
Magnetic vortex dynamics in the non-circular potential of a thin elliptic
ferromagnetic nanodisk with applied fields

G. M. Wysin∗
Department of Physics, Kansas State University, Manhattan, KS 66506 USA

(Dated: December 31, 2016)

Spontaneous vortex motion in thin ferromagnetic nanodisks of elliptical shape is dominated by a
natural gyrotropic orbital part, whose resonance frequency ωG = k/G depends on a force constant
and gyrovector charge, both of which change with the disk size and shape and applied in-plane or
out-of-plane fields. The system is analyzed via a dynamic Thiele equation and also using numerical
simulations of the Landau-Lifshitz-Gilbert (LLG) equations for thin systems, including temperature
via stochastic fields in a Langevin equation for the spin dynamics. A vortex is found to move in
an elliptical potential with two principal axis force constants kx and ky , whose ratio determines the
eccentricity of the vortex motion, and whose geometric mean k =

p
kxky determines the frequency.

The force constants can be estimated from the energy of quasi-static vortex configurations or from
an analysis of the gyrotropic orbits. kx and ky get modified either by an applied field perpendicular
to the plane or by an in-plane applied field that changes the vortex equilibrium location. Notably,
an out-of-plane field also changes the vortex gyrovector G, which directly influences ωG. The vortex
position and velocity distributions in thermal equilibrium are found to be Boltzmann distributions
in appropriate coordinates, characterized by the force constants.

PACS numbers: 75.75.+a, 85.70.Ay, 75.10.Hk, 75.40.Mg
Keywords: magnetic vortex, force constants, effective potential, gyrovector, Thiele equation, LLG equation,
stochastic dynamics

I. INTRODUCTION

Magnetic vortices in thin ferromagnetic disks of sub-
micron size offer an interesting system for the study of
collective dynamics of fundamental excitations1. A sin-
gle vortex centered in a circular disk can be the abso-
lute minimum energy state or it can be metastable, sepa-
rated from a nearby quasi-single-domain state by a weak
energy barrier. A vortex experiences a restoring force
F = −kF R dependent on its displacement R = (X, Y )
from the center, mostly caused by demagnetization ef-
fects from weak pole formation on the disk edges, where
kF is a force constant2. The response to this force is
the gyrotropic orbital vortex motion at a frequency ωG,
which can be detected in resonance experiments3.

While much work has been developed for disks with a
circular boundary, less studied are disks with an elliptical
boundary4. Quite generally in physical problems, devia-
tion of a circular system into one with elliptical symmetry
leads to interesting modifications, due to the breaking of
the circular symmetry. We consider an elliptical edge
characterized by semi-major radius a along the x-axis
and a semi-minor radius b along the y-axis, for a disk
of thickness L with L � a. In a circular disk, the in-
plane angle of local magnetization in a vortex state is
determined by vorticity charge q = ±1, and a chirality
or circulation charge c = ±1, via a relation

φ(x, y) = q tan−1

(
y − Y

x − X

)
+ c

π

2
. (1)

The gyrotropic charge is G = 2πqp, or gyrovector G =
Gẑ, where p = ±1 is the polarization direction (magne-
tization along ±z) of the vortex core. Simulations show

that the vortex structure itself is not squeezed along the
narrow direction of the ellipse. Rather, the vortex re-
tains close to a circular shape, but experiences a modi-
fied potential. When taken as an assumption, this is the
rigid vortex approximation. In numerical simulations, it
need not hold precisely. Regardless of that, the devia-
tion of the disk edge from circular symmetry is found to
introduce two non-equivalent force constants kx and ky,
corresponding to the principal axes of the ellipse. The
force constants change with the shape of the disk5, until
reaching a high in-plane aspect ratio b/a � 1, where the
vortex becomes unstable and a single- or multi- domain
state emerges.

With a magnetic field applied in the plane of the disk,
the vortex equilibrium position will be displaced away
from the disk center, perpendicular to the field in a di-
rection depending on chirality c. In an elliptic disk, dis-
placements along the two principal directions are non-
equivalent. Buchanan et al.6 have noted that a field Hext

y

applied along the shorter (y) axis, that shifts the vortex
minimum position along the long (x) axis, results in an
increase in its gyrotropic frequency. To the contrary, a
field Hext

x along the long axis, shifting the vortex mini-
mum position along the short axis, does not significantly
change the frequency. We confirm these results, showing
how the vortex effective potential and force constants are
modified by the displaced vortex equilibrium location.
The gyrotropic resonant frequency is then seen to shift,
without any modification of the gyrotropic charge or gy-
rovector G. If a field is applied instead perpendicular to
the disk plane (z-axis), we find that the force constants
and gyrotropic frequencies are modified. As well, the
gyrovector is shifted with an out-of-plane applied field
Hext

z , such that the resonant frequency changes nearly
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linearly with Hext
z . A field pointing out-of-plane in the

same direction as the vortex core magnetization increases
ωG.

In this article vortex motion in elliptic disks is consid-
ered, as obtained from two-dimensional micromagnetics
simulations, and from analysis of the Thiele equation7 for
magnetization dynamics of a collective excitation such as
a domain wall or vortex. The Thiele equation analysis
depends directly on the force or the effective potential
that the vortex moves in. This analysis is considered
first for the zero temperature motion as obtained from
Landau-Lifshitz-Gilbert (LLG) equations. The studies
verify that the Thiele equation gives a good description
of the motion and can predict the gyrotropic frequen-
cies, based on the force constants, even in the presence
of applied fields.

Quasi-static vortex structures and their energies can
be used to estimate the force constants. The dynamic
motion itself can also be used to estimate the force con-
stants, especially for vortices displaced by an in-plane ap-
plied field. In the first set of studies presented here, some
of the behaviors of the force constants and the gyrovec-
tor with disk geometry and applied field are discussed.
Note that the gyrovector only changes significantly for
an out-of-plane applied field. In a second set of stud-
ies, the stochastic effects due to finite temperature are
included, by using the Langevin-LLG equations for the
micromagnetics. The simulations can be compared with
the vortex statistics expected from applying the princi-
ple of equipartition, not to the numerous spin degrees of
freedom, but rather, to only the two degrees of freedom
for the position of the vortex core. That is, good agree-
ment is found for the vortex position statistics, based
on a theory with only two degrees of freedom, when an-
alyzing simulation data for the 2N degrees of freedom
represented in the dynamics of N micromagnetics cells
for an elliptical nanodisk of magnetic material.

II. THE SYSTEM, ENERGETICS AND
DYNAMIC EQUATIONS

The magnetic medium is assumed be of thickness L
along the z-axis and have an elliptical boundary in the
xy-plane,

x2

a2
+

y2

b2
= 1. (2)

The vortex magnetization structure is not strongly mod-
ified by the boundary, however, the vortex experiences
a non-circular effective potential U(R) caused by the
boundary. R = (X, Y ) represents the vortex core loca-
tion, measured from the disk center. For slight deviations
from its equilibrium position, the potential experienced
by a vortex is found to be of elliptical form,

U(R) = U(X, Y ) = U0 +
1
2

(
kxX2 + kyY 2

)
. (3)
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FIG. 1: Vortex force constants versus disk ellipticity, from
static vortices obtained by spin alignment relaxation. The
quantity Aex/λex serves as the unit of kx, ky and k̄ ≡ p

kxky .
These increase quickly with disk thickness, due to stronger
pole density at the disk edge.

The in-plane aspect ratio or ellipticity b/a ≤ 1 controls
the properties of the potential in which the vortex moves,
which is represented in terms of the force constants kx

and ky. When the ratio b/a becomes too small, a vortex
will be destabilized, and some other state such as a multi-
domain state will be preferred.

The underlying dynamics is that of the local magne-
tization M(r) = Msm(r). Analyzed numerically in the
micromagnetics approximation, the magnitude is fixed at
the saturation value Ms and only the direction m(r) is
changing. A continuum energy function for the system
includes isotropic exchange, and demagnetization (HM )
and applied (Hext) fields:

H =
∫

dV
{
Aex∇m · ∇m − µ0

(
1
2H

M + Hext
) · M}

.

(4)
The exchange is characterized by the exchange stiffness
Aex in units of J/m. Its competition with magnetostatic
energy due to demagnetization effects leads to the ex-
change length, that sets a length scale for the problem:

λex =

√
2Aex

µ0M2
s

. (5)

The magnetization tends to preserve its direction over
this length scale. Two-dimensional (2D) micromagnetics
is based on the idea of using a 2D grid with cells not
larger than this scale, so that the spatial variations in m
can be correctly described. For Permalloy with Aex ≈ 13
pJ/m and Ms ≈ 860 kA/m, that gives λex ≈ 5.3 nm. In
these micromagnetics simulations we have used cells of
size acell × acell × L, with acell = 2.0 nm, so that weak
changes in magnetization direction will be included. This
2D analysis is based on the assumption that there is little
dependence of m on the z-coordinate, through the thick-
ness of the disk. That should be true for thin disks. The



3

numerical simulations keep track of cell magnetic dipoles
�µi = µmi where i labels the cells, and µ ≡ La2

cellMs is
their fixed magnitude. Neighboring cells have an effec-
tive exchange constant, J = 2AexL. The demagnetiza-
tion fields HM

i are produced as a result of the current
state of the mi. Their calculation is based on magne-
tostatics theory for an isolated thin 2D system, using
effective Green’s functions appropriate for the thin disk
problem8. The calculations of HM

i can be accelerated
somewhat through the use of fast Fourier transforms ap-
plied to the defining convolution integrals.

For the discretized 2D system, the dynamic equations
of motion resulting from (4), and including an additional
damping term with dimensionless parameter α, are the
Landau-Lifshitz-Gilbert (LLG) torque equations,

d�µi

dt
= γ�µi × Bi − α

µ
�µi × (γ�µi × Bi) . (6)

This includes the gyromagnetic ratio γ and the effective
local magnetic induction Bi acting on a cell,

Bi = µ0Hi = − δH
δ�µi

. (7)

Of course, there are contributions to Bi due to exchange
fields, demagnetization fields, and the externally applied
field. For numerics, we measure Bi in a basic unit B0 ≡
J/µ = 2Aex/(a2

cellMs), defining dimensionless fields as
bi = Bi/B0. Then the time is measured in units t0 ≡
(γB0)−1, leading to dimensionless time variable τ = t/t0.
Thus the dynamics follows the dimensionless equations,

dmi

dτ
= mi × bi − αmi × (mi × bi) , (8)

For the numerical simulations, the magnetization unit
vectors mi(t) are evolved forward by some updating pro-
cedure. The method used depends on whether static or
dynamic results are desired. Static or quasi-static vor-
tex structures were used to get force constants, as an
example. Dynamic simulation is necessary to obtain the
gyrotropic frequencies.

III. QUASI-STATIC VORTEX PROPERTIES

For finding quasi-static or relaxed structures, a local
spin alignment relaxation scheme has been used, itera-
tively pointing each magnetic moment to align with its
effective field, until some convergence is reached. The
vortex energy (same as total system energy) was eval-
uated for different positions, which were enforced by a
Lagrange constraint9 on the vortex core. For elliptical
nanodisks without applied fields, Fig. 1 shows results for
the vortex force constants obtained by this scheme, for
vortices near the center of elliptical disks. The semi-
major radius is a = 120 nm, while the semi-minor radius
b takes on a range of values, corresponding to ellipses of
different shapes. The force constants were estimated by

using the energy change for a displacement of ∆X = 4.0
nm or ∆Y = 4.0 nm away from the disk center, where
the vortex energy is the minimum value, U0. Assuming
the potential in Eq. (3), the force constants are obtained
quasi-statically by expressions,

kx =
2 [U(∆X, 0) − U0]

(∆X)2
, ky =

2 [U(0, ∆Y ) − U0]
(∆Y )2

.

(9)
The results in Fig. 1 show some interesting features.
First, the potential is stiffer for vortex motion along the
shorter (y) direction. Thus, ky ≥ kx, where the equal-
ity holds only in the circular limit. The vortex moves
much more freely along the longer (x) axis. Secondly, for
ellipses with a higher in-plane aspect ratio (i.e., smaller
b/a), kx reduces slightly while ky increases more rapidly.
At the same time, the geometric mean force constant k̄
remains nearly constant. Eventually all of the force con-
stants tend towards zero for small enough b/a, where the
vortex is destabilized. Finally, also note that the force
constants increase with the thickness of the disk, more
than linearly with L. The disk with greater thickness
have a much stronger demagnetization effect, which leads
to a much stronger restoring force on the vortex.

A. About finding the vortex location

The vortex core position R = (X, Y ) can be deter-
mined with a precision much smaller than the numerical
grid. This is done by first locating the set of four cells
that surround the vorticity center or vortex core, among
which the change in in-plane angle φ changes by 2π as
expected from Eq. (1). Then, using a set of the cells
within about 4 exchange lengths from that preliminary
position estimate rv, an improved estimate is found from
an average weighted by the squares of out-of-plane scaled
magnetization components mz

i . This uses the fact that
the magnetization tilts out of the disk plane at the vor-
tex center, with mz

i decaying away towards its boundary
value over a distance on the order of the exchange length.
We use an expression to estimate the position,

R =

∑
|ri−rv |<4λex

(mz
i )

2 ri∑
|ri−rv |<4λex

(mz
i )2

. (10)

Each ri is the center position of a cell, with the
sum restricted to the core region. Especially for zero-
temperature simulations this weighted location gives a
very smoothly changing vortex position, even when fol-
lowing the dynamics. It is verified by comparison with
the time-dependent plots of the magnetization as it
evolves in the simulations. It is used below for the com-
parison of simulations with the Thiele theory for vortex
core motion, and also in the study of vortex position
statistics in Sec. VII.
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FIG. 2: Summary of vortex gyrotropic frequencies in ellipti-
cal nanodisks, using p = −1 and frequency unit ω0 ≡ µ0

4π
γMs,

force constant unit k0 ≡ Aex/λex and λex as the unit of length.
These data fall very close to the prediction of the Thiele equa-
tion, which is the unit value, LωG/k̄ = λexω0/k0.

IV. THIELE EQUATION ANALYSIS

The results found for vortex dynamics based on nu-
merics can be analyzed in light of the Thiele collective
coordinate equation for a localized magnetic excitation.
If the effective force F = −�∇U(R) is acting on the vor-
tex core, then the Thiele equation for the core velocity
V = Ṙ predicts the motion by

F + G × V = 0. (11)

This depends on the topological charge or gyrovector G
of the vortex, which is determined by the vorticity charge
q = +1 (antivorticity with q = −1 is not considered
here), the out-of-plane core polarization p = ±1, and the
magnetic dipole moment per unit area, m0 = LMs,

G = Gẑ = 2πpqm0γ
−1ẑ. (12)

The potential in (3) is assumed, which depends on force
constants kx and ky. With the gyrovector having only
an out-of-plane component, the equations of motion are
equivalent to those of an elliptical oscillator, e.g.,

Fx = −kxX = −(G× V)x = GẎ (13)

Fy = −kyY = −(G × V)y = −GẊ (14)

Starting at location (X0, Y0) at time t = 0, the solution
is that of elliptical motion,

X(t) = X0 cosωGt + (Y0ky/k̄) sin ωGt (15)

Y (t) = Y0 cosωGt − (X0kx/k̄) sin ωGt (16)

k̄ =
√

kxky, ωG = −k̄/G. (17)

The geometric mean of the force constants, k̄, determines
the gyrotropic frequency ωG, which can also be taken as

a vector perpendicular to the plane, �ωG = ωGẑ. The
minus sign is included in (17) to indicate clockwise mo-
tion in the xy-plane when the gyrovector has a positive
z-component. While the mean force constant determines
ωG, the ratio of those force constants controls the shape
of the orbit. Considering using Y0 = 0, one gets the ra-
tio of maximum displacements on the two axes (orbital
ellipticity e, or ratio of semi-minor to semi-major axes)
to be

e ≡ Ymax

Xmax
=

kx

k̄
=

√
kx

ky
. (18)

Thus, the magnetic dynamics leads to vortex elliptical
motion, whose ellipticity is directly related to the square
root of the force constant ratio. Simulations of static
vortex structure that lead to kx and ky, such as in Fig.
1, show that to a good approximation, e ≈ b/a for ade-
quately large nanodisks.

For some analysis, a stretching of the coordinate sys-
tem into a new variable,

�ρ ≡ (
√

eX,
1√
e
Y ), (19)

is useful, because it returns the potential to a circular
symmetry:

U(�ρ ) =
1
2
k̄�ρ 2. (20)

For the same reason, the vortex core motion then takes
a simple form,

�̇ρ = (ρ̇x, ρ̇y) = �ωG × �ρ. (21)

The variable, �ρ and especially its magnitude is convenient
for analysis of vortex position statistics.

A. Vortex Gyrotropic Frequencies

For zero temperature dynamics, fourth order Runge-
Kutta (RK4) scheme has been used to get the time
evolution. For finite temperature dynamics, additional
stochastic fields are included into the equations (8), and
the resulting Langevin-LLG equations (also known as the
stochastic LLG equations) can be evolved forward in time
using a second order Heun method. The chosen temper-
ature T determines the relative strength of the stochastic
magnetic fields. See Refs.2,5 for further details.

At zero temperature, the validity of the Thiele analysis
is confirmed by simulating vortices starting with a small
displacement (4.0 nm) from the disk center, and evolving
the undamped LLG equations forward in time with an
RK4 scheme. The motion can be followed over 10 to
20 periods, from which the frequency is measured. The
frequencies obtained dynamically are found to be directly
proportional to the mean force constants k̄ obtained from
statics. Results versus disk ellipticity are summarized in
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FIG. 3: Vortex effective potential curves for an elliptical nan-
odisk with b/a = 0.5, at the indicated applied fields. The
vortex configurations were found quasi-statically, using a La-
grange constraint on the vortex position. The energy unit is
J = 2AexL. This type of result is used to make estimates
of the force constants, which are clearly different for x and y
displacements.

a compact form in Fig. 2. The frequencies follow closely
the prediction (17) of the Thiele equation, which for q = 1
can be transformed to a form:

LωG

k̄
=

−pγ

2πMs
= −pλex

(µ0

4π
γMs

)(
λex

Aex

)
(22)

The RHS contains λex as length unit, a frequency unit
ω0 ≡ µ0

4π γMs, and the force constant unit k0 ≡ Aex/λex.
Thus, the Thiele equation predicts in these units:

(L/λex)(ωG/ω0)
(k̄/k0)

= −p. (23)

This is confirmed in the simulations for various disk ge-
ometries to within a few percent, except for small ellip-
ticity, for which there is limited vortex stability, see Fig.
2.

V. VORTEX IN AN OUT-OF-PLANE APPLIED
FIELD

Next, consider an applied field Hext
z , or in dimen-

sionless simulation units, include a nonzero field bext
z =

µ0H
ext
z /B0. A vortex with q = p = +1 is being used,

and positive (negative) values of bext
z correspond to the

applied field pointing in the same (opposite) direction as
the magnetization in the vortex core region. The effect on
the vortex effective potential for a system with b/a = 0.5
is shown in Fig. 3, for applied fields bext

z = 0,±0.05. The
total system energy is plotted as a function of the vortex
displacement from the disk center. Generally, the total
energy is reduced with an applied field, and due to the
symmetry, the disk center remains the location of the
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FIG. 4: More vortex effective potential curves for an elliptical
nanodisk with b/a = 0.5, at the indicated applied fields, like
those in Fig. 3.

minimum. A positive field causes the larger reduction
in total energy, as more of the magnetization is strongly
aligned to the applied field.

Another example for the same system, but with bext
z =

±0.15, is shown in Fig. 4. Obviously, an even greater
field causes a larger downward energy shift. More im-
portantly, the force constants are also modified by bext

z ,
although this effect is difficult to see in the plots of U(R).
Using Eq. (9), the results for kx, ky and k̄ are shown in
Fig. 5. This clearly shows how all of these are maximized
at zero field, and tend towards kx = ky = k̄ → 0 at
an upper positive field limit, where the vortex is desta-
bilized. Similarly, the vortex will be destabilized by a
strong enough negative field, however, this takes place
partly because the vortex core region in that case will
acquire a very short radius (the core will be oppositely
polarized to its surroundings). Note that the gyrotropic
frequency ωG = k̄/G would be diminished by positive or
negative bext

z , if the gyrovector were constant. However,
that is not the case, and the gyrotropic frequencies versus
bext
z does not have the shape of the k̄ curves.
Without applied fields, the dimensionless gyrovector

γG/m0 = 2πpq represents the total steradians of a unit
sphere covered by the magnetization direction of the vor-
tex, which is half of the unit sphere. G is also given by a
formula involving the out-of-plane reduced magnetization
at the core, mz(0) = p and at infinite radius, mz(∞) = 0,

G = G0 [mz(0) − mz(∞)] , (24)

where the scale is determined by the zero-field continuum
gyrovector value,

G0 ≡ 2πqLMsγ
−1. (25)

Once a field is applied along the z-axis, the boundary
value mz(∞) will be modified, which directly leads to a
modification of G. Considering the case p = +1, G is re-
duced (increased) for positive (negative) bext

z , compared
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in Figs. 3 and 4.
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FIG. 6: For a moderately sized elliptical disk, the magni-
tude of the gyrovector versus out-of-plane applied field, as
estimated from the average out-of-plane reduced magnetiza-
tion via Eq. 26. Note that G → 0 at the same field value
(bext

z ≈ 0.7) as where k̄ → 0, compare Fig. 5.

to its value at zero field. For a large enough system, the
vortex core region is small compared to the rest of the
area. Then an approximate expression for the value at
large radius is to use the average over the whole system,
mz(∞) ≈ 〈mz〉. This gives a rough estimate of the gy-
rovector,

G ≈ G0 [p − 〈mz〉] . (26)

A plot showing the behaviors of 〈mz〉 and the resulting
G for an elliptical system with a = 120 nm, b = 60 nm,
is displayed in Fig. 6. There results close to a linear
dependence of G on the out-of-plane field.
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FIG. 7: From a set of zero-temperature LLG simulations, the
gyrotropic periods τG (in simulation units t0 on right axis)
and frequencies ωG (in units of ω0 = µ0

4π
γMs, left axis) for

an elliptical disk as a function of the out-of-plane field. Solid
symbols connected by dotted lines are derived from the nu-
merical simulations. Open symbols with solid lines result from
the theory expression (17) using the estimates of force con-
stants and G as in Fig. 6. Note that the field dependence of
ωG is nearly linear at small field values.

Using LLG simulations of vortex motions, starting
from small displacements X = 4.0 nm, many orbits can
be followed, from which the periods tG can be deter-
mined, then leading to the gyrotropic frequencies ωG =
2π/tG. Note that in dimensionless units the period is
τG = tG/t0, where t0 = (γB0)−1 is the simulation time
unit. For the example system with a = 120 nm, b = 60
nm, L = 20 nm, the resulting periods and frequencies are
shown in Fig. 7 over a range of out-of-plane applied field.
There is very good agreement between the frequencies
from the simulations, and those derived from the Thiele
theory expression (17), using the gyrovector G that varies
with field in Fig. 6. One finds a rather strong effect of
the field on ωG. The frequency exhibits a nearly linear
dependence on bext

z at weaker fields, and even for negative
fields, where there is little destabilization of the vortex.
At the higher positive field values, the frequency deviates
from the linear behavior, as the vortex becomes unstable.

VI. EFFECT OF AN IN-PLANE APPLIED
FIELD

A magnetic field applied within the plane of the disk
will displace the equilibrium vortex position away from
the disk center, along a line perpendicular to that field;
the direction depends on the vortex chirality c or twist
direction, Eq. (1). Doing simulations of the quasi-static
vortex potentials, results such as those in Fig. 8 are
found. A field applied along the y direction, for posi-
tive chirality c, displaces the vortex in the −x direction,
all the more so for stronger field. The asterisks in Fig.
8 indicate the minima of the different potential curves.
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along the shorter side of the ellipse, on a vortex with chirality
c = +1, see Eq. (1). The different curves are labeled by values
of bext

y . The vortex potentials are shifted such that the minima
(shown as asterisks) move perpendicular to the field, and the
effective force constants are modified.
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FIG. 9: From the vortex potentials such as those in Fig. 8,
the equilibrium vortex locations as functions of the in-plane
applied field. The vortex becomes unstable if pushed too close
to the edge, hence the curves end at specific field strengths.
A larger maximum field is needed to eject the vortex in the
thicker disk.

The resulting equilibrium vortex locations, as functions
of the applied field, are those shown in Fig. 9. The vor-
tex appears to become unstable when reaching some edge
region of the disk, which is about the same distance for
the two disk thicknesses tested here.

Buchanan et al.6 have noticed further that in addition
to this displacement, there is an upward shift in the gy-
rotropic frequency, resulting in close to a 100% increase,
as long as the vortex has been shifted on the longer axis
of the ellipse. Here we give further analysis to this effect;
we find that the shifted location changes the force con-
stants, but k̄ still primarily determines ωG, because for
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FIG. 10: From the vortex potentials such as those in Fig. 8,
the vortex force constants as functions of the in-plane applied
field. The vortex becomes unstable if pushed too close to
the edge, hence the curves drop off and then terminate at an
upper limiting field.

the most part G is unaffected by an in-plane field.
Initially a vortex is relaxed with damping, in the pres-

ence of an in-plane field, bext
y along the shorter ellipse

axis. This produces some equilibrium location (Xeq, 0)
away from the center, on the longer axis, and a corre-
sponding minimum energy Eeq. Then, another simula-
tion is done without damping, starting from a nearby
position, which results in gyrotropic motion around loca-
tion (Xeq, 0), at some higher energy E, whose period tG
is measured. The resulting orbital shape (X(τ), Y (τ))
has a semi-major axis Apath and semi-minor axis Bpath.
Fitting the energy difference E−Eeq to expression (3) for
U(R), gives a dynamic evaluation of the force constants
by

kx =
2(E − Eeq)

A2
path

, ky =
2(E − Eeq)

B2
path

. (27)

Some typical results for kx, ky, and the resulting k̄ are in-
dicated in Fig. 10, for different disk thicknesses. At least
at weaker field magnitude, the force constants increase
with bext

y . This is the primary cause of an increasing
gyrotropic frequency. It appears that there is a greater
tendency for kx to increase rather than ky . As the vortex
is pushed into the narrower end of the disk, it experiences
stronger demagnetization fields and a resulting stiffer po-
tential.

The gyrotropic frequency ωG = 2π/tG then is com-
pared with the Thiele prediction, ωG = −k̄/G, using
their geometric mean value k̄, and assuming the zero-
field gyrovector value, G = G0. Results are shown in
Fig. 11, as functions of the dimensionless applied field
bext
y , up to a limit where the vortex is forced out the

edge of the disk. The increase of ωG with applied field
is seen to be significant. The largest frequency change
takes place as the vortex is forced to move close to the
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FIG. 11: Vortex gyrotropic frequencies (for p = −1) under
the presence of an in-plane magnetic field that displaces the
equilibrium position. ωG found directly from the orbital pe-
riods in simulations (filled symbols with dotted lines) is com-
pared with the Thiele prediction, Eq. (17), using k̄ evalu-
ated from the orbital shape via Eq. (27) and assuming fixed
G = G0 (open symbols with solid lines). Beyond the ends of
the curves, the vortex is ejected from the disk, see also Fig.
9.
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FIG. 12: Vortex core radial position distributions for Permal-
loy parameters in disks at T = 300 K. Symbols are from
Langevin LLG simulations to time τ = 2.5×105. Solid curves
are theory expression Eq. (29) with k̄ = 4.551 × 10−4 N/m
for L = 5.0 nm and k̄ = 1.632 × 10−3 N/m for L = 10 nm,
from quasi-static relaxed vortex calculations. These data re-
sult from hundreds of vortex revolutions.

disk edge. A weakening in the effect takes place near the
limiting value of bext

y , which is most simply explained by
the reduction of k̄ when the vortex is near the disk edge.

VII. THERMALLY INDUCED SPONTANEOUS
MOTION

It was pointed out by Machado et al.10 and studied fur-
ther by Wysin and Figueiredo2 that gyrotropic motion
can be spontaneously generated at finite temperature.
The motion can self-generate even for a vortex initially
at the disk center (no applied field is considered here).
The amplitude of the motion is determined by equipar-
tition, which can be analyzed under the assumption that
the vortex core obeys the Thiele equation. This means
that the vortex is considered to possess only two primary
degrees of freedom, being the two Cartesian coordinates
(X, Y ) of its core position. A short exercise shows that a
Lagrangian that leads back to the Thiele equation with
elliptic potential is5

L = −1
2
G(XẎ − Y Ẋ) − 1

2
(
kxX2 + kyY 2

)
. (28)

Using the resulting canonical momentum P, this implies
a Hamiltonian that can be expressed as purely potential
energy, H = P · Ṙ−L = U(X, Y ) = 1

2 k̄�ρ 2. Then assum-
ing equipartition for only two degrees of freedom, each
with average energy of 1

2kBT , with kB is Boltzmann’s
constant, the thermally averaged Hamiltonian takes the
value, 〈H〉 = kBT ≡ β−1. This gives a prediction for
the distribution of vortex core radial position using the
effective circular coordinate ρ defined in (19) as

p(ρ) = βk̄ρe−
1
2 βk̄ρ2

. (29)

Simulations can be used to test this expectation, solv-
ing the Langevin-LLG equations by a second order Heun
method8. The integration was done out to time τ =
2.5×105, with a weak damping constant α = 0.02, start-
ing with a vortex at the disk center. The vortex motion
initiates spontaneously due to thermal fluctuations, then
proceeds in a noisy gyrotropic orbit for many periods,
from which a histogram of ρ can be calculated. Some typ-
ical results without an applied field are shown in Fig. 12
for disks with a = 60 nm, b = 48 nm at T = 300 K using
Permalloy parameters. There is reasonable agreement
between the simulation and the Thiele theory, however,
averaging over numerous orbits is required. The distri-
bution of vortex velocity can also be found to follow a
Boltzmann form.

The application of an out-of-plane field can be seen to
modify the thermally generated vortex radial distribu-
tion. For instance, for an elliptical Permalloy disk with
a = 60 nm, b = 48 nm, L = 10 nm, the zero-field mean
force constant is k̄ = 1.632 × 10−3 N/m, as used in Fig.
12. With the field bext

z = 0.30 applied, quasi-static vor-
tex relaxation shows that the force constant is reduced to
k̄ = 1.304 × 10−3 N/m. This is similar to the force con-
stant reductions as displayed in Fig. 5. A slight change
in p(ρ) results, as shown in Fig. 13, where the zero-field
and non-zero field cases are plotted. The slightly weaker
potential in the presence of the field allows the vortex to
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FIG. 13: Vortex core radial position distributions for Permal-
loy parameters in a disk at T = 300 K. Symbols are from
Langevin LLG simulations to time τ = 2.5 × 105. Curves
are theory expression Eq. (29) with k̄ = 1.632×10−3 N/m for
bext
z = 0 and k̄ = 1.304×10−3 N/m for bext

z = 0.30, from quasi-
static relaxed vortex calculations. The distribution is shifted
outward slightly due to the reduction in force constant caused
by the field, see also Fig. 5.

explore a larger area of the disk, for fixed temperature.
If a much stronger field were applied, it could be possi-
ble to weaken the potential sufficiently for the vortex to
destabilize or exit the disk. Some similar results should
be expected for a vortex with an in-plane applied field in
the presence of thermal fluctuations.

VIII. CONCLUSIONS

Magnetic vortex motion in thin elliptical nanometer
scaled disks with applied fields has been considered here.

The dynamics is controlled to a great extent by the ef-
fective potential and related force constants kx, ky , and
their geometric mean value, k̄. The gyrotropic reso-
nant frequency is given by ωG = −k̄/G, according to
the Thiele equation analysis. The Thiele equation works
well in describing magnetic vortex dynamics in ellipti-
cal nanodisks, even in the presence of applied fields, pro-
vided that the force constants and gyrovector are known.
The force constants can be found from quasi-static vor-
tex relaxation with a Lagrange constraint9, however, it is
also possible to infer their values from a simple analysis
of the vortex orbital shape in simulations of the zero-
temperature LLG equations. The gyrovector is fairly
well estimated with Eq. (26), by assuming a core mag-
netization m(0) = p and a far-field magnetization ap-
proximately equal to the system’s mean value, 〈mz〉. We
do see a limit to the applicability of the Thiele equa-
tion when the vortex is exposed to strong enough fields
that reduce its stability. For more moderate fields, an
out-of-plane field increases (decreases) ωG when paral-
lel (antiparallel) to the vortex core magnetization, with
close to a linear relationship between bext

z and ωG, see
Fig. 7. The simulations also have confirmed that an in-
plane field along the shorter (y) disk axis both displaces
the vortex equilibrium point along the long (x) axis, and
increases its gyrotropic frequency, as found in Fig. 11.
These field effects on a vortex could be very useful in the
design of new microwave oscillators and detectors.

∗ Electronic address: wysin@phys.ksu.edu; URL: http://
www.phys.ksu.edu/personal/wysin
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