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The Berezinskii-Kosterlitz-Thouless (BKT) transition in two-dimensional planar rotator and XY
models on a square lattice, diluted by randomly placed vacancies, is studied here using hybrid
Monte Carlo simulations that combine single spin flip, cluster and over-relaxation techniques. The
transition temperature 7. is determined as a function of vacancy density pvac by finite-size scaling
of the helicity modulus and the in-plane magnetic susceptibility. The results for 7. are consistent
with those from the much less precise fourth-order cumulant of Binder. T, is found to decrease
monotonically with increasing pvac, and falls to zero close to the square lattice percolation limit,
Pvac =~ 0.41 . The result is physically reasonable: the quasi-long-range orientational order of the
low-temperature phase cannot be maintained in the absence of sufficient spin interactions across the

lattice.

PACS numbers: 75.10.Hk, 75.30Ds, 75.40Gb, 75.40Mg

I. INTRODUCTION: SPIN-DILUTED PLANAR
SPIN MODELS

It is well known that vortices are fundamental ingredi-
ents in the Berezinskii-Kosterlitz-Thouless (BKT) phase
transition.’'?3 The simplest models exhibiting this tran-
sition are the pure planar rotator model (PRM) and
XY-model. Pioneering Monte Carlo works®>%7 esti-
mated fairly well the dimensionless critical temperature
7. = kgT./JS? (for exchange J, spin S, Boltzmann con-
stant kp), at which the transition takes place, leading
to current precise estimates 7.(PRM) =~ 0.8921% and
7.(XY) ~ 0.699 .10:11,12

Recently, the study of topological excitations such
as vortices and solitons in two-dimensional mag-
netic lattices containing defects has received a lot of
attention.!314:15.16,17,18,19,20.21 " Gyich interactions must
have interesting consequences for the static and dynam-
ical properties of easy-plane magnets. Analytical and
numerical calculations have shown that vortices are at-
tracted and pinned by nonmagnetic impurities.!3:14:19:22
In fact, the vortex energy is lowered when pinned at a
vacancy, resulting in greater preference of single vortex*®
and vortex-pair?? formation on vacancies. Of course, this
leads to an overall increase of the system disorder. All
of these factors conspire to reduce the BKT transition
temperature with increasing vacancy density, as has al-
ready been seen in calculations from Refs. 12,24,25 for
planar spin models on a two-dimensional square lattice
(see also analytical results using the self-consistent har-
monic approximation of Ref. 26). The important ques-
tion here is, at what vacancy density is the transition
temperature reduced to zero, so that the system is al-
ways in the high-T disordered phase? This would mean
a situation in which there is no low-temperature phase
of quasi-long-range orientational order, characterized by

spin-spin correlations decaying as a power law with dis-
tance, and a finite absolute magnetization (| >, S;|) in
the thermodynamic limit.

Calculations of the helicity modulus for the planar ro-
tator model by Leonel et al.?* indicated that a critical
vacancy density pyac = p. = 0.3 causes the critical tem-
perature T, to drop to zero. It means that the critical
temperature would vanish at p. =1 — p. = 0.7, which is
above the site percolation threshold, pp; = 1—pp = 0.59,
for a planar square lattice. Lozovick and Pomirchi,?” also
using the jump in the helicity modulus, have found that
the BKT phase transition occurs above the percolation
threshold in a dilute system of Josephson junctions (us-
ing bond dilution). On the other hand, Berche et al.?®
calculated the decay of the spin-spin correlation function
and its related exponent, 1, and considered the transi-
tion temperature to be located by n(T.) = 1/4. Those
results suggested that the critical density is closer to
0.41 (the number associated with the percolation limit
for the square lattice). The Monte Carlo calculations
for this problem naturally are particularly difficult, espe-
cially because the interesting region occurs at very low
temperature. Furthermore, the statistical errors due to
the random choice of positions for the vacancies further
increases the numerical noise in the calculations — this
effect itself becomes particularly troublesome especially
when py, surpasses 0.3 (30%). As such, it seems im-
portant to make more reliable estimates for the critical
vacancy density based on improved MC calculations here.

The calculations mentioned above concern the planar
rotator model (two-component spins lying in xy plane).
In a specialized model with repulsive vacancies, Wysin
calculated the reduction of T, in an easy-plane Heisen-
berg model, with three-component spins with anisotropic
couplings of their components.'? The vacancies were not
allowed to be on nearest or next nearest neighbor lattice
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FIG. 1: (Color online) Application of the fourth order cumu-
lant (6) for estimating T, for the PRM at 4% vacancy concen-
tration. The data were obtained using the Monte Carlo ap-
proach described in Sec. I B. The inset expands the view near
the estimated critical temperature [kpT./JS? =~ 0.815(10)].

sites, which made it possible to calculate the vorticity
density in the model. However, that calculation did not
concern itself with the determination of the critical va-
cancy density, because the constraint of repulsive vacan-
cies limits the possible vacancy density to be less than
18%, well below the critical value. Therefore, for com-
parison with the planar rotator, we also consider here
the vacancy effects in the (three-component) XY-model,
with randomly placed non-repulsive vacancies.

After describing the model Hamiltonians, we give an
overview of the different methods used to estimate the
transition temperature. This is followed by some spe-
cific comments on the Monte Carlo schemes applied to
this problem. The data obtained for the planar rotator
and XY models are presented, followed ultimately by our
conclusions.

II. MODEL HAMILTONIANS

The spin models under consideration can be described
by the Hamiltonian

H=-JY oi0; (S +8/SY), (1)
(i,7)

where (i, j) indicates nearest neighbor sites of an L x L
square lattice, and J is the ferromagnetic exchange cou-
pling between spins S; and S’;—. The spins S; have two
components for the planar rotator model and three com-
ponents for the XY-model; in the latter case, however,
only the xy components are coupled. The occupation
variables o take the values 1 or 0 depending on whether
the associated site is occupied by a spin or vacant. A frac-
tion pyac of the sites are chosen randomly to be vacant.

It is important to realize, however, that the Monte Carlo
calculations here must make adequate averages over dif-
ferent choices of the vacancy positions, for a chosen den-
sity. Generally, theoretical results will be presented as
functions of the temperature scaled by exchange energy,

kT

=~ (2)

The planar rotator model has effectively a single degree
of freedom per site — the angle of the spin within the xy
plane. The main distinction of the XY model is the pres-
ence of the extra S* components, which act as degrees of
freedom, but do not appear in the Hamiltonian. The XY
model therefore involves two degrees of freedom per spin.
This increases the entropy effects at a given temperature
and results in a lower T, compared to the planar rotator.
The MC algorithm for the XY model must involve the
possibility to change all three spin components for the
XY model, while preserving the spin length.

A. Physical properties leading to 7.

The lack of significant sharp peaks in the thermody-
namic quantities versus temperature 1" for these models,
especially in finite L x L lattice systems, means that pre-
cisely locating T, is difficult. Therefore, it is useful to
apply several different approaches, all essentially based
on the scaling of the thermodynamics with the system
size or edge length L.

As the Monte Carlo algorithm proceeds (described in
Sec. II B), the total system instantaneous in-plane mag-

netization M = (M,, M,) is observed,
M = Z Uigi- (3)
Additionally, statistical fluctuations give the susceptibil-
ity components for temperature T,
X" = ((Mg) = (Ma)?)/(NT). (4)
The number of spins in the system is N = (1 — pyac) L%
The average of x** and x¥Y defines the in-plane suscep-

tibility,

X =5+ x"). (5)

N | =

1. Using Binder’s fourth order cumulant

A rough estimate of T, can be obtained from the size-
dependence of Binder’s fourth order cumulant?®2° Uy,
defined by

(02 4 M2))
Uv=1= St e ©



10000+ Planar Rotator | A
1000 4
100 //—t
10 . . =11 . .

16 32 64 96

FIG. 2: Log-log plot of susceptibility versus system edge L,
for the PRM at 4% vacancy concentration. The curves cor-
respond to different values of the dimensionless temperature
T = kgT/JS?. Lines are guides to the eye; errors are smaller
than the symbols. Least squares fits were used to determine
the slopes, (2 — ), producing n(T") as seen in Fig. 3.

For any L, the asymptotic values are U (T < T.) = 0.5,
U(T > T.) = 0. At the critical temperature, Uy, is
approximately independent of the system size, hence, T,
can be estimated from the crossing point of curves of
UL(T) for various L. An example of such crossing be-
havior is given in Fig. 1, for the PRM at pya.c = 0.04.
In practical application, due to the statistical uncertain-
ties, there is usually no clear crossing point, especially at
higher vacancy concentrations. Instead, T, is very close
to the point where different curves of Uy (T') begin to sep-
arate from the low-T asymptotic value. Although very
reliable, this approach is not very accurate, and requires
MC calculations for many temperatures near 7T,. Thus,
it is important to consider other methods for determin-
ing T,, and only refer to the Binder cumulant results as
a reliable but somewhat difficult and imprecise reference
point.

2. Using estimates of susceptibility exponent, n

A second approach for estimating T is the finite size
scaling (FSS) of the in-plane susceptibility, as used in
a pure XXZ model by Cuccoli et al.'° and in the same
model with repulsive vacancies by Wysin.'? In the ab-
sence of vacancies, it is a precise method, because the
statistical errors in y can be reduced by extended MC
averaging much more effectively than those of the helic-
ity modulus or Binder’s cumulant. We assume that near
and below T, a power law scaling of the susceptibility
holds, even in the presence of vacancies,

x o< L2, (7)
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FIG. 3: Application of the correlation exponent 7 for esti-

mating T¢, for the PRM at 4% vacancy concentration, de-
rived from using systems of sizes L = 16,32,64,96. The
inset shows how the critical temperature was estimated as
kpT./JS? ~ 0.815.

where 7 is the exponent for the in-plane spin correlations
below T, (see Ref. 10). By using this equation with cal-
culations at several lattice sizes, the exponent 7 can be
fitted as a function of temperature. An indication of how
X scales with system size is given in Fig. 2, again for the
PRM at 4% vacancy concentration. One can note clearly
how the exponent (2 — ) (slope of log-log plot for x (L))
decreases as the temperature increases, especially rapidly
as T passes the transition temperature.

For the pure PR and XY models (no vacancies), the
transition is located at the temperature where n(T") =
1/4. Then, under that assumption that the vacancies do
not change the basic symmetries in the transition, but
only increase the effective entropy present, we can expect
that the transition can be located in the same way under
the presence of vacancies, solving

In the absence of any particular theory for the model
with vacancies, this can be expected to be a reasonable
definition for T,.. Analysis of power-law fits of the spin-
spin correlations in the diluted PRM?2® and in the pure
XY model'® also demonstrated that T, occurs very close
to the temperature from Eq. (8). Its validity is further
verified here by the comparison with the results for 7.
due to the helicity modulus, and due to Binder’s cumu-
lant, the latter of which is reliable for any kind of model,
with or without vacancies. Fig. 3 shows its application
for the PRM at 4 % vacancy concentration, leading to
kpT./JS? ~ 0.815, consistent with the estimate from
Binder’s cumulant (Fig. 1).

On the other hand, for the pure PRM (no vacancies),
this fitting of 7, using systems as large as L = 160,
leads to the estimate 7. = 0.907(4), slightly higher than



that from more sophisticated approaches®® that mini-
mize boundary effects [, = 0.89213(10)]. Furthermore,
expression (7) does not take into account the logarithmic
terms,3%3! which have been used for better estimates of
T.. Thus, we should keep in mind that also our esti-
mates of T, via scaling of x for the diluted models also
may involve small errors. To evaluate the magnitude of
these errors, we also consider the finite size scaling of the
helicity modulus.

3. Using the helicity modulus, T

Another approach to determine T, is based on the cal-
culation of the helicity modulus per spin, T(7T'). It is a
measure of the resistance to an infinitesimal spin twist A
across the system along one coordinate, defined in terms

of the dimensionless free energy, f = F/(JS?),
1 0%f
T=xNaar ©)

Any general model Hamiltonian leads to the expression,

o?H oH\? oH\*
NY=(—=)— — —( =

(55 -2[((58))-(5%)

where 8 = (kgT)~! is the inverse temperature. For ei-

ther the planar rotator or XY model, the required oper-

ators to be averaged (in limit A — 0) can be expressed
using the Cartesian spin components,

oOH R . © =
Gs = A Z oi0; (éi - %) (75] = §7S7), (11a)
(i,5)

2
g;zlz%%@ﬁ+$$%
(4,4)

Ge

(11b)

[\

where é; ; is a unit vector pointing from site j to site
1. The sum determining G only includes pairs of lat-
tice sites displaced by +2. Furthermore, one expects the
mean of G to be quite small, while its fluctuations do
contribute to the helicity formula (10). The sum for G,
is seen to be proportional to the original Hamiltonian.

According to renormalization-group theory,® the helic-
ity modulus in an infinite system jumps from the finite
value (2/7)kpT, to zero at the critical temperature. As-
suming this applies also to the spin-diluted model, as
argued in Ref. 24, T, can be estimated from the intersec-
tion of Y(T') and the straight line,

1= 2 (12)
™

The trend in the intersection point with increasing L can
be observed, as shown for the PRM at py,c = 0.04 in
Fig. 4. Even at 38% vacancy concentration, Fig. 5, there
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FIG. 4: (Color online) Typical application of the helicity

modulus for estimating T¢, for the PRM at 4% vacancy con-
centration. The dashed line is Eq. (12). The inset shows how
the crossing points occur slightly above the critical temper-
ature (kpT./JS? =~ 0.815). Error bars are smaller than the
symbols.

is a clear indication of a transition in the PRM at finite
temperature; this is supported furthermore by the trends
in the fourth cumulant, Fig. 6. Generally speaking, the
MC data for T(T) show a steeper drop in the critical
region as L increases. The larger system size used, the
lower will be the intersection point and estimated T..
Hence this method will always lead to an over-estimate
of T.,.

Better T, estimates can be made by applying a FSS
analysis®2 to Y, which does not suffer from the deficien-
cies of the above method of estimating 7. For tempera-
tures below T, the scaling with system size L follows33

7Y
2kgT

=1+ ¢gcoth[2¢ In(L/Ly)], (T <Ty), (13)

where ¢o and L; are fitting parameters. Fitting a data
set to this expression then determines T, as the point
where the parameter ¢y goes to zero. In actual applica-
tion, the fits to (13) become very poor once T passes T..
Another very useful scaling expression has been applied
to classical and quantum planar models32:34:3

1
A@ﬂuiﬁﬁﬁa] (14)

A(T) and Lg are the fitting parameters. The expression
is exact333¢ at T = T, with A(T.) = 1. Thus, the point
where the fitted A(T') passes through unity also gives a
clear estimate of T,.

Due to the exceptional computation time needed for
many vacancy densities, we applied FSS of T to the PRM
only, at some of the vacancy concentrations (Sec. IITA).
Typically, FSS analysis of T led to T, estimates within

e B
2%kpT
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FIG. 5: (Color online) The helicity modulus for the PRM at
38% vacancy concentration for system sizes indicated. The
dashed line is Eq. (12).
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FIG. 6: (Color online) Binder’s fourth cumulant for the

PRM at 38% vacancy concentration for system sizes indi-
cated. szTc/JS2 =~ 0.05 as estimated from the point where
the data for different system sizes separate. The lines are
guides to the eye.

a few percent of those from using the scaling of x, while
requiring considerably longer MC runs to get similar pre-
cision. For the XY model, then, we expect that the T,
estimates from FSS of x are only slightly different from
that expected by FSS of T.

B. Monte Carlo Scheme

Thermal averages for a given system size and temper-
ature were obtained using a hybrid MC approach, in-
cluding Metropolis single-spin moves and over-relaxation
moves!! that can modify all spin components, in com-
bination with Wolff single-cluster moves3”3® that mod-

ify only the xy components. These are based on stan-
dard approaches for spin models, as developed in many
references,??40:41:4243 and applied recently to the easy-
plane Heisenberg model with vacancies, Ref. 12.

The over-relaxation and cluster moves are important
at low temperatures, where the zy spin components tend
to freeze and single spin moves become inefficient. The
single spin moves and over-relaxation moves were ap-
plied to occupied sites selected randomly in the lattice;
similarly, the initial sites for cluster generation were se-
lected randomly on any sites. A single " MC step” is the
combination of one over-relaxation pass, followed by one
Metropolis pass, followed by one cluster pass, each of
which is defined as follows:

One over-relaxation step involves choosing N spins
randomly and reflecting each spin across the effective
field due to its neighbors, conserving spin length and to-
tal system energy.

In a Metropolis single-spin pass, trial changes were
made on N spins, randomly selected, by adding small
increments in random directions, and then renormaliz-
ing the spin to unit length, accepting or rejecting each
change according to the Metropolis algorithm. The spin
increments were adjusted in length so that the accep-
tance rate of these moves fell between 10% and 40%. Of
course, the final spin length is always put back to unity.

One cluster step involves forming enough Wolff clusters
until at least 1/4 of all the sites have been touched. The
Wolft cluster algorithm (and computer subroutine) used
here is the same as that used for pure systems without
vacancies. A cluster is allowed to include even the vacant
sites; the simple implementation of this is to set the spins
to zero length at the vacant sites, then their ”flipping”
involves no energy, and no other algorithm modifications
are needed. A large cluster could be composed from sev-
eral sub-clusters connected by vacant sites, a process that
may increase the mixing produced by the algorithm.

The programming used for the XY model also applies
to the planar rotator model; it is only necessary to set
the out-of-plane components S% = 0 and then never allow
them to change for the PRM. Thus it is straightforward
to study the two models with essentially the same MC
approach.

Before performing higher precision simulations for the
FSS analysis of T, preliminary calculations were made
for a range of system sizes, including L = 16, 32,64, 96,
and 160. For a given L x L lattice, the number of vacan-
cies placed at random locations was Nyac = pyacL? (spins
removed from system or equivalently, set to zero length).
For larger systems or very low vacancy density, the results
are nearly independent of the particular random choice of
vacancy positions. In the general case, however, it is nec-
essary to average over equivalent systems (same L, pyac)
with different particular choices of the vacancy locations.
The statistical errors in the averages (i.e., errors due to
the randomness of MC sampling) are most significant es-
pecially as the vacancy density approaches the critical
value that forces T, to zero. The statistical errors also
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FIG. 7: (Color online) The helicity modulus for the PRM
at vacancy concentrations pvac indicated in the legend. The
dashed line is Eq. (12). Part (a) shows the overall trend;
error bars are smaller than the symbols. Part (b) displays
the behavior as the transition is extinguished at the critical
vacancy concentration.

tend to be largest in the smaller systems. Therefore we
averaged over Ngys copies of the system, with this number
taken largest for small systems. For py,. < 0.35, we used
Ngys = 64, 32,8, 4, for L = 16, 32, 64, 96, respectively. For
larger density, pyac > 0.35, we doubled these values for
Nsys, and additionally included runs with Ngys = 4 for
L = 160.

For thermal equilibration before calculating averages,
5000 MC steps (MCS) were applied for small systems
(L < 40) and 10,000 MCS for large systems. For each
of the Ny individual realizations of a given L and pyac,
averages at one temperature were calculated using be-
tween 20,000 and 80,000 MCS (Ngata), with the great-
est number applied to the larger systems. For example,
calculation for one temperature of a 16 x 16 lattice at
Pvac = 0.1 involved an average over 64 x 25,000 = 1.28
million MCS. On the other hand, one temperature of a
96 x 96 lattice at pyac = 0.36 involved an average over

0.5 — T T
L + 0.40 ) A i
2 :
0.4+ ;_; : PR / -
12838 [ Mode L4
0.3 0.0 '
ey
0.2
0.1
0O
0.8
0.7
0.6
0.5
<04
0.3
02F / ?fﬁ/‘ —
01l / " Planar rotator ]
e | G
0O 0.05 0.1 0.15 0.2
kyT/3S"
FIG. 8: (Color online) Application of the correlation expo-

nent 7 for estimating 7., for the PRM at the vacancy concen-
trations indicated in the legend, derived from scaling of x for
systems of sizes L = 16, 32,64,96. Part (a) gives the rough
overall trend and part (b) shows how 7 does not fall to the
value 1/4 at vacancy concentrations greater than 41%.

8 x 80,000 = 640,000 MCS. Near 0% vacancy density,
these MC parameters produce insignificant error bars;
when pyac exceeds 30%, on the other hand, the resulting
error bars are considerably greater and resist reduction.
As suggested above, the error bars in T, x, and Uy, can
be reduced more readily by increasing Ngys than by in-
creasing Ngata when significant vacancy density is present
(especially at pyac > 0.3).

III. MONTE CARLO DATA

Calculations were carried for a range of vacancy den-
sities from zero to 50%. We especially concentrated on
the region 0.30 < pyac < 0.40, which required the most
careful analysis. For vacancy density less than 30%, it
is clear that there is a transition at a finite temperature,
for both the PR and XY models. At the higher vacancy
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FIG. 9: Results of finite-size scaling for the PRM at 4 %

vacancy concentration, showing the fitting parameters co and
A defined in (13) and (14). T. is estimated from the point
where A = 1 or where c¢g = 0. These fits were derived from
MC runs for systems of sizes L = 20, 32, 48, 64, 96.

concentrations, statistical errors were generally more sig-
nificant. Even so, looking at the trends in the data with
system size, in the following we show the MC evidence
that the transition temperature is reduced to zero when
the vacancy concentration is approximately 40%, for both
models.

A. Planar rotator model

At low vacancy concentrations (pyac < 0.20), MC re-
sults for Uy, Y, x, and n(T') bear a great resemblance to
those shown above for 4% vacancies, with fairly smooth
dependencies on temperature. The primary modification
is the general trend of important features towards lower
temperature with increasing pyac. At higher concentra-
tions, errors become more significant, as seen, for exam-
ple, in the helicity modulus at 38% vacancies, Fig. 5. In
addition to larger relative errors, the absolute magnitude
of T is drastically reduced. It is very clear, however, that
the BKT transition is still present at this concentration,
with kgT./JS? ~ 0.06 as estimated from the crossing
point of the L = 160 data. This is additionally supported
by the corresponding behavior of Binder’s cumulant, seen
in Fig. 6, which gives the estimate kgT./JS? ~ 0.05,
somewhat lower, as can be expected.

An indication of the tendency for reduction of T, with
vacancy concentration is given in Fig. 7, showing Y(T)
for L = 96 systems. While these crossing points con-
sistently overestimate T., a better view of this criti-
cal point reduction is provided by the various graphs
of n(T) at different concentrations, Fig. 8. One can
see clearly that once the vacancy concentration passes
a value around 41%, the fitted value of 7 does not fall
below the value 1/4, at least for the lowest temperatures
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FIG. 10: Results of finite-size scaling for the PRM at 38 %
vacancy concentration, as explained in Fig. 9.

used (kpT/JS? = 0.01).

To substantiate these results, the FSS analysis was ap-
plied to Y by making higher precision calculations at
L = 20, 32,48, 64, 96, for temperatures concentrated near
the initial T, estimates from the other methods. The
fits with pyac < 0.10 and 0.30 < pyac < 0.40 were im-
proved by increasing the total number of MC steps, us-
ing Naata X Neys from 2 x 10° to 20 x 10%, with averaging
over Ngys from 20 to 200. T(T") was fitted to expressions
(13) and (14) by the nonlinear least squares Marquardt-
Levenberg algorithm,** determining the parameters A
and cg as functions of T. T, is estimated as the point
where A = 1 or ¢y = 0; the fitting of ¢y essentially be-
comes impossible once T passes above T,. As an example,
the results of this fitting at pyac = 0.04 are shown in Fig.
9, leading to the estimate, 7. ~ 0.809(2), about 1% be-
low those estimates from Uy, and 7. In the system with-
out vacancies, we obtained 7. & 0.891(1), consistent with
published works.8? Closer to the critical vacancy density,
the fitting is more difficult, as indicated in Fig. 10, for
Pvac = 0.38, leading to the estimate, 7. = 0.075(6), actu-
ally slightly above the estimates from Ur and 7. There
are similar slight deviations at the other vacancy concen-
trations. In Fig. 11, we show the overall trends in the
fitting parameter A(T) with varying vacancy concentra-
tion; a clear indication is given of how T, falls with pyac
approaching a value slightly greater than 40 %. At high
vacancy concentrations, the estimates of T, from FSS of
T generally tend to be above those from the scaling of
x and from Up. Indeed, we have used the T-scaling ex-
pressions (13) and (14) that apply to the pure model,
and there is no guarantee that they can be applied at
high vacancy concentration.

In Fig. 12, the critical temperatures extracted from the
FSS scaling of helicity modulus or from 7 and using and
Eq. (8) are shown as functions of vacancy concentration.
The scaling fitting of x was made using systems with L =
16,32,64,96, FSS of YT involved L = 20, 32,48, 64, 96.
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FIG. 12: The critical temperatures versus vacancy concen-

tration for the PRM, extracted from fits of 1 together with
Eq. (8) and from FSS of Y(T'). The inset shows T. as pvac
approaches the critical region.

The numerical values of T, are summarized in Table I.
Taken as a whole, the results give significant evidence for
extinction of the BKT transition at a vacancy concentra-
tion close to 41%.

B. XY model

The general trends in MC data for the XY model are
rather similar to those found for the planar rotator. The
most obvious distinction, however, is that the extra en-
tropy due to the out-of-plane spin component forces the
transition temperature to be lower in the XY model, no
matter what vacancy concentration is considered.

It is interesting to show some data at 40% vacancy

TABLE I: Dependence of dimensionless critical temperature
Te = kBTC/JS2 on pyac, as estimated from n(7.) = 1/4, and
from FSS analysis of Y, applying A(Tc) = 1 and ¢o(7'c) = 0.

Prac 7¢(PRM-n) 7(PRM-Y) To(XY-1)
0.0 0.907(4) 0.891(1) 0.700(5)
0.04 0.815(5) 0.809(1) 0.637(5)
0.10 0.683(4) 0.685(2) 0.547(5)
0.16 0.545(4) 0.56(1) 0.453(5)
0.20 0.456(4) 0.48(2) 0.384(5)
0.30 0.230(4) 0.26(1) 0.208(5)
0.33 0.153(7) 0.190(8) 0.147(5)
0.36 0.093(5) 0.120(8) 0.087(5)
0.38 0.050(6) 0.075(6) 0.049(5)
0.39 0.034(6) 0.041(5)
0.40 0.019(9) 0.036(8) 0.018(7)
0.41 0.005(9) 0.003(7)
0.42 0.000(5) 0.000(5)
0.44 0.000(5) 0.000(5)

FIG. 13:
model at 40% vacancy concentration for system sizes indi-
cated. The dashed line is Eq. (12).

(Color online) The helicity modulus for the XY

concentration, where the transition is seen to occur very
slightly above zero temperature. In Fig. 13 the helicity
modulus for system sizes from L = 16 to L = 160 is dis-
played. As the data for increasing system size is seen to
systematically fall to lower values, this graph alone can-
not undeniably prove the presence of a transition. How-
ever, when taken in conjunction with the fits for n, which
passes the value 1/4 around kgT/JS? ~ 0.018, we can
say that even at 40% vacancy density there occurs a tran-
sition at finite temperature. This can be seen in Fig. 14,
where n(T') is shown for the various vacancy concentra-
tions studied. On the other hand, performing the MC
calculations at temperatures as low as kgT/JS? = 0.01,
the exponent 7 does not acquire such a low value as 1/4
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FIG. 14: (Color online) Application of the correlation expo-
nent 7 for estimating T¢, for the XY model at the vacancy
concentrations indicated in the legend, derived from scaling
of x for systems of sizes L = 16, 32,64, 96. Part (a) gives the
rough overall trend and part (b) shows how 1 does not fall to
the value 1/4 at vacancy concentrations greater than 41%.

even for 41% vacancy concentration.

In Fig. 15, the critical temperatures extracted from 7
and Eq. (8) and from the helicity modulus (using L = 96)
are shown as functions of vacancy concentration. The nu-
merical values as derived using n(T.) = 1/4 are given in
Table I. Just as in the PR model, these results demon-
strate the extinction of the BK'T transition at a vacancy
concentration close to 41%. As the transition is con-
trolled by the in-plane spin components, the presence of
the extra S* component in the XY model changes the
overall scale of transition temperatures, but does not af-
fect the critical vacancy concentration.

Finally, we can also make some comparison to the XY
model using repulsive vacancies studied in Ref. 12. Con-
siderable data was presented there for the case of 16%
vacancies. Therefore it is interesting to note how the
transition temperature is changed if the vacancies are al-
lowed to be at completely random positions in the current
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FIG. 15: The critical temperatures versus vacancy concen-

tration for the XY model, extracted from fits of n together
with Eq. (8) and from the crossing of Y(T") with Eq. (12) for
L = 96 systems. The inset shows 7. as pvac approaches the
critical region.
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FIG. 16: (Color online) Application of the correlation ex-

ponent 7 for estimating T., for the XY model at 16% va-
cancy concentration, derived from using systems of sizes
L = 16,32,64,96. The inset shows how the critical tempera-
ture was estimated as kBTc/JS2 ~ 0.453.

model.

A graph of n(T) for this case is given in Fig. 16, show-
ing clearly the transition occurring at kpT./JS? ~ 0.453.
Alternatively, and with even less computational effort,
the transition can be found as done in Refs. 10,12 by plot-
ting X/L(Q_") vs. T, taking n = 1/4, and looking for the
common crossing point of data at various system sizes.
This is seen in Fig. 17, which gives the same estimate for
T.. In the repulsive vacancy model at the same vacancy
concentration, the transition occurs at a slightly higher
temperature, kgT./JS? ~ 0.478. The result is reason-
able; there is greater disorder in the model with fully ran-
dom vacancies, hence, requiring less thermal disordering
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exponent n = 1/4.

due to temperature to reach the high-temperature phase.
Stated otherwise, the repulsive vacancy model has more
built-in order and hence requires greater thermal energy
per spin to reach the high-temperature phase.

IV. CONCLUSIONS

Hybrid MC calculations applied to the planar rotator
and XY models on a 2D square lattice show that the BK'T
transition is extinguished (T, — 0) at a vacancy concen-
tration close to 41%, a number related to the percolation
limit. Then, although the BKT phase transition has an
unusual nature, in which the quasi-long-range topologi-
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cal order is destroyed by the unbinding of vortices, the
percolation problem of systems exhibiting such a tran-
sition must have some similarities to the traditional 2D
Ising model. In general, the transition temperatures for
the XY model are lower than those for the PR model,
due to the extra entropy of out-of-plane spin motions,
but otherwise, the static properties are closely related.
The transition temperatures were determined most pre-
cisely using the finite-size scaling of the in-plane mag-
netic susceptibility, under the assumption that the spin-
correlation exponent 1 goes to the universal value 1/4 at
the transition, regardless of the vacancy concentration.
This is equivalent to saying that the presence of spin va-
cancies does not change any fundamental symmetries of
the problem. T, calculated this way is completely con-
sistent with the corresponding results from the helicity
modulus and Binder’s fourth order cumulant. At vacancy
concentration higher than 41%, the intrinsic disorder of
the system always produces a phase with short range cor-
relations that decay exponentially, i.e., the usual “high-
temperature” BKT phase whose properties are strongly
determined by the presence of unbound vortices and an-
tivortices. The lack of percolation across the system at
Pvac > 0.41 disrupts the ability to generate quasi-long-
range topological correlations. It then becomes impos-
sible to lower the temperature adequately to reach the
ordered phase of very low vortex density, dominated by
spin waves.
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