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The dynamical mass of a vortex in a two-dimensional easy-plane magnetic model is calcu-
lated from the translational mode spectrum and an effective force constant for the vortex in
a finite lattice system. A significant feature of this method is that the mass can be calculated
for both the in-plane and out-of-plane vortices.

PACS numbers: 75.10.Hk, 75.30.Ds, 75.40.Gb, 75.40.Mg

I. INTRODUCTION

Nonlinear vortex excitations in models for layered or
two-dimensional (2D) magnets [1] have attracted much
study not only for their role in the thermodynamics of the
Berezinskii-Kosterlitz-Thouless vortex-unbinding transi-
tion [2,3], but more recently because their microscopic
dynamic behavior is not fully understood. The dynamics
of individual vortices continues under study for ferromag-
nets (FM) [4,5] and antiferromagnets (AFM) [6,7], with
attention to external and gyrotopic force terms, dissipa-
tion terms, and mass terms in appropriate equations of
motion. Specifically, a question of great importance that
we consider here is whether vortices have dynamics that
requires an effective mass. The value of the vortex ef-
fective mass, if present, will relate to vortex motion in
thermal equilibrium and vortex rms velocity. The results
may also be relevant for vortex fluctuations experiments
in related systems such as high temperature supercon-
ductors [8].

We consider 2D magnetic models with easy-plane
anisotropy, where the spins have an energetic preference
to lie in the xy-plane, with smaller z-components, de-
pending on the strength of the anisotropy. A vortex po-
sition is defined by the location of a local singularity in
the in-plane (xy) components of the spin field. If the
anisotropy is weak, there is an associated nonzero out-
of-plane (z) spin structure that peaks at the vortex cen-
ter, and falls off away from the vortex center [9,10]. If
one supposes that this “out-of-plane” vortex spin struc-
ture (in continuum theory) is fixed as the vortex moves

with constant velocity ~V = ~̇X, then the response of the

vortex position ~X to an external force ~F (due to applied
field or other vortices) is associated with a topological

charge of the vortex, or gyrovector, ~G = Gêz, accord-
ing to an equation of motion derived by Thiele [11] for
domain walls and applied by Huber [12] to dynamics of
vortices:

~F + ~G × ~V = 0. (1.1)

In closely related work, dynamic properties of vor-
tices in continuum easy-plane magnets were analyzed by

Nikiforov and Sonin [13] by considering a solvability con-
dition for the inhomogeneous linear equation for the cor-
rections to the vortex structure that are due to uniform
vortex motion. They also evaluated the momentum bal-
ance in the absence of external forces. From both cal-
culations they concluded, consistently with Eq. (1.1),
that a vortex in an easy-plane ferromagnet does not move

(~V = 0) in the absence of an external force. It is “frozen”
in the medium and effectively appears as if it has infinite
mass. This conclusion applies to vortices with nonzero
gyrovector, or, as stated in Ref. [13], vortices in which the
magnetization at the vortex core is nonzero even in the
absence of magnetization at infinity [14]. On the other
hand, the gyrovector is zero for vortices in an antifer-
romagnet [15,16] (unless there is an applied field [6,7],
which is not considered here), and free AFM vortices can
move with arbitrary velocity in the absence of a force
[17].

In the presence of strong enough easy-plane anisotropy,
however, the FM vortex spin structure is planar [18,19],
spins have only small deviations out of the easy plane
caused by the motion [20]) and the gyrovector vanishes.

Then equation (1.1) makes no statement about ~V in the
absence of a force, and is inapplicable when there is a
force. A modification of its derivation [21,22] to allow for
a time-dependent velocity, including the possibility that
the vortex spin structure changes as the vortex velocity
changes, leads to an additional mass times acceleration
term on the right hand side:

~F + ~G × ~V = M ~̇V . (1.2)

This equation was derived in a continuum limit. In the

absence of ~G it still has a dynamics. A similar equation
has been applied by Ivanov and Stephanovich [23] to cal-
culate the effective mass for localized magnetic vortices
in a 2D easy-axis FM. Here we consider whether the non-
localized vortices in an easy-plane model move with such
an effective mass. We consider a lattice system of finite
extent, and study the results as a function of increasing
system size.
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In a simulation for an individual vortex near the cen-
ter of a small circular lattice system, we show that Eq.
(1.2) gives a good description of the vortex core motion,
and can be used to evaluate the mass. The force is a
linear central force provided by the combination of a
boundary condition and the effect of the discrete lattice
itself, with the lattice force being dominant. Through an
energy minimization procedure we evaluate an effective
force constant K that describes the central force. The
gyrovector is evaluated from a lowest order finite differ-
ence approximation to its continuum definition. Most
importantly, the mass is evaluated in a direct way by us-
ing the eigenfrequencies of the translational modes of the
vortex. Numerical diagonalization [24] is used to deter-
mine the complete spectrum of small amplitude oscilla-
tions of the spin degrees of freedom, i.e., the spinwaves in
the presence of the vortex. The translational modes are
identified, and produce either linear or orbital motions
of the vortex center, depending on the absence or pres-
ence of the gyrovector, respectively. As these motions are
the same as those that Eq. (1.2) predicts under a linear
central force, it is possible to use the translation mode
frequencies together with the effective force constant K
to deduce the mass. The mass can be found in this way

for ~G = 0 as well as for ~G 6= 0. The calculation is applied
to FM and AFM models, although we concentrate on the
FM system because of the more interesting dynamics due
to the gyrovector in the absence of a field. Comparing the
results with a prediction of continuum theory for moving
vortices [21,22], the mass found here is rather large, and
does not generally increase as ln R, where R is the system
radius.

II. MODEL SYSTEM

Consider the 2D classical easy-plane FM spin model
with anisotropy parameter λ < 1, and lattice Hamilto-
nian

H = −J
∑

n,a

(Sx
nSx

n+a + Sy
nSy

n+a
+ λSz

nSz
n+a), (2.1)

where the subscript n labels the lattice site at position
rn = (xn, yn), and a labels the set of displacements to the
nearest neighbors. The equations of motion and static
FM vortex solutions as a function of λ for 0 ≤ λ < 1 are
well known [9,10,20]. Further general properties of vortex
excitations are reviewed in Ref. [4]. The spin variables
are of fixed length, and can be described by in-plane and
out-of-plane angles φn and θn via

~Sn = S(cos θn cosφn, cos θn sin φn, sin θn) (2.2)

The vortex solution with charge q = ±1 centered at po-
sition (xv , yv) is described by

φn = q tan−1(
yn − yv

xn − xv

) (2.3)

The center position of an individual vortex is a well-

defined quantity, determined by the singularity in ~∇ ×
~∇φ, and may fall anywhere between lattice sites. There is
no general closed form solution for the out-of-plane angle
θ, except that for λ less than a critical value λc ≈ 0.704
for the square lattice [19], the stable in-plane vortex has
θ = 0. Above this critical value, θ becomes a nonzero
function localized on the vortex center with a length scale

of rv = 1

2

√

λ
1−λ

. In continuum theory, at the core of the

out-of-plane vortex the spin is along either the positive
or negative z-axis;

θ(xv, yv) = p
π

2
, (2.4)

with polarization p = ±1. The product of the vortex
charge and its polarization in the form

~G = 2πpqêz (2.5)

defines the gyrovector ~G (in continuum limit), which is
the net topological charge (or cover of the spins on the

unit sphere). ~G plays an interesting role in the dynamics
when the vortex is considered to move as a particle. The
in-plane vortices (λ < λc) have zero gyrovector. For a
static vortex in the AFM system on square or hexago-
nal lattice, the spins on an individual sublattice take the
same form as this structure for the FM vortex, with op-
posite phases between the sublattices. Thus there is no
particular distinction in the static structures, critical λ,
and energies for FM and AFM vortices.

For numerical calculation, we consider a finite system,
taken to be a circle of radius R cut out of a square lattice,
with the center of the circle at the center of a unit cell. A
vortex-Dirichlet boundary condition is applied, by setting
spins on the square lattice just outside the circle to lie
in the xy-plane, with directions as given by the static
in-plane vortex, Eq. (2.3). The resulting effect of this
boundary condition is that it forces the lowest energy
position of the vortex to be at the center of the system.

Small displacements ~X away from the center involve an
energy increase. In fact, for displacements much less than
the lattice spacing, the potential is close to harmonic, and
can be described by an effective linear force acting on the
vortex,

~F = −K ~X, (2.6)

where K is the effective force constant. For larger dis-
placements, the potential involves a periodic contribution
due to the lattice, and a background contribution due to
the boundary condition. The constant K can be consid-
ered to include contributions from both effects measured
at the center of the system, however, the lattice contri-
bution is dominant here.

If the vortex were to behave as an ordinary particle
with mass M moving under the influence of this force,
the resulting motion would be the same as that of a
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FIG. 1. The frequencies of the three lowest modes for a vortex
with gyrovector ~G = +2πêz in a system with radius R = 19,
as a function of anisotropy parameter λ. Solid circles indicate
where the translation modes are degenerate. QL indicates
the quasi-local mode associated with the in-plane vortex in-
stability. T+ indicates the translational mode that produces
counterclockwise orbital motion, T− produces clockwise or-
bital motion. The translational modes’ degeneracy splits at
λc ≈ 0.704, where the in-plane vortex crosses over into an
out-of-plane vortex.

two-dimensional harmonic oscillator. This would involve
two translational modes of oscillation corresponding to
x- and y-direction motions, with equal frequencies given
by ω =

√

K/M . We can see if this is the case for vor-
tices by determining the translational spinwave modes of
oscillation of the vortex.

III. TRANSLATION MODE SPECTRUM

The microscopic calculation of the small-amplitude
spin motions has already been carried out in References
[24,25], using the system and boundary conditions as
specified here. It is important to note that it is a mi-

croscopic calculation, as opposed to a collective coordi-
nate calculation, and considers the full dynamical mo-
tions of the spins themselves. There is no set of reduced
degrees of freedom or reduced coordinates used. A vor-
tex with q = p = +1 is initially placed at the center of
the system, and then the small amplitude spin motions
are determined by a numerical diagonalization of the spin
equations of motion linearized about the vortex. A typi-
cal spectrum of a few of the lowest eigenmode frequencies
of a FM vortex for R = 19 is shown in Fig. 1, as a func-
tion of the anisotropy constant λ. (This system has 1124
sites.) The solid circles are used to indicate where the
translation mode is doubly degenerate, for λ < λc. The
splitting of this and other mode degeneracies has been

found to be associated with the crossover from in-plane
to out-of-plane vortices at λ = λc [24].

The eigenfunctions for the translation and other modes
were discussed in Refs. [24–26]. We identified the trans-
lational modes (T+ and T− in the figures) by viewing the
motions of the spins that result when a given spinwave
eigenfunction is added to the original vortex structure.
The time-dependent spins are taken to be

~Sn(t) = ~S 0
n

+ A~σk,ne−iωkt (3.1)

where the superscript 0 refers to the static vortex, ~σk,n is
the normalized eigenfunction for mode k with frequency
ωk, and A � 1 is a small amplitude. In particular, one
can observe the spin motions in the central core region of
the vortex and use their instantaneous directions to esti-
mate the position of the vortex center. A least squares fit
of the four core spins to the form in Eq. (2.3) (scheme due
to H.-J. Schnitzer [27]) can be used to evaluate (xv, yv)
to a precision of less than one percent of the lattice con-
stant. By this definition, most of the modes do not re-
sult in any motion of the vortex core. The translational
modes are identified to be the two lowest modes that
do produce motion of the vortex center, and addition-
ally, the structures of their eigenfunctions vary as e±imχ,
with azimuthal quantum number m = 1, where χ is the
azimuthal polar coordinate.

As a numerical check, we also used the expression in
Eq. (3.1) at t = 0 as the initial condition for fourth order
Runge Kutta numerical integration of the spin dynamics
equations of motion. For small amplitudes A � 1, the
resulting orbits and periods are consistent with the time
evolution expressed in Eq. (3.1). Using a larger ampli-
tude A = 0.5, typical motions that result from the two
translation modes for the FM R = 19 system are shown
in Fig. 2. For λ < λc, (in-plane vortices, Fig. 2a), the
degenerate modes result in linear motion of the vortex
center, along two different directions, and the dynamics
is just like that for an ordinary massive particle. Inter-
estingly, the motion’s amplitude is quite small even for
this fairly large mode amplitude. Note that appropri-
ate linear combinations of these two degenerate modes
could be used to construct new modes that produce mo-
tions in exactly perpendicular directions, although this
is not necessary here. For λ > λc, (Fig. 2b), the two
nondegenerate translation modes produce circular vor-
tex motion in opposite senses with different frequencies.
The motion’s amplitude is larger than that seen in Fig.
2a for an in-plane vortex. For a vortex with an “up”

or positive gyrovector (~G = +2πêz), the mode T+ that
produces counterclockwise orbital motion has azimuthal
quantum number m = +1, and the larger frequency, ω+.
The mode T− that produces clockwise orbital motion has

m = −1, and the smaller frequency, ω−. If the sign of ~G
is reversed, then the circulations and azimuthal quantum
numbers are reversed. In contrast to in-plane vortices,

the presence of nonzero ~G for out-of-plane vortices leads
to interesting nonclassical particle behavior.
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IV. COLLECTIVE COORDINATE MASS

Vortices have been considered to have a dynamical
equation of motion that describes the time-dependent

center position ~X(t) [5]. Analysis shows that the vortex
spin structure is velocity dependent [20] and asymmetric
about a line through the vortex center parallel to the ve-
locity. This implies that there must also be a mass times

FIG. 2. Typical orbital motions of the FM vortex center
associated with the translational modes T+ and T−, with
amplitude [Eq. (3.1)] A = 0.5. a) for an in-plane vortex,
λ = 0.0. Points shown represent one full period (T ≈ 16/JS)
for these modes, with time increment ∆t = 0.3216/JS; b) for
an out-of-plane vortex, λ = 0.9. For T+, the time increment is
∆t = 1.0/JS, period T ≈ 50/JS; for T−, the time increment
is ∆t = 150/JS, period T ≈ 1410/JS. The * symbols show
the starting points.

acceleration term in the equation of motion [21] for the
center, as in Eq. (1.2). Generally, the effective mass M is
a tensor [28,5], but a scalar M is sufficient in the leading
approximation.

For a vortex near the center of the circular system
already described, with a linear restoring force given in
Eq. (2.6), a particular solution to (1.2) is circular motion:

~X(t) = X(cosωt, sinωt) = Xêr. (4.1)

The velocity and acceleration can be written in terms of
the angular frequency ~ω = ωêz as

~V = ~ω × ~X = ωêχ, (4.2a)

~̇V = ~ω × ~V = −ω2 ~X = −ω2Xêr. (4.2b)

With the gyrovector as ~G = Gêz, all terms in Eq. (1.2)
have only radial components, leading to

ω2 −
G

M
ω −

K

M
= 0. (4.3)

Provided M 6= 0 and G 6= 0 (out-of-plane vortex), there
are two disctinct solutions,

ω± =
1

2M

(

G ±
√

G2 + 4KM
)

. (4.4)

Assuming M > 0 and K > 0, we have ω+ > 0 and
ω− < 0, regardless of the sign of G. In this notation, ω+

is a counterclockwise or positive sense of rotation solu-
tion, and ω− is a clockwise or negative sense of rotation
solution. On the other hand, if M = 0, then there is
only one orbital solution, ω = −K/G, provided G 6= 0.
Finally, if G = 0, as in the in-plane vortex, then

ω+ = −ω− =
√

K/M, (4.5)

corresponding to two orbital solutions at equal rates but
in opposite senses.

Under the assumption of this collective coordinate rep-
resentation of the vortex position, the two solutions ω+

and ω− must be identified as the fundamental transla-
tional modes found in Sec. III by numerical diagonal-
ization. It is especially clear because the modes T+ and
T− in Figs. 1 and 2 have counterclockwise and clock-
wise orbital motions, respectively, just as the ω+ and ω−

solutions here. When G = 0, for λ < λc, T+ and T−

are degenerate, and their opposite frequencies should be
identified with those in Eq. (4.5). When G 6= 0, the fre-
quencies of T+ and T− should be identified with ω+ and
ω−, respectively, in Eq. (4.4). The main difference here
compared to Sec. III is that it is important to include
the sense of rotation caused by the T+ and T− modes
in the signs of their frequencies, with counterclockwise
being positive and clockwise being negative.

Therefore, we can use the frequencies from the numer-
ical diagonalization to estimate the mass, provided the
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force constant K is known, which is determined below.
The coefficients in Eq. (4.3) relate to the frequencies
according to

ω+ω− = −
K

M
→ M =

−K

ω+ω−

(4.6a)

ω+ + ω− =
G

M
→ M∗ =

G

ω+ + ω−

(4.6b)

This presents two possibly conflicting expressions for the
vortex mass. Eq. (4.6b), however, cannot be applied
for the in-plane vortex because both the numerator and
denominator are zero. Expression (4.6a) will apply to
any vortex.

V. FORCE CONSTANT AND GYROVECTOR

In order to apply the above expressions for the mass,
the gyrovector and force constant must be evaluated for
vortices in the finite circular square lattice system. The
force constant K was determined in a quasi-static ap-
proximation, by enforcing a desired displacement X of
the vortex from the system center, and then relaxing the
spins to their minimum energy configuration (similar to
scheme in Ref. [24]). The vortex position was constrained
by fixing the in-plane angles φn for the four core sites of
the vortex according to equation (2.3). The other sites
in the system had no constraints; the vortex-Dirichlet
boundary condition (also Eq. (2.3) was applied to ex-
tra sites outside the system as described in Sec. II. The
minimum energy configuration was found by iterating the
process of setting each spin to lie in the direction of the
effective field due to its neighbors. Then K was estimated
from the second derivative of the energy with respect to
the vortex displacement, for a set of small displacements

FIG. 3. The effective force constant K [Eq. (2.6), FM or
AFM] versus anisotropy parameter λ for system radii indi-
cated.

out to 0.2 lattice constants. Because the static AFM
vortex structure on one sublattice is the same as that for
the FM vortex, both have the same energy and effective
force constant.

Representative results for K are shown in Fig. 3 for
two system sizes. For the in-plane vortices, the force
constant is approximately independent of the anisotropy,
with a value K ≈ 4JS2/a2, where a is the lattice con-
stant. The development of out-of-plane spin components
for λ > λc apparently is associated with a much smaller
force constant for out-of-plane vortices. Because K has
only a very weak dependence on the system size, the dom-
inant force on the vortex must come from effects due to
the discrete lattice.

For the discrete lattice system, the definition of the

gyrovector ~G is not completely clear. In the continuum
definition, the Sz spin component at the vortex core is ei-
ther zero or ±S [Eq. (2.4)], leading to G = 0 or G = ±2π
for in-plane and out-of-plane vortices, respectively. For
the discrete lattice, the vortex core does not fall on a lat-
tice site, and so in a real sense, especially for λ just above
λc, the spins of the out-of-plane vortex do not cover 2π
steradians. Rather, the four sites surrounding the vor-
tex center can have quite small components Sz ≈ pS
with |p| < 1, and G is effectively reduced to a low value
G ≈ 2πp < 2π. This behavior is approximately repre-
sented by using the lowest order symmetrical finite dif-
ference approximation for G, on a square lattice [22],

~G = (2S)−2
∑

n

~Sn · (~Sn+a − ~Sn−a) × (~Sn+b − ~Sn−b),

(5.1)

where a = aêx, b = aêy are the lattice basis vectors.
The sum is effectively over triple products of spins in all
possible triangular plaquettes of the lattice. This

FIG. 4. Discrete FM vortex gyrovector G versus anisotropy
parameter λ for system radii indicated.
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definition for ~G approaches zero smoothly as λ → λc

from above, a behavior that makes it reasonable to be
used in Eq. (4.6b) for the vortex mass estimate, because
the denominator (ω+ +ω−) there also goes to zero in this
limit. The behavior of G versus λ for the FM vortex is
shown in Fig. 4.

VI. FM VORTEX MASS

Results for the FM mass as defined by Eq. (4.6a) are
shown for a range of system sizes with R = 5 up to
R = 19 in Fig. 5a. The corresponding results from the
alternative expression Eq. (4.6b), valid only for the out-
of-plane vortex, are shown in Fig. 5b. For λ not too
close to λc, and not too close to 1, the two expressions
have a reasonable agreement, and the collective coordi-
nate description for the vortex translational motion in
terms of a mass and force constant is self-consistent. Un-
fortunately, there is no such check of self-consistency for
the in-plane vortices. However, the application of Eq.
(4.6a) for the in-plane vortices is straightforward, and
does not require an appropriate definition of G for the
discrete system, and its interpretation as a 2D harmonic
oscillator is simple. Eq. (4.6a) certainly is the prefered
method to calculate the mass for both types of vortices.

A simple continuum description of the FM vortex [20]
suggests that the spin structure perturbations due to

nonzero velocity are proportional to ~V and decay away
from the vortex center as 1/r. This implies that the
mass should increase with the logarithm of the system
size [21,22] in the same manner as the energy of a static
vortex. The prediction is

M ≈
πq2

4Ja2(1 − λ)
ln(R/ao). (6.1)

Continuum theory, however, requires a short distance
core cutoff for integrals at r = ao. The cutoff appro-
priate for the square lattice system can be determined
to be ao ≈ 0.24a by analyzing the static vortex en-
ergy and fitting it to the standard continuum expression,
Eo = πJS2 ln(R/ao), for a range of system radii R [Fig.
6]. Then some typical masses from Eq. (6.1) for system
radii from R = 5 to R = 19 are 2.3 < MJa2 < 3.5 for
λ = 0, and 12 < MJa2 < 17 for λ = 0.8, values consid-
erably smaller than those of Fig. 5. Although we do not
have data to large enough radius to decide the asymp-
totic trend of the mass with R, we can make the following
statements. For the in-plane FM vortex, especially near
λ = 0, the mass grows much faster than lnR, possibly
with a power law M ∝ Rα with α slightly less than 2.
For the out-of-plane vortex, for example, λ ≈ 0.8, the
mass also grows faster than ln R, but with a power closer
to α = 1.

FIG. 5. FM Vortex mass M versus anisotropy parameter λ for
system radii indicated, obtained a) from M = −K/(ω+ω−);
b) from M∗ = G/(ω+ + ω−), for λ > λc only.

VII. AFM VORTEX MASS

For AFM vortices the gyrovector is zero and the trans-
lation modes are degenerate for all values of λ [25]. For
these reasons, the AFM vortex mass was evaluated only
by Eq. (4.6a). The force constant as described above
(e.g., Fig. 3) was applied. The necessary translation
mode frequencies are shown in Fig. 7. AFM in-plane vor-
tices have translation mode frequencies similar to those
for FM in-plane vortices( especially at λ = 0), however,
the translation mode frequencies for AFM out-of-plane
vortices are considerably larger than ω− for FM out-of-
plane vortices. As a result, the AFM vortex mass, shown
in Fig. 8, is similar to that for in-plane FM vortices near
λ = 0, but quite a bit smaller than that for out-of-plane
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FM vortices. The most striking feature of Fig. 8 is that
there is only a very weak dependence of the mass on the
system size for the out-of-plane AFM vortices; it is pos-
sible that the mass converges to a finite limit as R → ∞.
Furthermore, the out-of-plane vortex mass appears to be
approaching zero for λ approaching 1, the isotropic limit.
We should note that even at the data points λ = 0.98 on
these curves, the vortex core structure decays away on
the length scale rv = 3.5a, which means that finite size
effects are strong only in the R = 5 system.

FIG. 6. Static vortex energy (FM or AFM) for λ = 0, versus
system radius R. The solid line is a fit to the expression,
Eo/JS2 = π̃ ln(R/ao), with slope π̃ = 3.06 and cutoff ao =
0.24a.

VIII. CONCLUSIONS

We used the translation mode spectrum of a single vor-
tex at the center of a finite lattice system to show that
magnetic vortices have dynamics that requires a mass
term, as in Eq. (1.2), and we evaluated the mass as a
function of anisotropy for FM and AFM vortices. The
force acting on the vortex in this calculation is primarily
due to the pinning of the lattice, with a weaker effect
due to the boundary condition. The fundamental small
amplitude periodic motions of the vortex core implied
by the translation modes in response to this force are
clockwise and counterclockwise orbital motions around
the system center. The frequencies of these motions are
degenerate when the vortex gyrovector is zero, i.e. for
in-plane FM vortices and for AFM vortices. The combi-
nation of nonzero gyrovector and mass for out-of-plane
FM vortices leads to nondegenerate translation modes:
different orbital rates for clockwise and counterclockwise
motions.

FIG. 7. Translation mode frequencies versus anisotropy pa-
rameter λ for AFM vortices in system radii indicated.

FIG. 8. AFM vortex mass M versus anisotropy parameter λ
for system radii indicated, obtained from M = −K/(ω+ω−)

One interesting aspect of the translation mode spec-
trum is present independently of the calculation of the
vortex mass. When a normalized translational mode is
excited on a (FM or AFM) vortex with a certain ampli-
tude, the resulting amplitude of the translational motion
it produces is considerably larger for out-of-plane vor-
tices than for in-plane vortices (Fig. 2). There is not
much difference in the motion amplitudes for FM and
AFM in-plane vortices, however, out-of-plane AFM vor-
tices obtain greater motion amplitudes than their FM
counterparts. The conclusion is that for example, in ther-
mal equilibrium, it is easier for out-of-plane vortices to
move over distances approaching or even greater than one
lattice constant than it is for in-plane vortices. This is
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partly because the lattice pinning potential is weaker at
larger λ, where the vortex spin structure has smaller spa-
tial gradients. Equivalently, we can interpret the easier
motion of out-of-plane vortices as due to the associated
weaker force constant K. This easier motion for out-of-
plane vortices in the FM system could be partly respon-
sible for the shorter vortex lifetime found for out-of-plane
vortices compared to in-plane vortices in a recent simu-
lation by Dimitrov and Wysin [29].

Although we can only study a limited size system, due
to numerical diagonalization memory limitations, some
trends of the mass dependence on increasing system ra-
dius are apparent, and the differences between FM and
AFM vortices are clear. For a particular anisotropy λ,
the AFM vortex mass is smaller than the FM vortex
mass. This is similar to the case of 1D solitons [30]. The
FM vortex mass increases with system radius faster than
lnR, with the strongest size dependence associated with
in-plane vortices. In contrast, the in-plane AFM vortex
mass also increases faster than ln R, while the out-of-
plane AFM vortex mass may reach a finite limit with in-
creasing system radius. The much smaller mass for AFM
vortices, especially for λ > λc, is partially consistent with
the conclusions drawn by Nikiforov and Sonin [13] con-
cerning ease of vortex motion for AFM vortices but not
for FM vortices. However, because an AFM vortex in a
lattice system will always experience some pinning force,
even a freely translating AFM vortex is not possible ex-
cept perhaps at λ → 1.
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