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Topological vortex excitations in thin magnetic nano-disks have attracted a lot of attention be-
cause of their dynamic stability and various charge-like properties, which makes them suitable
objects for data storage. They also have a natural gyrotropic orbital motion that can be described
rather well by an approximate Thiele gyrotropic equation for the magnetization dynamics. The
gyrotropic oscillation makes them available as a basis for natural oscillators at close to gigahertz
frequencies. This gyrotropic motion is excited naturally even by thermal fluctuations. In addition,
the gyrotropic oscillation frequency can be affected by external perturbations, which allows possi-
bilities for the design of nano-scale detectors. The vortex moves in an effective potential, strongly
determined by the shape anisotropy of the magnetic disk, which then determines the force appearing
in the Thiele equation of motion. The motion of an individual vortex within a disk of circular or
elliptical shape is considered theoretically, including stochastic thermal effects together with the
deterministic gyrotropic effects. From simulations of the motion at different parameter values, a
picture of the typical vortex position and velocity distribution within the disk is developed, and
compared with what is expected from the Thiele equation.
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1. INTRODUCTION: VORTICES IN THIN
SUB-MICRON MAGNETIC DISKS

A cylindrically shaped thin disk of soft ferromagnetic
material with a radius a on the order of 100 nm to a few
microns and a thickness L � a on the order of 10 nm
to 50 nm provides an interesting system for the study
of vortices [1, 2]. A magnetic configuration is described
by its local magnetization �M(r), which is the magnetic
dipole moment per unit volume, at position r. A ma-
terial is considered with saturation magnetization Ms,
which is the magnitude when the medium is completely
magnetized along some axis. Due to the demagnetiza-
tion effect, which is responsible for shape anisotropy, any
such magnetic system tends to avoid the formation of
magnetic poles on the surfaces, if possible, which would
raise the total energy. For a thin circular disk, the local
magnetization �M(r) as a function of position r may tend
to do two things: (1) �M(r) will have a strong tendency
to point within the plane of the disk [3], if possible; (2)
�M(r) may then follow the curved circular boundary at
the disk edge, thereby completely avoiding the genera-
tion of any poles on the edge. This prevents any strong
magnetic field lines from passing through the space sur-
rounding the disk edge.

Within the disk the forces of ferromagnetic exchange
cause �M(r) also to have a circular structure and remain
close to the disk plane. At the disk center, which is a
singular point, remaining in the disk plane is impossible,
and �M(r) then points perpendicular to the plane of the
disk, forming tiny north/south poles on opposite faces
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FIG. 1: The magnetization field �M(r) = Msm̂(r) of a vortex
centered in a nanodisk with principal axes a = 60 nm, b = 30
nm, thickness L = 10 nm, from the spin alignment relaxation
scheme for the micromagnetics model, Sec. 2.4. The cell size
is acell = 2 nm. Arrows show only the in-plane projection,
(mx

i , my
i ). Blue line (red open) arrows indicate positive (neg-

ative) values of out-of-plane component mz
i . The core, where

mz
i is larger, appears as a hole in this projection. Even though

the system is elliptical, note that the core region remains close
to circular.

at the disk center. The resulting circular form of �M(r),
together with its central poles in a core region, is a mag-
netic vortex. It is a type of magnetic excitation that is
topologically stable and acts in many ways like a particle,
when exposed to forces.

One can also consider deviations from circular symme-
try, such as in elliptic nanodisks, where magnetic vortex
dynamics has been studied by measuring their radio fre-
quency oscillations [4] and even by direct electrical con-
tact [5] to a nanodisk. An example of a magnetic vortex
centered in a thin elliptical nanodisk is shown in Fig. 1.
It has been obtained from a numerical relaxation algo-
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rithm [6], see Sec. 2.4 below. Although there is a ten-
dency for �M(r) to follow the boundary, one sees that the
exchange forces are more dominating, and expecially the
core structure of the vortex retains a circular shape. The
locus where the perpendicular component Mz changes
sign is obvious as a circle in Fig. 1.

1.1. Vortex charges

The magnetization profile �M(r) of a vortex may point
either in a counterclockwise (CCW) or clockwise (CW)
direction around the disk. This two-fold degeneracy is
associated with its circulation charge c = ±1, which is
also refered to as chirality. It provides one topologically
stable geometric property, that could be used for data
storage in a vortex, if it can be reliably controlled and
detected.

In principle, a vortex profile �M(r) also has a vortic-
ity charge q = ±1, which corresponds to the direction of
rotation of �M(r) as one moves along a closed path encir-
cling the core. The value q = +1 holds for the vortices
described here, which are controlled by demagnetization
effects ( �M being forced to follow the boundary). The
value q = −1, known as an antivortex, would only be
energetically stable if demagnetization effects were not
present. The limit of zero thickness would eliminate the
relevant demagnetization and make antivortices energet-
ically possible.

The magnetization at the vortex core can take one of
two values, �M(0) = ±Msẑ = pMsẑ, where p = ±1 is the
polarization charge. Because there is an energy barrier
to flip the core polarization from p = +1 to p = −1, it
offers yet another charge that could be useful for data
storage and manipulation.

1.2. Vortex potential and forces

The above-described magnetic vortex will have its min-
imum energy when it is centered in the disk. The loca-
tion of the poles (where �M points perpendicular to the
disk) defines the location of the vortex core, which we
denote by position vector R = (X, Y ), measured along
the x, y Cartesian axes within the disk plane. Because
the system is assumed to be thin, only two coordinates
X, Y are needed to locate the core. Further, the mag-
netization itself has little dependence on the coordinate
(z) perpendicular to the disk. We take R = (0, 0) for the
vortex at the center of the disk. It is possible to imag-
ine that the vortex core becomes slightly displaced from
the disk center. In that case, a slight deformation of the
vortex structure �M(r) takes place, while the demagneti-
zation effects at the disk edge still try to maintain �M(r)
parallel to the edge. The net result of the displacement is
a slight increase in total energy. The vortex, as a quasi-
particle, lives in some effective potential U(R), which has

something approximating a parabolic form [6], with the
minimum at the disk center,

U(R) ≈ 1
2
kF R2, (1)

where kF is a force constant. This further implies an
effective force F back towards the disk center, according
to the gradient of the potential,

F = −�∇U(R) ≈ −kF R. (2)

For a circular disk, the potential is circularly symmetric,
and then small displacements lead to an circularly sym-
metric Hooke’s Law type of force. It is also possible to
consider magnetic vortices in a cylindrical disk of ellip-
tical shape [7], defined by principal axes a and b < a:

x2

a2
+

y2

b2
= 1. (3)

This situation leads correspondingly to a modification of
the potential also to an approximately elliptic form [8],

U(R) ≈ 1
2

(
kxX2 + kyY 2

)
. (4)

The parabolic functional form now has separate force
constants kx, ky along the two principal axes. It gives
a force,

F = (−kxX,−kyY ). (5)

While a vortex in a nanodisk experiences a force di-
rected roughly towards the disk center, its motion tends
to be in an orbital sense, which is the gyrotropic oscilla-
tion mode [9, 10]. This is discussed further in Sec. 3 on
dynamics. Before coming to that we begin by a quanti-
tative description of the calculation of vortex structures.

2. ANALYSIS OF QUASI-STATIONARY
VORTICES IN A NANODISK

The theoretical analysis is based on the statics and dy-
namics of the magnetization field, which is now assumed
to keep a uniform magnitude Ms, but a spatially varying
direction, by writing �M(r) = Msm̂(r), where m̂(r) is a
unit vector. From the energetics expressed in terms of
m̂(r), equations for the vortex structure and motion can
be developed. See Ref. [11] for a general discussion of the
calculation of magnetic vortex structures and properties.

2.1. Energetics of a continuum nano-magnet

The system is governed by ferromagnetic exchange en-
ergy and interactions of �M generally with the demagne-
tization field �HM (self-generated by �M) and any possible
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externally applied field �Hext. A continuum Hamiltonian
for the system is

H =
∫

dV
{
A∇�m · ∇�m − µ0

(
�HM + 1

2
�Hext

)
· �M

}
,

(6)
where µ0 is the permeability of free space, and A is
the exchange stiffness. One commonly used material is
Permalloy-79 (Py, 79% nickel, 21% iron), with exchange
stiffness about 13 pJ/m and saturation magnetization
Ms = 860 kA/m [12]. The magnetization changes its di-
rection over a length scale λex called the exchange length.
Exchange energy of the order A/λ2

ex competes with de-
magnetization energy of the order 1

2µ0M
2
s . Equating

these terms gives the definition of the length scale,

λex =

√
2A

µ0M2
s

. (7)

For Py, λex ≈ 5.3 nm. Exchange forces dominate over
lengths less than λex but demagnetization dominates over
larger lengths, allowing the �M(r) field to change its di-
rection. At a boundary, the exchange effects are much
less present, and demagnetization helps �M(r) to point
parallel to the boundary, if possible.

2.2. The demagnetization field �HM in a thin
magnetic film

The demagnetization field is determined by the global
configuration of the magnetization of the system; it is
derived from considerations of magnetostatics see Ref.
[13] for the details of the approach used here. In the
absence of an external applied magnetic field one has
magnetic induction �B = µ0( �HM + �M). Gauss’ Law,
�∇̇�B = 0 then becomes

�∇ · �HM = −�∇ · �M. (8)

By assuming the the demagnetization field comes from a
scalar potential via �HM = −�∇ΦM , a Poisson equation
for the magnetostatics is obtained:

−∇2ΦM = ρM , ρM ≡ −�∇ · �M. (9)

Therefore, the magnetization �M(r) produces an effective
magnetic charge density ρM , that is the source in this
Poisson equation. The solution for scalar potential ΦM

can be obtained be various numerical methods. Gener-
ally, we have used a scheme based on discretization of
the system (introduction of a spatial grid), together with
appropriate Green’s functions for the Poisson equation.
In addition, it is extremely helpful to use the approxi-
mation that the disk is very thin, L � a, where a is the
radius (or the semi-major axis for an elliptical disk). In
this case, both �M and �HM do not depend on the vertical
coordinate z along the disk axis. Then the problem can

be solved by using effective two-dimensional 2D Green’s
functions [14]. The components α = x, y, z of the de-
magnetization field can be expressed as 2D convolution
integrals,

HM
α (r) =

∫
d2r′

∑
β=x,y,z

Gαβ(r − r′)Mβ(r′) (10)

where Gαβ(r − r′) represents a tensor Green’s func-
tion, and the integration is over 2D positions, e.g., now
r = (x, y). The evaluation of these integrals can be ac-
celerated through the use of fast Fourier transforms [15].

2.3. Discretization and micromagnetics for
simulations

For numerical solutions of the magnetization field
�M(r) = Msm̂(r), it is necessary to partition the system
into cells labeled by index i for positions ri. We use a
square grid of cells of individual size acell×acell×L, with
acell = 2.0 nm, and disk thickness L = 5 nm and L = 10
nm. At the center of each cell is a unit direction vector
m̂i, whose motion is to be followed. Each cell contains a
magnetic dipole moment �µi of magnitude µ = La2

cellMs

and direction m̂i. This micromagnetics approach [16, 17]
then represents the original continuum system, but with
a discretized 2D micromagnetics Hamiltonian,

H = −J


∑

(i,j)

m̂i · m̂j +
a2
cell

λ2
ex

∑
i

(
H̃ext

i + 1
2H̃M

i

)
· m̂i


 ,

(11)
where the effective exchange constant and energy scale
between nearest-neighbor cells is J = 2AL, and magnetic
fields have been brought to dimensionless forms,

H̃ext
i = �Hext

i /Ms, H̃M
i = �HM

i /Ms. (12)

The presence of the factor a2
cell/λ2

ex gives the relative
strength of demagnetization effects compared to ex-
change effects. For the micromagnetics approach to be
valid, this factor should be much less than one. The
transverse cell size acell should then be less than the ex-
change length. The micromagnetics approach, with the
assumption that only the direction of �M is changing,
makes the implicit assumption that demagnetization ef-
fects are a perturbation on exchange effects. Obviously,
the Green’s functions Gαβ(r − r′) must also be brought
to a discrete form to carry out the calculation of H̃M

i .
The Hamiltonian can be used to define the net mag-

netic inductions that act on each cell’s magnetic dipole
�µi, according to

�Bi = − δH
δ�µi

=
J

µ
�bi, (13)

where the dimensionless magnetic inductions are

�bi =
∑

j∈z(i)

m̂j +
a2
cell

λ2
ex

(
H̃ext

i + H̃M
i

)
. (14)
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The first term involves a sum over the nearest neighbors
z(i) of cell i; it is the exchange field. The second term
represents the combination of external and demagnetiza-
tion fields. The effective strength of magnetic inductions
is indicated by the unit we use for simulations,

B0 ≡ J/µ = µ0Msλ
2
ex/a2

cell. (15)

In the results presented here with acell = 2.0 nm, and Py
parameters, one has µ0M

2
s ≈ 1.08 T and B0 ≈ 7.59 T.

B0 gives the order of magnitude of the exchange fields;
the demagnetization fields are considerably weaker.

2.4. Static vortex configurations from a relaxation
scheme

Static vortex configurations are derived as the station-
ary solutions of the dynamic equations of motion. At
zero temperature, the undamped dynamic equation of
motion is a simple torque equation for each magnetic
dipole, which interacts with its local net field:

d�µi

dt
= γ�µi × �Bi. (16)

Note that this holds because �µi/γ = �Si is the spin angu-
lar momentum of the cell, whose time derivative is the
torque, �µi × �Bi. The equation can be written in terms of
the dimensionless quantities, also defining a dimension-
less time τ ,

dm̂i

dτ
= m̂i ×�bi, τ ≡ γB0t. (17)

The unit of time used for simulations is t0 ≡ (γB0)−1.
For Py parameters, it takes the value t0 ≈ 0.75 ps. Its
reciprocal also defines a simulation frequency unit, f0 ≡
γB0 ≈ 1.336 THz.

For static configurations, however, the time derivatives
in (17) are zero. This implies that each dipole �µi or its
unit vector m̂i must align with the local field in that cell,
�bi.

Thus, an algorithm that iteratively points each m̂i

along its current value of �bi will tend to move the system
towards a static configuration. We call this approach a
spin alignment relaxation scheme [18]. To carry it out,
some initial state must be chosen from which to begin the
iteration. Assume that the direction vectors are defined
in terms of spherical planar angles (φi, θi), according to

m̂i = (cos θi cosφi, cos θi sin φi, sin θi). (18)

In this notation, φi is refered to as the in-plane angle
and θi is the out-of-plane angle, which can be positive or
negative. The approximate in-plane structure of a vortex
located at position R = (X, Y ) in a disk can be expressed
using the vorticity q = +1 as

φi = q tan−1

(
yi − Y

xi − X

)
+ φ0, (19)

where (xi, yi) is the 2D location of micromagnetics cell i,
and φ0 = cπ

2 depends on the vortex circulation charge.
There isn’t a corresponding analytic form for the out-of-
plane component. Instead, one can start with all θi = 0,
i.e., a planar vortex. However, the iteration will be such
that all θi will remain zero, unless some small nonzero
deviation is included. Therefore, small random values of
θi can be used for the initial state. A nonzero out-of-
plane component will then grow naturally as the system
relaxes into a vortex state. The process is repeated un-
til the changes in the m̂i become insignificant (less than
about one part in 108).

For a circular or elliptic disk, if the vortex is initiated
away from the center, as the spin alignment relaxation
proceeds, the vortex will be found to both develop an
out-of-plane component and also move to the disk center.
Spin relaxation is an energy minimization algorithm; the
system moves to its nearest minimum energy state, which
is that configuration centered in the disk. A profile of a
vortex obtained this way in an elliptic disk is shown in
Fig. 1. The projection of the dipoles onto the disk plane
is shown. Note that there is a core region with a radius of
the order of λex (region where �M has significant out-of-
plane components, appearing as a hole in the diagram).
Interestingly, the core tends to keep a reasonably circular
form, as seen by the locus of points where the sign of Mz

reverses.

2.5. Effective potentials of a vortex in a nanodisk

Spin alignment relaxation can also be used to estimate
the effective potential U(R) for the vortex, by including a
constraint on the vortex position R = (X, Y ). The effec-
tive potential is the system energy H less any constraint
energy, for a chosen vortex position. A constraint on vor-
tex position can be enforced with the use of Lagrange’s
undetermined multipliers [6]. Physically, a vortex can be
shifted away from the disk center, by the application of
a magnetic field within the disk plane. A uniform field
�Hext along ±x will displace the vortex along ±y, and
vice-versa, with the sign determined by the vortex chi-
rality. Buchanan et al. [8] were able to map out the
vortex potential energy numerically by using the field to
move the vortex to different equilibrium positions. This
gives one way to obtain the effective force constants kx

and ky.
Rather than using a uniform applied field, it is pos-

sible to imagine the application of a spatially varying
field, that primarily acts on the core region of the vortex.
These fictitious extra fields are the undetermined La-
grange multipliers; they are determined through course
of the calculation. Simultaneously, another constraint is
applied that ensures unit length for the direction vec-
tors m̂i. The fictitious fields exert torques on the cells
in the core region, that hold the vortex in the desired
location, without significantly changing the overall vor-
tex structure. Thus, a quasi-static vortex structure can
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(a) X=16 nm, Y=0, it=2000, E=15.244 J

(b) X=0, Y=16 nm, it=3500, E=16.001 J

FIG. 2: Vortex structures for an elliptical nanodisk with
a = 60 nm, b = 30 nm, L = 10 nm, using cell size acell =
2.0 nm in the spin alignment relaxation scheme, including a
Lagrange constraint on position. (a) Vortex is held at X = 16
nm, Y = 0, resulting in total energy E = 15.244J after 2000
iterations. (b) Vortex is held at X = 0, Y = 16 nm, resulting
in total energy E = 16.001J after 3500 iterations. Compare
Fig. 1, where X = Y = 0 and the energy is lower.

be obtained numerically, for whatever position is desired,
within reason. The approach works best for a vortex near
the disk center. For the same elliptical disk of Fig. 1, the
vortex has been relaxed by this scheme to positions 16
nm from the center, in Fig. 2. Note that the energy is
higher for a displacement along the shorter axis of the
ellipse [8].

The work here considers stable vortex states. It should
be kept in mind that for some parameters or disk sizes,
the vortex could become unstable towards the formation
of a lower energy quasi-single-domain state (nearly uni-
form �M(r)), or some other multi-domain state without
a vortex. This is especially likely in the case of elliptic
disks with a high aspect ratio (b � a), where demagne-
tization will strongly favor �M aligning with the longer
axis [7]. The vortex state will also become unstable in
a circular disk if it is too thin, which minimizes the de-
magnetization forces from the circular edge, that usually
stabilize a vortex. Also, if the disk is too thick (L � a),
again, demagnetization will cause �M to approximately
align with the long axis and a vortex will not be stable.

Typical vortex potentials obtained from Lagrange-
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a=120 nm Vortex potentials, L=4.0 nm

FIG. 3: Numerically determined vortex potentials, in units
of the effective cell exchange constant J = 2AL, for circular
Py nanodisks of thickness L = 4.0 nm and indicated radii, as
found from the Lagrange constrained spin alignment relax-
ation. The vortex becomes unstable towards escaping from
the disk in the regions of downward curvature.

constrained spin aligment for circular nanodisks are
shown in Fig. 3, for various radii with fixed thickness
L = 4.0 nm. The minimum energy region is close to
parabolic form, however, as the vortex is placed closer
to the edge, a lack of stability (downward curvature) ap-
pears. Using the interior region of the potential, the ef-
fective force constants kF for circular disks or even kx

and ky for elliptical disks can be estimated quite accu-
rately. In the example of Fig. 3, one can observe that kF

becomes smaller for the larger radii disks. See Refs. [6, 7]
for further details.

In elliptical disks [4, 7, 8], the force constant for dis-
placement along the longer disk axis is found to be weaker
than that along the shorter disk axis; see Figs. 1 and 2.
Thus, the potential acquires an elliptical shape that is
determined by the original geometrical shape of the disk.
For a disk with principal axes a and b with b < a, we
have found that for adequately large nanodisks and b of
sufficient size to stabilize the vortex, the ratio of force
constants asymptotically approaches the relation,

√
kx/ky ≈ b/a. (20)

This has the correct limit for a circular disk, kx = ky.
The relation is summarized by saying that the geomet-
ric ellipticity, b/a, directly determines an energetic el-
lipticity,

√
kx/ky. The energetic ellipticity can be seen

to determine the shape of the elliptical vortex orbits at
constant energy in the phase space.
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3. MAGNETIC DYNAMICS AND THE
LANDAU-LIFSHITZ-GILBERT-LANGEVIN

EQUATIONS

The dynamics described by (16) or its dimensionless
form (17) is not completely realisitic, because it does
not include the effects of damping nor of temperature
and its statistical fluctuations. Both the damping and
thermal effects could be quite large on a vortex. When
only damping with a dimensionless parameter α is in-
cluded, the well-known Landau-Lifshitz-Gilbert (LLG)
dynamic equation [19, 20] is obtained [Eq. (21) but with
all �bs,i = 0]. Here we take that one step further and
also include stochastic magnetic fields �bs,i(t) that repre-
sent the effects of temperature. This leads to a Langevin
equation derived from the LLG equation [21], for an in-
dividual micromagnetics cell,

dm̂i

dτ
= m̂i×

(
�bi +�bs,i

)
−αm̂i×

[
m̂i ×

(
�bi +�bs,i

)]
. (21)

The changes in m̂i are a superposition of deterministic
effects (from �bi) and stochastic effects (from �bs,i). The
stochastic fields act to bring the system to thermal equi-
librium. That takes place provided their correlations fol-
low the fluctuation-dissipation (FD) theorem, which can
be written for this problem in the dimensionless quanti-
ties as (site index i is suppressed)

〈bλ
s (τ) bλ′

s (τ ′)〉 = 2αT δλλ′ δ(τ − τ ′). (22)

Here δλλ′ is a Kronecker delta and the indices λ, λ′ re-
fer to any of the Cartesian coordinates; δ(τ − τ ′) is a
Dirac delta function. The dimensionless temperature T
is thermal energy scaled by J ,

T ≡ kT

J
=

kT

2AL
, (23)

where k is Boltzmann’s constant and T is the absolute
temperature. The FD relation indicates how the stochas-
tic magnetic fields move energy into and out of the sys-
tem, in random processes that nevertheless can be quan-
titatively measured. The stochastic fields are included
only when a study of temperature effects in real time is
desired. They can be set to zero if the zero-temperature
dynamics is of interest, producing the LLG equation. Be-
low we use solutions of Eq. (21) obtained appropriately
for the type of system under study, be it T = 0 or T > 0.

3.1. The Thiele equation for vortex core motion

Magnetic excitations such as domain walls and vor-
tices do not obey Newtonian dynamics. Instead, it can
be shown from magnetic torque considerations (i.e., anal-
ysis of the T = 0 LLG equations) that the steady-state
dynamics of the core velocity V = Ṙ is described by a
Thiele equation [22],

F + G × V = 0. (24)

The motion is governed by the gyrovector G, which for
vortices is a vector that points perpendicular to the disk
plane, in a direction determined by the magnetization
at the vortex core. Consider a material with saturation
magnetization Ms. In terms of the magnetization per
unit area, m0 ≡ MsL, and the gyromagnetic ratio γ =
−1.76×1011 T−1 s−1 of an electron (its magnetic moment
divided by its angular momentum), the gyrovector of a
vortex is

G = Gẑ = 2πpqm0ẑ/γ. (25)

For the vortices in a disk, q = +1, while there are two core
polarizations p = ±1 possible. The gyrovector points
perpendicular to the disk in two possible directions. A
solution of the Thiele equation then gives a description of
the motion of a vortex, provided it remains as a particle-
like stable object under the dynamic environment it is
found in. A general review of vortex motion obeying a
Thiele equation, even including an intrinsic mass, is given
in [11].

Here we suppose that a vortex is moving within a nan-
odisk of elliptical shape, at position R = (X, Y ), with
the force in Eq. (5) acting on it. One finds that it makes
an elliptical orbital motion, whose gyrotropic frequency
can be estimated from the Thiele equation [7]. A solution
for the vortex velocity is obtained quickly by taking the
cross product of G = Gẑ with the Thiele equation,

G× F + G× (G× V) = 0. (26)

A vector identity is useful,

G× (G × V) = (G · V)G − (G ·G)V. (27)

The vortex velocity points in the plane of the disk but G
is perpendicular to that plane, so G · V = 0. This gives
the velocity as

V =
G × F

G2
=

1
G

(kyY,−kxX) . (28)

With V = (Ẋ, Ẏ ), this is a pair of first order differen-
tial equations, which can be directly integrated, starting
from some initial vortex position R(0) = (X0, Y0). An
elementary calculation gives elliptical motion, with in-
stantaneous coordinates

X(t) = X0 cosωGt + Y0
ky

GωG
sin ωGt

Y (t) = Y0 cosωGt − X0
kx

GωG
sin ωGt (29)

where the gyrotropic frequency is determined by the ge-
ometric mean of the force constants, k̄ ≡

√
kxky:

ωG = −
√

kxky

G
= − k̄

G
. (30)

The negative square root is used, because a vortex with
G along +ẑ and a centrally directed force will move in the



7

clockwise (or negative) direction in the xy plane. This
result applies even when the vortex equilibrium position
is displaced from the disk center by an applied magnetic
field, using the effective force constants at that displaced
location [8]. Buchanan et al. [8] found that the exper-
imentally measured vortex oscillation frequency can be
controlled by the application of an in-plane field, �Hext.
Especially, �Hext along the short (or hard) axis of the el-
lipse displaces the vortex on the long axis, where its fre-
quency increases substantially due to position-dependent
increases in both force constants with X .

With �Hext = 0, one can find the shape of the ellipti-
cal orbit and compare with the shape of the nanodisk.
The vortex in undamped motion must move along an
equipotential centered in the disk. The orbital energy U
is found to be

U = 1
2

(
kxX2 + kyY 2

)
= 1

2

(√
kxX0 +

√
kyY0

)2

. (31)

Dividing through by the constant, U , this is the standard
equation of an ellipse, with the semi- major and minor
axes Xmax, Ymax, given by

Xmax =
√

2U

kx
, Ymax =

√
2U

ky
. (32)

Their ratio is then

Ymax

Xmax
=

√
kx

ky
≈ b

a
. (33)

The last approximate result in terms of the disk axes a, b
was obtained by using relation (20), valid only in the
limit of larger ellipses. Thus, the shape of the vortex
orbit is nearly the same as the shape of the nanodisk.
The energetic ellipticity (not to be confused with the
eccentricity),

e ≡
√

kx

ky
, (34)

determines the ratio of the orbital axes. Indeed, the po-
tential can be brought to a circular form, with a new
coordinate �ρ:

U(�ρ) = 1
2 k̄�ρ2, �ρ ≡

(√
eX,

1√
e
Y

)
. (35)

Then it is possible to show that the velocity follows a
typical expression for circular motion,

�̇ρ = (ρ̇x, ρ̇y) = �ωG × �ρ. (36)

where �ωG = ωGẑ. This equivalent circular coordinate �ρ
is useful for the analysis of vortex position statistics in
elliptical disks.

3.2. Numerical methods for magnetization
dynamics

The analysis of vortex motion via the Thiele equation
is expected to be approximate. Numerical simulations
can be used to give a more complete and reliable descrip-
tion of the dynamics. We require the time evolution from
Eq. (21) solved either for zero temperature or finite tem-
perature. These results are generated for Py parameters,
based on the exchange length of λex = 5.3 nm, together
with a micromagnetics cell size of acell = 2.0 nm.

3.2.1. Zero temperature – 4th order Runge-Kutta

At zero temperature, a stable integration scheme is the
well-known 4th order Runge-Kutta (RK4) scheme, which
we have used. A time step in dimensionless simulation
units of ∆τ = 0.04 is sufficient to insure good energy
conserving dynamics (at zero damping), resulting in en-
ergy conservation to one part in 1012 over as many as
5.0 × 105 time steps, in systems with up to 4000 cells.
To insure this high precision control of the energy, it is
essential to evaluate the demagnetization field continu-
ously during every sub-step of the RK4 algorithm. In the
zero temperature simulations used to estimate gyrotropic
frequencies, the intial state of the dynamics is a vortex
obtained by spin alignment relaxation to a desired posi-
tion. It is also helpful to run the time evolution initially
with some weak damping (α ≈ 0.02) for a limited time,
followed by energy conserving dynamics (α = 0). The
inclusion of damping for a short interval helps to remove
any spin wave oscillations that may be generated by a
less than perfect initial vortex state. The subsequent en-
ergy conserving dynamics then gives precise estimates of
the frequencies ωG.

3.2.2. Finite temperature – Langevin dynamics via 2nd
order Heun method

For finite tempeatures the equations (21) have been
solved effectively by using a 2nd order Heun method
(H2) [21, 23]. This scheme is equivalent to a two-stage
predictor-corrector algorithm, where the predictor stage
is an Euler step and the corrector stage is the trapezoid
rule. Both stages use the same random fields �bs,i, that
are produced by a random number generator. Any of
the Cartesian components of these fields are to be ran-
dom deviates with a zero mean value and a variance that
must depend on both the dimensionless time step and
temperature according to

σs =
√

2αT ∆τ . (37)

This is a result of the FD theorem (22), and it is used to
replace the stochastic fields integrated over a time step,
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by the relation

∫ τn+∆τ

τn

dτ �bs,i(τ) −→ σs �wi. (38)

The vectors �wi are triplets of random deviates with zero
mean and unit variance, for each site i. In usual pro-
gramming there are standard random number gnerators
which return a uniform deviate from 0 to 1, with a vari-
ance found to be 1/

√
12. These can be shifted into the

range from −0.5 to +0.5 and then rescaled by
√

12σs to
get stochastic field components of the correct mean and
variance (it does not need to be a Gaussian distribution)
[7, 13].

4. VORTEX GYROTROPIC MOTION AT
ZERO-TEMPERATURE

In a circular nanodisk at zero temperature, with a ra-
dial force F as in (2), the analysis from the Thiele equa-
tion (24) shows that the vortex velocity always points
along the azimuthal direction:

V =
Gẑ × F

G2
= − γkF R

2πpqLMs
φ̂. (39)

The minus sign indicates that a vortex with positive gy-
rovector (along ẑ) will move in the clockwise or nega-
tive sense, in uniform circular motion, and oppositely
for those with negative gyrovector. More generally, for
elliptic nanodisks, the predicted gyrotropic frequency ob-
tained from the Thiele equation is

ωG = − k̄

G
= − γk̄

2πpqLMs
, (40)

where k̄ is the geometric mean of the force constants
along the principal axes. For a circular system, k̄ → kF .
These results depend strongly on the force constants,
which can be estimated from the static vortex configura-
tions. It has been found [9, 13, 24] that for sufficiently
large circular disks far from any stability limits of the
vortex, the force constants are very roughly proportional
to L2/R, that is,

kF ≈ 1
4

L2

R

A

a2
cell

≈ 0.878 µ0M
2
s

L2

R
. (41)

The frequency unit f0 = t−1
0 = γB0 used in the sim-

ulations depends on the cell size, which is inconvenient
for comparison with experiment. Thus, it is important to
convert the results to a commonly used frequency unit,

ω0 ≡ µ0

4π
γMs. (42)

This is ω0 = γMs in the centimeter-gram-second system
of units. With the help of definition (7) for the exchange

length, expression (40) for gyrotropic frequency can be
written,

pωG = −
(µ0

4π
γMs

) (
k̄

λex

A

) (
λex

L

)
. (43)

With vorticity q = +1 assumed, the sign of ωG is deter-
mined by the core polarization p. This expression sug-
gests using k0 ≡ A/λex as the unit of force constant and
λex as the unit of length.

Simulations can verify the frequency predictions from
the Thiele equation. As shown below in some examples,
the dimensionless periods τG of gyrotropic motion can be
estimated precisely, in simulation time units (τ = t/t0).
Dimensionless angular frequencies are then 2π/τG, which
are given physical values by multiplying by f0 = γB0.
Using (15), these can then be converted into units of ω0

as follows:

ωG =
2π

τG
f0 =

2π

τG
γµ0Ms

λ2
ex

a2
cell

=
2π

τG

λ2
ex

a2
cell

4π ω0. (44)

We use this below to convert the raw numerical data (τG)
into frequencies in ω0 units.

Of course, to get precise estimates of the frequency,
the vortex must be instantaneously located to high pre-
cision. That is a two step process. The first step is to
use the singularity in the iin-plane magnetization angle
φ, to locate the four cells nearest to the vorticity center,
Rv, defined implicitely according to the relation

�∇× �∇φ(r) = 2πẑδ(r − Rv). (45)

For the micromagnetics square grid, the vorticity center
falls between the four cells that have a net 2π circulation
in φ. This gives the location R ≈ Rv only to a precision
equal to the cell size. It can be greatly improved by
making a weighted average of the cell locations ri, using
their squared out-of-plane components, which are largest
in the vortex core, as the weighting function:

R =

∑
|ri−Rv|<4λex

(mz
i )

2 ri∑
|ri−Rv|<4λex

(mz
i )2

. (46)

For better efficiency, the sum is restricted to cells within
four exchange lengths of the vorticity center. This avoids
using useless data from from the core of interest (for ex-
ample, spin wave oscillations near the edge of the disk
should be ignored). As the vortex moves, the resulting
estimate for R changes smoothly. This algorithm even
works very well for vortices moving in response to ther-
mal fluctuations.

4.1. Circular nanodisks simulations

Some typical vortex motions in circular nanodisks of
radius a = 120 nm are presented in Fig. 4, as ob-
tained from integration of the LLG equations by the
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FIG. 4: Motions for one component of vortex position in cir-
cular nanodisks from RK4 integration of the LLG equations
(shifted for clarity). The damping α = 0.02 was turned off
after dimensionless time τ = 1000. The periods can be cal-
culately accurately from the undamped motion. Graphs of
Y (τ ) are of the same amplitudes and frequencies but shifted
a quarter of a period.
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FIG. 5: Vortex gyrotropic frequency magnitudes from RK4
(dynamics) simulations for circular nanodisks, with thick-
nesses ranging from L = 2.0 nm to 20 nm, and indicated
disk radii, versus force constants scaled by disk thickness,
obtained from Lagrange constrained spin alignment (static)
simulations. The dashed line is the theoretical result (43)
from the Thiele equation.

RK4 scheme. The initial states came from Lagrange
constrained spin alignment to the initial position R =
(4.0, 0) nm. A weak damping with parameter α = 0.02
was included but turned off at dimensionless time τ =
1000. The remaining evolution was used to estimate the
periods, τG, which are then converted using (44).

For the motions displayed in Fig. 4, the dimen-
sionless periods for L = 5 nm, 10 nm, and 20 nm
are τG ≈ 5800, 3270 and 1872, respectively. From
statics calculations of the effective potentials as de-
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_____

a=120 nm,  L=10 nm

Elliptic nanodisks

FIG. 6: Effective potential force constants versus geometric
ellipticity b/a, for elliptic nanodisks of semi-major axis a =
120 nm, and thickness L = 10 nm. Results were found by
Lagrange constrained spin alignment relaxation.

scribed earlier, the corresponding raw force constants
are kF acell/A ≈ 0.033863, 0.120192 and 0.419143, re-
spectively, using acell = 2.0 nm. Rescaling by a factor
λex/acell = 5.3/2.0 converts them into kF λex/A, that ap-
pears in the Thiele theory expression (43). For these and
other similar vortex motion simulations with L ranging
from 2.0 nm to 20 nm, one can compare to the Thiele pre-
diction by plotting the frequency ωG versus kF /L with
units as suggested from Eq. (43), see Fig. 5. Note that
for a given radius a, the disk with the smallest L has
the largest frequency. The result is that ωG, obtained
from dynamics simulations, is very close to linearly re-
lated to kF /L, obtained from static simulations, with a
unit slope for these units. This gives a strong verification
of the Thiele equation being applicable to vortex motion
in nanodisks where the vortex is stable. Note that all
simulations here used a reasonably small vortex orbital
radius of about 4.0 nm, avoiding having the vortex core
approach the disk edge, which would tend to destabilize
the vortex.

4.2. Elliptical nanodisk simulations

Simulations for elliptic nanodisks [7] offer an even
wider range of possibilities, because the variations with
geometric ellipticity b/a can be studied. For instance,
the variation of the effective potential force constants
has a behavior like that in Fig. 6, for the particular case
a = 120 nm and L = 10 nm. Both kx and ky were deter-
mined from the potentials derived by spin alignment with
a position constraint. Their geometric mean k̄, which
determines gyrotropic frequencies, is also shown. The
curves for these force constants do not go below a mini-
mum value of b/a, where the vortex becomes unstable.

The corresponding gyrotropic frequencies ωG for L =
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FIG. 7: Gyrotropic frequency magnitudes versus geometric
ellipticity b/a, for elliptic nanodisks of semi-major axis a =
120 nm, and thicknesses L = 5.0 nm and L = 10 nm. Results
were found by simulations of the LLG equations using RK4
integration. For L = 10 nm, compare the similar shape of the
curve of k̄ in Fig. 6, as expected from ωG ∝ k̄ in Eq. (43).

10 nm and also for L = 5.0 nm are shown in Fig. 7, ver-
sus b/a. These were obtained from simulations the same
as those described for circular nanodisks. Note that the
shapes of these curves are very similar to the curves of
k̄ in Fig. 6, which is to be expected if the Thiele theory
(43) is valid. The additional results for L = 5.0 nm are
included to demonstrate the dependence on disk thick-
ness. With thicker disks having a greater restoring force
and k̄ ∝ L2, due to the extra area on the disk edges,
the dependence of G ∝ L results is gyrotropic frequen-
cies increasing roughly linearly in L. The results can be
presented in another view in Fig. 8, showing ωG/k̄ ver-
sus ellipticity for different L. One again gets a clear and
quantitative verification of the Thiele theory result (43),
seeing that ωG/k̄ ∝ λex/L with the correct constant of
proportionality.

5. SPONTANEOUS GYROTROPIC MOTION
FROM THERMAL FLUCTUATIONS

Now we consider the effects of temperature on a vor-
tex. Specifically, the temperature effectively acts as a
bath of random magnetic fields that exchange torques
and energy with the vortex. Even though that exchange
is somewhat random, one sees that it is able to sponta-
neously initiate the organized gyrotropic motion of the
vortex. That motion proceeds over a noisy background
of spin waves. Even so, it is readily apparent and per-
sistent. Here we show typical time evolutions, and then
later discuss statistical properties.
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- - - -  from Thiele equation 

FIG. 8: Gyrotropic frequency magnitudes (from dynamics)
scaled by mean force constants (from statics), versus geomet-
ric ellipticity b/a, for elliptic nanodisks with a = 120 nm and
two different thicknesses. The results confirm the predictions
from the Thiele theory, dashed lines from Eq. (43), using ex-
change length λex = 5.3 nm, with no adjustable parameters.

5.1. Simulation of a vortex initially at disk center

A vortex that has been relaxed to its minimum energy
configuration (by the spin alignment scheme, for exam-
ple) is situated in the disk center, whether it be circular
or elliptical. This assumes that a quasi-single-domain
state is not lower in energy. Then, in the absence of
any external forces or forces due to a thermal environ-
ment, it would statically remain centered in the disk and
exhibit no dynamics. However, Machado et al. [25] no-
ticed that finite temperature micromagnetics simulations
demonstrate the sponteneous motion of the vortex, even
if it starts in it minimum energy location. This is rather
surprising, although it is really not much different than
any spin wave mode from being excited thermally in an
equilibrium system with temperature. From the point of
view of statistical mechanics, any excitable modes (i.e.,
independent degrees of freedom) should share equally in
available thermal energy, and because the energy present
in the vortex gyrotropic motion is quite small, rather
large orbital motions can develop soley due to the effects
of temperature.

In the numerical solution [13] of the magnetic Langevin
equation (21), the dimensionless temperature is required.
For the simulation units being used, J = 2AL determines
the energy scale and depends on the disk thickness. As
an example, we consider a disk with a = 60 nm, b = 30
nm, and thickness L = 5.0 nm, at temperature T = 300
K. For Py parameters (A = 13 pJ/m), the energy unit is
J = 130 zJ, while the thermal energy scale is kT = 4.14
zJ, which gives the dimensionless temperature,

T =
kT

2AL
= 0.032, for T = 300 K, L = 5.0 nm. (47)

This was used to determine the variance of the random
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FIG. 9: Spontaneous vortex core motion caused by thermal
fluctuations, as found by H2 integration of the LLG-Langevin
equations (21) for a nanodisk with thickness L = 5.0 nm. The
vortex was initiated at the disk center, X = Y = 0. This
graph shows only 1/5 of the total data generated and used
subsequently for analysis of vortex statistics, corresponding
to hundreds of gryotropic periods.
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FIG. 10: Spontaneous vortex core motion caused by thermal
fluctuations, for a nanodisk simulation identical to that in
Fig. 9, but with double the thickness, L = 10 nm. Note the
considerably smaller amplitude of gyrotropic oscillations, and
the much higher frequency.

magnetic fields, Eq. (37), together with a damping pa-
rameter α = 0.02 . A dimensionless time step ∆τ = 0.01
for the second order Heun method was used. The result-
ing vortex core coordinates (X(τ), Y (τ)) are displayed in
Fig. 9, out to a time of τ = 50000. From Fig. 9, a clock-
wise orbital motion takes place, together with a noisy
background, and there are about 15 complete orbits for
τ < 50000 (period τG ≈ 3300). The period is somewhat
longer than that found at zero temperature, τG ≈ 2970.
This softening of the mode with temperature is to be ex-
pected. In addition, the amplitudes of X and Y motions
are not equal, as expected from the elliptical disk shape.
The gyrotropic orbital motion continues indefinitely; it
was followed out to τ = 2.5×105 to get vortex statistics.

For comparison, an identical simulation but with the
disk thickness increased by a factor of two to L = 10
nm in shown in Fig. 10, again starting the vortex from
the disk center. The greater thickness approximately
quadruples k̄, but also doubles the gyrovector, thereby
resulting in the frequency being double that for L = 5.0
nm. It is also clearly apparent that the amplitude of the
thermally indiced motion is reduced in the thicker nan-
odisk (the graphs have different vertical scales). These
differences then are primarily driven by the modifications

to the force constants and to G.

5.2. Thermal vortex motion as described by the
Thiele equation

Next we consider the statistical mechanics of the vor-
tex core position R = (X, Y ), based on an effective
Lagrangian and Hamiltonian that give back the Thiele
equation. The analysis [7] makes use of the general el-
liptic potential U(R) in Eq. (4). It is straightforward to
check that a Lagrangian whose Euler-Lagrange variations
gives back the Thiele equation is [13]

L = −1
2
G(XẎ − Y Ẋ) − 1

2
(
kxX2 + kyY 2

)
(48)

This is a particular choice of gauge and this Lagrangian
is not unique, see Ref. [26] for a different choice. To
transform to the associated Hamiltonian, one finds the
canonical momentum for this symmetric gauge,

P =
∂L

∂V
=

1
2
(GY,−GX). (49)

This shows that the Lagrangian can be expressed as
L = P · V − U . As P is determined by X and Y , with-
out any time derivatives, one can interpret this as a pair
of constraint relations between components of P and R.
It means that out of four original coordinates plus mo-
menta, only two are independent.

The Hamiltonian is obtained in the usual way,

H = P · V − L = U =
1
2

(
kxX2 + kyY 2

)
= 1

2 k̄ρ2. (50)

Curiously, this has no momenta present. This strange sit-
uation seems to imply that there is no dynamics, because
the Hamilton equations of motion are

Ṗ = −∂H

∂R
, Ṙ =

∂H

∂P
. (51)

That would give V = Ṙ = 0, which is clearly wrong.
This singular situation comes about because of the con-
straint (49) between momentum and position compo-
nents. In order to get a true dynamics, one needs to
rewrite the Hamiltonian half as a potential part and half
as a kinetic part, that is,

H =
1
4

(
kxX2 + kyY 2

)
+

1
4

(
2
G

)2 (
kxP 2

y + kyP 2
x

)
. (52)

This is exactly equal to H in (50), but now it does give
back the Thiele equation when its time dynamics is found
from (51). Because of the constraint, the vortex motion
depends on only two independent coordinates, or degrees
of freedom, rather than four. For the purposes of sta-
tistical mechanics, then, the thermalized vortex motion
contains an average energy, 〈H〉 = 2 × 1

2kT .
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FIG. 11: The radial distribution of vortex core positions for
the simulations in Figs. 9 and 10, with a = 60 nm, b = 30,
and thicknesses L = 5.0, 10 nm. Data out to final time τ =
2.5×105 was used. The solid curves are the theory expression
(57), using force constants k̄ = 0.1753 k0 for L = 5.0 nm and
k̄ = 0.6832 k0 for L = 10 nm, as obtained from spin alignment
calculations, with force constant unit k0 = A/λex.

5.3. Thermalized vortex probability distributions
from the Thiele equation

One can assume that any of the coordinates,
X, Y, PX , PY , as well as effective circular coordinate �ρ =
(ρx, ρy), obey a Boltzmann distribution, whose parame-
ters are determined by the average energy,

〈H〉 = kT. (53)

This directly gives the mean squared effective circular
radius for an elliptic disk,

〈ρ2〉 = 〈2H/k̄〉 = 2kT/k̄. (54)

This becomes the usual mean squared radius, 〈ρ2〉 →
〈R2〉, in the limit of a circular disk. Using expression (50)
for H , with the energy shared equally between X and Y
motions (equipartition theorem for quadratic degrees of
freedom) implies that each coordinate has a mean square
value,

〈X2〉 = kT/kx, 〈Y 2〉 = kT/ky. (55)

For the systems we study, with b < a and kx < ky,
this implies a wider range of motion for the X coordi-
nate, as could obviously be expected. These relations for
the mean square values indicate the importance of the
force constants for describing the statistical distribution
of vortex position.

Now consider determining the probability distributions
for the vortex core location. The Hamiltonian is circu-
larly symmetric when expressed in terms of the square
of the effective circular coordinate �ρ. We can suppose
that each possible location has a probability determined

from a Boltzmann factor, e−βH , where β = (kT )−1. Em-
ploying the circular symmetry for this coordinate, the
probability p(ρ)dρ of finding the vortex core within some
range dρ centered at radius ρ is proportional to the area
2πρ dρ in a ring of radius ρ, and the Boltzmann factor
e−βH :

p(ρ)dρ ∝ 2πρ dρ e−βH = 2πρ dρ e−
1
2 βk̄ρ2

. (56)

By including a normalization constant, the unit normal-
ized probability distribution function is easily found to
be

p(ρ) = βk̄ρ e−
1
2 βk̄ρ2

. (57)

The root-mean-square radius ρrms =
√

2kT/k̄ implied
from relation (54) can be verified with this probability
function. One can also get the the mean radius and the
most probable radius:

〈ρ〉 =
√

1
2πkT/k̄, ρmax =

√
kT/k̄. (58)

For the simulations shown in Figs. 9 and 10, with a = 60
nm, b = 30 nm, T = 300 K, position data out to
τ = 2.5 × 105 was used to find histograms of vortex core
position, and thereby get the radial probability distri-
bution to compare with (57). The results are shown in
Fig. 11. To compare with theory, the force constants
from spin alignment relaxations were used, see the Fig.
11 caption. Note also that as the gyrotropic frequency is
considerably larger for L = 10 nm, those data correspond
to many more orbits of the vortex, equivalent to a more
complete averaging. Even so, the distributions for both
thicknesses follow very closely to the expected form that
depends on the validity of the Thiele equation, with no
adjustable parameters.

Using H expressed in terms of both X and Y , the
probability to find the vortex core within some range
dX and dY of the location (X, Y ) is p(X, Y ) dX dY ∝
e−βH dX dY , where the normalized probability function
is found to be

p(X, Y ) =

√
βkx

2π
e−

1
2βkxX2

√
βky

2π
e−

1
2βkyY 2

. (59)

This is a product of Gaussian distributions in each coor-
dinate, p(X, Y ) = p(X)p(Y ), with zero mean values, but
variances given by

σx =
√

kT/kx, σy =
√

kT/ky. (60)

The distributions p(X) and p(Y ) from the simulation
data of Fig. 9 are shown in Fig. 12, and compare closely
to the theoretical expression (59). Clearly one could also
find the corresponding distributions of the momentum
components by similar reasoning.

Instead of looking at the momentum components, we
can equivalently calculate a theoretical speed distribution
for the vortex core [13]. This is simplest if we use the
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FIG. 12: Distributions of vortex core coordinates for the
LLG-Langevin simulation in Fig. 9 with a = 60 nm, b = 30,
and thickness L = 5.0 nm. The solid curves are the the-
ory expressions from Eq. (59) based on the Thiele theory
for vortex motion, using force constants kx = 0.1156 k0

and ky = 0.2657 k0 from spin alignment relaxation, where
k0 = A/λex.

effective circular coordinate �ρ, and consider that fact that
its velocity in Eq. (36) implies a speed u ≡ |ρ̇| given by

u = |ωG|ρ. (61)

As u is proportional to ρ, so are their probability distri-
butions. If g(u) is the desired speed probability distribu-
tion, then conservation of probability states that

g(u)du = p(ρ)dρ = p(u/|ωG|)du/|ωG|. (62)

Thus the speed distribution is derived from the effective
circular coordinate distribution by

g(u) = |ωG|−1 p(u/|ωG|). (63)

With |ωG| = k̄/G, one obtains

g(u) =
βG2

k̄
u e−

1
2βG2u2/k̄ =

2u

u2
rms

e−u2/u2
rms . (64)

This depends on the root-mean-square speed, determined
from ρrms,

urms = |ωG|ρrms =
√

2kT k̄/G. (65)

The function g(u) is a Maxwellian speed distribution sim-
ilar to that for an ideal gas. One could consider the factor
in the exponent as depending on a kinetic energy term
1
2mGu2 for a particle, where mG is some mass associated
with that particle in gyrotropic motion. From (64) one
can read off the value needed for this mass,

mG = G2/k̄. (66)

This curious result gives a kind of effective mass that de-
pends on the potential experienced by the vortex. Thus

it should not be consider an intrinsic vortex mass. Gen-
erally, G is linearly proportional to thickness L [see ex-
pression (25)], whereas k̄ tends to increase approximately
with L2 [see expression (41) and also Sec. 4.2], making
this mass nearly independent of L. Probably mG is more
strongly determined by the disk area, πab. In the case of
circular disks, using the approximate expression (41) for
k̄ = kF and the definition (25) of G gives a quantitative
result,

mG ≈ (2π)2a
0.878µ0γ2

. (67)

Thus, the mass is determined primarily by the disk ra-
dius a, and it does not depend on the material parameters
such as the exchange stiffness or saturation magnetiza-
tion. For a radius a = 100 nm the mass is 1.2 × 10−22

kg, an extremely small value. Even so, the mass can be
taken to represent how a vortex responds dynamically to
the potential. With the gyrotropic frequency given by
|ωG| = k̄/G, the mas is written equivalently as

mG = G/|ωG| ∝ L/|ωG|. (68)

With mG depending only on disk radius or possibly area
in the xy plane, and the gyrovector proportional to L,
this re-expresses that |ωG| is also proportional to L, as
shown implicitly in Figs. 5 and 7.

6. SUMMARY AND INTERPRETATION OF
RESULTS

This chapter has provided an overview of some meth-
ods for finding the static, dynamic and statistical prop-
erties of vortex excitations in thin nanodisks of soft mag-
netic material. By assuming the thickness is much less
than the principal radius, L � a, the magnetization
points primarily within the plane of the disk, except
within the vortex core, and it has only weak dependence
on the coordinate z perpendicular to the plane. This
allowed for the transformation to an equivalent 2D prob-
lem, which has been studied here using a form of micro-
magnetics, converting the continuum problem to one on
a square grid.

The Lagrange-constrained spin alignment scheme was
used to find static vortex energies while securing the vor-
tex in a desired location R, thereby allowing for the cal-
culation of vortex potential U(R) within the disk. For a
vortex near the center of an elliptic disk, the force con-
stants kx and ky for displacements along the principal
axes a, b are found, with kx ≤ ky when b ≤ a. However,
the disk ellipticity b/a must be above a lower limiting
value for a vortex to stable; a very narrow disk will pre-
fer the formation of a quasi-single-domain state, or even
a multi-domain state, but not a vortex. A vortex ener-
getically prefers a displacement along the longer axis of
the disk; that is consistent with the shape of its elliptic
orbits, which have the same ellipticity as the disk itself
[see Eq. (33)].
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The vortex gyrotropic orbits can be described very well
through the use of the Thiele equation (24), which re-
places the dynamics of the many degrees of freedom in
the magnetization field M(r, t) by the dynamics of only
two Cartesian components in the vortex core location,
R = (X(t), Y (t)). This works best for a vortex near the
disk center, where it is unlikely to be destabilized by de-
formations caused by the boundaries. For zero temper-
ature, the dynamics from RK4 integration of the LLG
equations is completely consistent with that from the
Thiele equation. The Thiele equation predicts the vor-
tex gyrotropic frequencies to be ωG = −k̄/G, which is
confirmed in the dynamics simulations while using force
constants from the Lagrange constrained static vortex
structures. Generally the zero-temperature gyrotropic
frequencies are roughly proportional to L/a with only a
weak dependence on disk ellipticity, as can be concluded
from the results in Fig. 7. The frequencies are determined
by the geometric mean force constant, k̄ =

√
kxky, which

shows why knowledge of the vortex potential is important
for this problem.

Thermal effects for nonzero temperature have been in-
cluded by introducing a Langevin equation (21) that re-
sults from including stochastic magnetic fields into the
LLG equation. This Langevin equation gives the time
evolution in the presence of thermal fluctuations. Solved
numerically using a 2nd order Heun algorithm, a vortex
initially at the disk center (the minimum energy point)
will spontaneously undergo gyrotropic orbital motion, on
top of a noisy spin wave background. The orbital mo-
tion takes place at a slightly lower frequency compared
to its motion for T = 0, because the presence of spin
waves weakens the exchange stiffness of the system. The
resulting distribution of vortex position can be predicted
by using an effective Lagrangian and Hamiltonian that
result from the Thiele equation. That Hamiltonian can
be expressed in a form (50) containing only a potential
energy. This then shows that the distributions (and vari-
ances) of effective radial coordinate ρ and Cartesian coor-

dinates X and Y depend on
√

kT/kF , where kF is either
k̄ or kx or ky, respectively [see Eqs. (57) and (60)]. Sur-
prisingly large vortex rms displacements on the order of
1 – 10 nm can result, with the larger values taking place
in the weaker potentials of thinner disks (Fig. 11) and in
disks with larger radii a. However, these noisy elliptical
motions simpy reflect the equipartition of energy into the
two collective degrees of freedom available to the vortex
(X, Y ), with each receiving an average thermal energy of
1
2kT . The radial coordinate, in contrast, receives a full
kT of energy on average. The theoretical probability dis-
tributions are confirmed in simulations provided the time
evolution averages over a large number of gyrotropic or-
bits.

A vortex speed distribution can also be derived from
the position distribution, essentially because the momen-
tum and position coordinates of a vortex are not inde-
pendent. The speed distribution g(u) can be character-
ized by a mass mG proportional to the disk radius a,
but independent of material properties. The mass has
the sense that as the vortex position fluctuates, it has
some Maxwellian speed distribution, with a kinetic en-
ergy 1

2mGu2 that enters in the Boltzmann factor. This is
in contrast to the Thiele equation, which has been used
here with no intrinsic mass term. Indeed, the vortex gy-
rotropic frequency is the same as that for a corresponding
2D harmonic oscillator of mass mG and spring constant
k̄, that is, ωG =

√
k̄/mG.
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