JS2[λ(m1 + m2)
2 +

4

5
(1 − m2

2
) +

4√
5

√

1 − m2

1

√

1 − m2

2
cos(φ1 − φ2)

+
4√
5
(1 +

4√
13

)
√

1 − m2

2
cosφ2] (20)

The equations of motion follow from the usual Euler-Lagrange variation. In particular, the
linearized equations of motion are found to be:

1

JS
φ̇1 = 2(As − λ)m1 − 2λm2,

1

JS
φ̇2 = −λm1 + (Bs − λ)m2,

1

JS
ṁ1 = −2Asφ1 + 2Asφ2,

1

JS
ṁ2 = Asφ1 − 2As(1 + Cs)φ2, (21a)

Cs ≡ 2√
13

. (21b)

As and Bs were defined in Eq. (10c). These equations have a solution with time dependence
eiωt. The frequency is determined from the zero of a 2 x 2 determinant, leading to a quadratic
equation in ω2,

ω4 + 2As[(1 + Cs)(λ − Bs) − 2As]ω
2 + 4A2

s(2Cs + 1)[AsBs − (As + Bs)λ] = 0. (22)

9



From this equation we see first of all, that the eigenfrequency becomes zero when the constant
coefficient vanishes, which occurs when λ = λc = AsBs/(As + Bs), a result previously obtained
in the discussion of the static structure. For other values of λ < λc, the desired solution to the
quadratic that recovers ω → 0 as λ → λc from below, is

ω2 = D0(D1 − λ)
[

1 −
√

1 − D2(λc − λ)/(D1 − λ)2
]

, (23a)

where the new numerical constants are

D0 = As(1 + Cs) ≈ 1.39057,

D1 = Bs + 2As/(1 + Cs) ≈ 4.73174,

D2 = 4(As + Bs)(2Cs + 1)/(1 + Cs)
2 ≈ 15.62331 (23b)

But now since D1 is rather large compared to λ, and because we are most interested in the region
near the critical point, an expansion of the square root can be made that is quite accurate, even
when λ is near zero. Doing so gives, to a very good approximation,

ω ≈
√

D0D2

2(D1 − λc)

√

λc − λ ≈ 1.645
√

λc − λ (24)

In fact, even for λ = 0, the difference between Eq. (24) and Eq. (23a) is much less than 1 %. We
should note that the pre-factor, 1.645, is determined primarily by the number of spins allowed to
move in the core region, and should not be taken as definitive. For comparison, when only the
m1 and φ1 degrees of freedom are allowed, then a short calculation gives eigenfrequencies ω =
2
√

As

√
λc − λ ≈ 1.8915

√
λc − λ. On the other hand, including 3 sets of spins, out to radius r3, a

numerical fit to the solution of the eigenfrequency problem gives the result, ω ≈ 1.5281
√

λc − λ
(See Fig. 7). So it is clear that the prefactor will decrease as a greater number of core spins’
motions are included, while the functional form for ω(λ) remains unchanged. The prefactor is
expected to be slightly less than 1.52 for the infinite sized system. Note that λc in these formulas
means the value found for the approximation under question, i.e., λc= 0.894, 0.716, 0.7044, for
including one, two, or three sets of spins, respectively.

VI. Time Dependent Symmetric Mode in Hexagonal and Triangular Lattices

Next the dynamics of the instability is investigated on the hexagonal and triangular lattices,
to see whether the lattice has any strong influence on the unstable mode’s frequency. The
principal modifications from the square lattice calculation require using the appropriate core
energies in the Lagrangian.

On the hexagonal lattice, with two sets of spins allowed to participate in the dynamics, the
effective Lagrangian is

L = 6S(m1φ̇1 + m2φ̇2) + 6JS2[
1

2
(1 − m2

1) + λ(m2

1 + m1m2)

+
√

1 − m2

1

√

1 − m2

2
cos(φ1 − φ2) +

5√
7

√

1 − m2

2
cosφ2] (25)

The linearized equations that result are

1

JS
φ̇1 = 2(1 − λ)m1 − λm2,
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1

JS
φ̇2 = −λm1 + Ahm2,

1

JS
ṁ1 = −φ1 + φ2,

1

JS
ṁ2 = φ1 − Ahφ2, (26a)

where

Ah ≡ 1 +
5√
7
≈ 2.88982. (26b)

The eigenfrequencies for this system are easily found to be determined by the quadratic equation,

ω4 − (2 + A2

h)ω2 − (Ah − 1)(λ2 + 2Ahλ − 2Ah) = 0. (27)

We see once again that ω → 0 when the last coefficient vanishes, which reproduces λc = −Ah +
√

A2

h + 2Ah ≈ 0.869 . The root for ω that approaches zero for λ → λc can be approximated
quite accurately in a way similar to that for the square lattice calculation,

ω ≈
√

(Ah − 1)(Bh + λ)

(A2

h + 2)

√

λc − λ ≈ 1.172
√

λc − λ (28)

where Bh = Ah +
√

A2

h + 2Ah. Thus, this level of approximation gives results very similar to
that found for the square lattice, but naturally with a different energy scale. (Due essentially
to the coordination number and size of the unit cell of the lattice.) The calculation of ω can be
repeated in the approximation that three sets of spins out to radius r3 =

√
7 participate in the

motion. In that case, a fit to a numerical solution leads to the result, ω ≈ 0.9373
√

λc − λ, with
λc = 0.8395 (See Fig. 7).

Similar calculations can be made for the triangular lattice. Using three sets of spins, out to
radius r3 =

√

7/3, the eigenfrequency of the linearized equations was found numerically. The
core energy is given in the Appendix. The numerical solution for ω is shown in Fig. 7, and is
well-approximated by the function, ω ≈ 2.40

√
λc − λ, using λc = 0.6278. Again, it is likely that

the prefactor may be slightly overestimated from the value that would be appropriate for an
infinite system. Also, the relatively larger coefficient compared to hexagonal and square lattices
is to be expected, due to the smaller unit cell and higher coordination number, making the system
“stiffer.”

VII. Summary

The above calculations allow for a complete explanation of the instability of the in-plane
vortices in the easy-plane ferromagnet. They have concentrated on the degrees of freedom near
the core, where the energy density is highest, where spatial gradients of the spin field are largest,
and therefore where continuum theories would have the most difficulties. The instability has been
explained as being a consequence of the competition between in-plane and out-of-plane exchange
forces. When the easy-plane anisotropy becomes too weak, (λ increasing towards 1), the spins
near the vortex core must come out of the easy-plane to attempt to become more parallel and
reduce their total exchange energy. This means they reduce their out-of-plane exchange energy
while increasing their in-plane exchange energy. This must happen at a lower value of λ for the
triangular lattice than for the square or hexagonal lattice, because the spins near the vortex core
start out being far from parallel and thus possessing a large in-plane exchange energy. If they
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come out of the xy-plane, they can become more parallel, they increase their in-plane exchange
energy, but at the same time reduce their out-of-plane exchange energy and also their total
energy, provided λ is large enough.

While the spins nearest to the core are primarily responsible for driving the instability,
it is important to allow for a large enough number of spins to participate in the out-of-plane
motion in order to get an accurate estimate of the critical anisotropy, especially for the triangular
lattice. This discrete calculation of the in-plane vortex stability limit, using three sets of core
spins, must overestimate the critical anisotropies λc, because it restricts out-of-plane spin motion
compared to that that would occur in the inifinite system. The critical anisotropies obtained are
λc ≈ 0.8395, 0.7044, and 0.6278 for hexagonal, square, and triangular lattices, respectively.

The instability is closely related to a dynamic mode of the in-plane vortex, for λ < λc. This
mode involves a symmetrical oscillatory out-of-plane motion coupled to an in-plane rotational
motion, all with circular symmetry about the vortex center. For λ slightly below λc, this mode
consists mostly of out-of-plane motions, with weaker in-plane motions. The in-plane motions
get stronger for λ farther away from λc (i.e., λ near zero). The frequency of this mode goes to
zero at the critical anisotropy as ω ∝

√
λc − λ, signalling the growth of large out-of-plane spin

components becoming energetically favorable for λ > λc. We can also speculate that a similar
analysis of the out-of-plane vortex for λ > λc will reveal a corresponding normal mode whose
frequency also goes to zero as λ approaches λc from above.
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Appendix: Core Energies for Three Sets of Spins

For completeness we give here the core energy functions when three sets of spins out to
radius r3 are included. The three sets of spins have out-of-plane components m1, m2, and m3,
and for the time-dependent calculation, in-plane deviations from the static in-plane vortex of
φ1, φ2, and φ3.

For a vortex on a square lattice, evaluation of Hamiltonian (1) in the core region for Fig. 1
(40 bonds) gives,

Ecore = −4JS2{λ(m2

1 + m2

2 + 2m1m2 + 2m2m3) +
4

5
(1 − m2

2)

+
4√
5

√

1 − m2
2
[
√

1 − m2
1
cos(φ1 − φ2) +

√

1 − m2
3
cos(φ2 − φ3) +

4√
13

cosφ2]

+
8√
17

√

1 − m2

3
cosφ3 − 10} (A1)

Various terms involve either interactions between the levels of spins or within a given level. This
includes interactions of level 3 with spins further out that are held fixed in the xy-plane. For the
static stability analysis, the in-plane deviations can be set to zero.

For a vortex on the hexagonal lattice, the core energy (42 bonds) is evaluated as

Ecore = −6JS2{λ(m2

1
+ m1m2 + 2m2m3 + m2

3
) +

√

1 − m2
1

√

1 − m2
2
cos(φ1 − φ2)

12



+
5√
7

√

1 − m2

2

√

1 − m2

3
cos(φ2 − φ3) +

19√
7 · 13

√

1 − m2

3
cosφ3 +

13

14
(1 − m2

3) − 7}. (A2)

For the triangular lattice, it was necessary to use at least three sets of spins to get an accurate
result for λc. In this case the core energy (48 bonds) is

Ecore = −3JS2{λ[m2

1 + 2(m1m2 + m1m3 + m2m3) + m2

3] −
1

2
(1 − m2

1) +
25

28
(1 − m2

3)

+
√

1 − m2

1

√

1 − m2

2
cos(φ1 − φ2) +

5√
7

√

1 − m2

1

√

1 − m2

3
cos(φ1 − φ3)

+
4√
7

√

1 − m2

2

√

1 − m2

3
cos(φ2 − φ3)

+
7√
13

√

1 − m2

2
cosφ2 +

1√
7
(5 +

23√
19

+
17√
13

)
√

1 − m2

3
cosφ3 − 16}. (A3)
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Fig. 1 Notation for the square lattice calculations. The vortex center is at (0,0), and there are 4
sites at radius r1 = 1/

√
2 with Sz/S = m1 (solid squares), 8 sites at radius r2 =

√
10/2

with Sz/S = m2 (solid triangles), and 4 sites at radius r3 = 3/
√

2 with Sz/S = m3 (solid
circles). The other sites are held fixed in the xy plane (open circles).
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(a)

(b)

Fig. 2 Static vortex structure on the square lattice in the the m1, m2, m3 approximation. (a)

Growth of out-of-plane components in the core region. The symbols are the new 50 × 50

simulation results. (b) Variation of the in-plane and out-of-plane exchange energies and total

core energy with anisotropy. The critical anisotropy is λc = 0.7044.
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Fig. 3 Notation for the hexagonal lattice calculations. The vortex center is at (0,0), and there
are 6 sites at radius r1 = 1 with Sz/S = m1 (solid squares), 6 sites at radius r2 = 2 with
Sz/S = m2 (solid triangles), and 12 sites at radius r3 =

√
7 with Sz/S = m3 (solid circles).

The other sites are held fixed in the xy plane (open circles).
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(a)

(b)

Fig. 4 Static vortex structure on the hexagonal lattice in the the m1, m2, m3 approximation. (a)
Growth of out-of-plane components in the core region; (b) Variation of the in-plane and out-
of-plane exchange energies and total core energy with anisotropy. The critical anisotropy is
λc = 0.8395.

17



Fig. 5 Notation for the triangular lattice calculations. The vortex center is at (0,0), and there are
3 sites at radius r1 = 1/

√
3 with Sz/S = m1 (solid squares), 3 sites at radius r2 = 2/

√
3

with Sz/S = m2 (solid triangles), and 6 sites at radius r3 =
√

7/3 with Sz/S = m3 (solid
circles). The other sites are held fixed in the xy plane (open circles).
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(a)

(b)

Fig. 6 Static vortex structure on the triangular lattice in the the m1, m2, m3 approximation. (a)
Growth of out-of-plane components in the core region; (b) Variation of the in-plane and out-
of-plane exchange energies and total core energy with anisotropy. The critical anisotropy is
λc = 0.6278.
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(a)

(b)

Fig. 7 (a) The frequencies of the unstable symmetric mode vs. λ in the m1, m2, m3 approximation,
for the three different lattices. In part (b), the same results re-plotted vs.

√
λc − λ, using

the critical values λc = 0.6278, 0.7044, and 0.8395, for the triangular, square, and hexagonal
lattices respectively.

20


