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Abstract

We investigate the spin dynamics of the classical two-dimensional easy-plane
Heisenberg antiferromagnet with an additional Dzyaloshinsky interaction, which
serves as a simple model for Langmuir-Blodgett films of Mn(C5H3502)s.
mapping the system onto a pure easy-plane model we discuss the corresponding
spin wave and vortex dynamics. The additional Dzyaloshinsky interaction forces
all spins to cant in a certain direction, which is the same for neighboring spins
on different sublattices. This canting causes the presence of a second spin wave
peak in the dynamical in-plane correlation function below the Kosterlitz-Thouless
transition temperature Txr and a second vortex central peak above Ty, Using
a vortex gas approach we explicitly calculate the contribution of the free vortices
to several dynamical correlation functions. These results are compared to a
combined Monte Carlo-Molecular Dynamics simulation on square lattices with
different sizes. We also discuss the relevance of this simple model for describing
the spin dynamics of Mn(CysH3301)a.
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1 Introduction

In recent years increased attention has been paid to two-dimensional (2d) magnetic systems based on a
wide class of newly available materials such as (i) layered magnets [1] (e.g. BaNia(PO4)2) (2,3], K2CuFy
(4], or (CH3NH5)2CuCly [5]), (ii) CoCly intercalated graphite compounds [6], and (iii) magnetic Langmuir
Blodgett films like the manganese stearate Mn(CysH3504), [7,8.9]. All of the above listed materials have
an easy-plane (XY) symmetry, i.e. the spins tend to lie mainly within a plane. A simple model for these
sysiems 18 described by Lhe Heisenberg Hamillonian

H=J Y (5757 +5¢S!+A5S]) (1)

<ig>
with
0<A<l (2)

and the < i,j > denoting nearest neighbor pairs. As was shown by Kosterlitz and Thouless [10] and
Berezinsky [11], these types of magnets undergo a phase transition due to the unbinding of pairs of
topological excitations, namely vortices, at Txr.

In previous work we have studied the dypnamics of the unbound vortices just above the transition
temperature Ty for both ferromagnetic (FM, J < 0) [12,13,14,15,16,17] and antiferromagnetic (AFM,
J > 0) [17,18] exchange couplings. There we assumed a dilute gas of weakly interacting vortices to calculate
the contributions of the freely moving vortices to the dynamical correlation functions. This approach
turned out to be quite successful in a temperature range of Tt ST S 1.25Tx 1 for A = 0, before a more
diffusive spin dynamics becomes dominant. This temperature range is reduced for A > 0, where a crossover
to isotropic behavior can be observed (cf. [4]) at a certain temperature T, (T. = 1.14Tgy for A = 0.8
[IT]). These analytic results can be compared with numerical Monte Carlo-Molecular Dynamies (MC-
MD) simulations in the above discussed temperature regimes. By analyzing the results of the computer
experiments we obtain values for the vortex correlation length £ and the vortex average velocity i — the two
parameters of our vortex-gas approach. Comparison with experiments is complicated: The materials of

the classes (i) and (ii) (see above) are only quasi-two-dimensional magnets, i.e. they have a small interlayer

coupling which becomes dominant for low temperatures leading to a three-dimensional ordering just above
Tt — therefore decreasing the regime where we expect to observe clear vortex signatures in the dynamical
correlation functions and, moreover, introducing competing three-dimensional spin fluctuations.

These difficulties can, in principle, be overcome by using the AFM substance Mn(C;sHas04)s which
can be produced as a monolayer by using the Langmuir Blodgett technique. However, measurements on

such single layers promise to be quite difficult due to the low spin density in the system, and so far only



a few experiments were made on this material, mostly on stacks of those layers. EPR measurements at
high temperatures [7] exhibit a characteristic anisotropy of the line width as function of the direction
of the applied magnetic field, confirming the 2d character of the magnetic layers [19]. Furthermore, one
finds an AFM coupling between the Mn** ions by analyzing the susceptibility v which shows good Curie-
WeiB behavior in these experiments. These properties of y are verified by SQUID measurements [8,9],
however, only for 77 £ 15K. Below T the susceptibility increases stronger until it reaches a maximum at
T = 0.5K. This increase in y can be explained by an anisotropic exchange interaction between the spins
which becomes relevant in this temperature range. Below T = 0.5K the system probably locks into an
ordered phase.

Pomerantz (7] concluded, by comparing low-temperature spin wave dispersions with calculations of
Yoshida and Saiki [20], that Mn({C,sHss02)2 can be well described by an isotropic Heisenberg Hamiltonian
with a very weak Ising anisotropy and an asymmetric spin interaction as discussed by Dzyaloshinsky [21]
and Moriya [22]

H=1Ee, - ¥ S;x8;, ()
<ij>
where E is the strength of this interaction, e, is the unit vector perpendicular to the easy-plane and “x”
denotes the vector cross product.

In the following we discuss a Heisenberg model of type (1) with an additional Dzyaloshinsky interaction
(3). The additional Ising anisotropy is very weak for Mn(C3H3502)2 and plays a dominant role only at
temperatures T <0.5K, where it leads to an ordered state, However, for higher temperatures we expect
that the systems shows mainly XY-type behavior on which we will focus in this manuscript and which is
well described by our model. First (See. 2) we show that the combined Hamiltonian can be mapped again
onto the pure AFM Heisenberg model as described by Eqn. (1), but with canted spins and renormalized
parameters (which enhance the easy-plane nature of the system), The calculation of various dynamical
correlation functions is then a straightforward extension of our previous results. In Sec. 3 we compare the
analytic results with Monte Carlo - Molecular Dynamies (MC-MD) simulations. Sec. 4 contains a short

summary.

2 Theory

We investigate the following Hamiltonian

H=J ) (SiS;+SIS!+15/5])+Ee,- 3 SixS;. (4)

<i > <ig>



Here the i’s label only the sites of the even, and j's only the sites of the odd, sublattice - this conven-
tion guarantees that the sign of the Dzyaloshinsky interaction is correct on each bond (i.e. the sign on
neighboring bonds along a given direction is alternating). We consider (4) to be classical and treat the
spins S; = (57, 5], 57) as fixed length vectors which can rotate freely around their lattice sites. This
corresponds to the limit § — oo, but the approximation is already very good for § = £, the value of the
spins of the Mn** ions in Mn(CysHasOz)a.

The Hamiltonian (4) can be transformed to form (1) by rotating all the spins on the even (odd)

sublattice by an angle of — % (£):
[ cost —sing 0 )

S = sing cost 0 |S (5)

\ 0 0 1)

[ cosy sing 0

QI = —sing cosf 0 |Sj, (6)

\ 0 0 1)

where ¢ is defined by

E
t == -, 7
me=e= (7)
With the renormalized parameters J= # and X = Acose¢ we finally arrive at
=7y, (518 +85151+355). (8)
<iis

Because of A < A one can see that the additional Dzyaloshinsky interaction enhances the easy-plane
character of the system (and especially it leads to an easy-plane sysmmetry for an isotropic (A = 1)
Heisenberg model). It should also be emphasized that, although this additional asymmetric interaction
forces all the spins to cant in a certain direction, it does not destroy the in-plane rotational symmetry in

contrast, e.g., to an in-plane magnetic field.

2.1 Spin waves

Starting from a Néel state in the spin variables S; and S; we can perform a linear spin wave calculation

at low temperatures [23,17] and obtain
M =Y (ws(a)ahaq +hu_(a)fhfq) (9)
q
with the two dispersion relations

ws(@ = 851/ (172(@) (12 (@), (10)
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These are the same dispersions as for the pure AFM model, but with the renormalized parameters {j A)
and .
Ha) = 12 ¢, (11)
Ty=1

where the p; are the vectors to the z nearest neighbors on the lattice. “Il and nq I[.'i',ft and dq) are the
creation and annthilation operators for spin waves of the dispersion branch wi(q) (w-(q)).

The ealeulation of the spin wave contributions to the dynamical correlation functions 599 (q,w), a =
*, ¥, = is also straightforward (within this linear spin wave appraximation) and, due to the canting of the
spins, we observe in the in-plane correlations, besides the peak corresponding to the w_-dispersion (with
an amplitude proportional to cos? £), also a peak corresponding to the wy-dispersion (= sin® 5). Within
this ansatz these two peaks should be visible throughout the whole Brillouin zone, and each of them has
a distinct maximum of its intensity at the q-value where the corresponding spin wave frequency becomes
zera. For the out-of-plane correlations we find no difference from the pure AFM model, ie. there is only

one spin wave peak in 5°%(q,w) lollowing the w-dispersion.

2.2 Vortices

To determine single vortex solutions from (9) we first derive the equations of motion. It is convenient to

use angular variables first introduced by Mikeska [24];

S; = S(cos(P; + ¢;)cos(B; +8;),sin(P; + ¢;) cos(B; + 6;),sn(O; + §)) (12)
§; = —5(cos(®; - ¢;)cos(O; — ;) sin(®; — 6;) cos(©; — ;) sin(O; — 6;)) ; (13)

here the capital angles &, and ©; describe the local AFM alignment, while the small angles @; and #
describe deviations from it. Furthermore, we will perform these calculations in the continuum limit using
the angular fields ®(r), ¢(r), ©(r), and #(r), which are, on the lattice sites {, equivalent to the variables
®;, 41, Oy, and 8, respectively. The results for the vortex solutions are exactly the same as in the pure
AFM model [17,18]. Namely, we obtain either an “in-plane vortex” (IPV) for A < A. = 0.71 with a static
structure which is purely in-plane, or an “out-of-plane vortex” (OPV) for A > A. with a well-localized
out-of-plane shape around its center. However, the angle ¢(r) has now a finite offset due to the canting of
the spins, i.e.

o(r) = —% + ¢(r), (14)

where @(r) is the corresponding solution of the pure AFM model. Therefore, for a single static vortex all
the spins are rotated about £ either towards or away from the vortex center. As was already discussed

in [17,18] the static structures are described by the angles ®(r) (plus the offset —4%) and O(r) (B(r) is



nonzero only for A > A.), while the deviations from these structures due to a finite velocity u are described
only by a(r) and &r).

The results for the static vortex structure as well as for the spin wave dispersions (10) are well verified
by numerical simulations (e.f. Fig | and Sec. 3, respectively).

For the dynamic out-of-plane correlations we find no impact of the Dzyaloshinsky interaction on
5% (q,w), and we obtain a small Gaussian CP at q = (0,0) for all possible A, and a dominant Gaus-
sian TP at g = (7, 7) for > Aae

To caleulate the dynamical in-plane correlation function we start with
ST () =< [S'fm] 3F(t) > . (15)

If we use the fact that &(r), 8(r), O(|r| > r,) << 1 (r, = -}."”III_:; is the vortex core radius for OPV's)
and by decoupling the ®-correlations (which are mainly given by spin flips at lattice sites, as the vortices

pass by) Eqn. (13) can be rewritten as

557(t) =< K" cos d(r, t) cos (0) > ({1 — AYcos? & + Bin? E)

2 2
+ < sin (r, t)sin B(0) > ({1 — A)sin? % + B cos? %) , (16) -

with the abbreviations A =< ©%(r) 4+ #(r) + ¢*(r) >, B =< é(r,1)¢(0) >, and K® = (um, v7), p,v =
+1,£3, £5,.... By Fourier transforming (16) we finally obtain, in zeroth order,
5%%(q,w) = SZ5 (K" — q,«) cos? % +.5';}‘;{q,u}ain"'%, (17)

where [12] . i
rr i ‘5_ §
4 VY) = 98 TP+ G

(18)

¥ = 3";—%9, and & and @ are the vortex correlation length and average velocity, respectively. The first term
in (17) represents a squared Lorentzian CP at q = (=, 7) (also present in the pure AFM model), The
second term is a similar peak at q = (0,0) which reflects the local ferromagnetic moment introduced by
the canting of the spins due lo the Dzyaloshinsky interaction.

In the above derivation we have neglected any in-plane spin wave contributions, though there are
expected to be spin fluctuations around w = 0 (even for finite values of q) due to the sudden softening of
the in-plane spin stiffness constant for T2 T ( “universal jump” [25]). Furthermore, we have neglected
any internal vortex structure in deriving S%(q,w). Thus, we expect our result to be valid only close to

the points q = (0,0) and q = (7, 7).



3 Comparison with simulations

The results discussed abave will now be compared to a combined MC-MD simulation on square lattices
with different sizes from 40x40 to 100x100. The MC algorithm is used to bring the system into thermal
equilibrium at a given temperature. From these configurations we use a fourth-order Runge Kutta method

to integrate the equations of motion,

$f=5erg. “9]
with the effective magnetic field
Fi= SLLy S (SF — bS¥)es + (SY + 6,57 Jey + ASTe.) (20)
55! - t £ £ = I8 . !

from which we can derive the dynamieal correlation functions by Fourier transformation of the spin-spin
corelations (a = ,y, 2)
s**(a.0) = [ T A5 tamr-a ¢ [s30]" 57(0) > . (21)
_— = 7
¢ labels all the nearest neighbors of the lattice site | and §; = e (—e¢) for [ denoting the even (odd) sublattice.
A more detailed description of the simulation procedure can be found in Ref. [26],

We will first discuss simulations with A < 1, where we have a clearly established easy-plane symmetry -
we therefore expect that this system allows a good comparison with our analytic results, We will, however,
always use values for the parameters for which the out-of-plane vortex is stable [18].

Below Tx we observe two spin wave peaks in 5%7(q,w), as expected, but only for small g-values,
while for large q's only one peak is visible (the one which is also present in the pure AFM model), Fig.
2 shows simulation results for a 40x40 system with A = 0.8 and e = 0.40 for two different temperatures,
and compares them to the linear spin wave result (which is performed at T = 0, but which differs from
the finite temperature data only by a T-dependent factor). The ratio of the intensities of the two peaks
at comparable g-values is about tan® £, as expected from cur calculations.

Above Tgp the spin wave peaks at finite frequencies vanish as predicted by Nelson and Kosterlitz [23],
but we observe now two CP's in 5%(q,w), a dominant one at q = (7, 7) and a smaller ane at q = (0,0)
(Fig. 3). Each of them can be fitted very well to the squared Lorentzian (18). By comparing the so
obtained intensities /*(q) and widths ['*(q) with the theoretical predictions,

l

sy b
= 47 (14 (q€)7)?

(22)

and

1""Et1.‘1=(w-f‘ﬁ*l)i "’gﬁwﬂqﬂ?. (23)



respectively, we find values for the vortex correlation length § and the vortex average velocity i
The simulations for this temperature range where performed on a 100x100 square lattice with A = 0.85
and e = 0.46. With this choice of parameters X is about 0.8, i.e. this system is, besides the canting of the
spins, formally identical to the pure AFM model as discussed in Ref. [17]. In Table 1 we list the data for £
and i which are obtained by analyzing the width of the CP at q = (7, 7). The correlation length £ agrees
very well with the Kosterlitz formula [10]
f b \

E(T) = Egexp {WJ ' (24)
in the temperature range 0.83...0.90 with & = 1, 5 = 0.61 and Tkt = 0.81 (Fig. 4); i.e. we find a critical
temperature T which has about the same value as in the pure AFM model (Tg7 =0~ [17,18]). For
T20.9 the values for £ no longer fit into this picture and therefore suggest a crossover from the XY-type to
a more isotropic behavior of the spins (as was also found for other systems with a rather small easy-plane
anisotropy [4,17]). These two regimes can be also observed from the data of the average velocity i, which
decreases monotonically in the temperature range 0.83...0.90, but increases again for T = 0.95. The only

theory for 4@ so far was developed by Huber [27] for the out-of-plane vortices in the pure FM model,

i = 551/ 3 € Tir), (25)

and predicts an increasing of @ with inereasing temperature. This is in contrast with our simulation
data. However, this is not surprising, because we consider here an AFM with additional Dzyaloshinsky
interaction. Nevertheless, we have obtained a similar behavior for @ (i.e. a decrease of the values of i with
increasing T') also in the pure AFM and FM models [17]. However, in those cases the variations of @ for
different temperatures was less and the absolute values for @ were smaller.

The data obtained from analyzing the intensity (22) are listed in Table 2 - the amplitudes and corre-
lation lengths corresponding to the CP at q = (7, 7) have the subscript 7, the others the subseript 0. It
appears that the intensity is much more sensitive to the critical regimes than the width: a good XY-like
behavior can be observed only for T = 0.85...0.87. The temperature T = (.83 seems to be still too close to
the Kosterlitz-Thouless transition and the CP at q = (0,0) has not yet fully developed as expected from
our theory (because its amplitude is smaller than the one for the CP at T = 0.85, leading to a different
amplitude ratio Ag/A,). On the other hand, the fitted correlation length jumps to higher values already
around T' = 0.9, suggesting that the crossover regime to the more isotropic behavior extends down to this
temperature.

We also see that the data obtained from both of the above CP's does not match completely, as one

* should expect from Eqn. (17). Table 2 shows that the ratio of the amplitudes 4a/4, 15 0.022...0.024,



which is about 25 percent smaller than we would expect from our theoretical derivation - this vields
An/As = tan® £ = 0.03. This difference is too large to be explained by including the perturbations A and
B (16). However, as we have already explained in the previous section, our analytic results were obtained
by neglecting any in-plane spin wave contributions — although we expect a sudden softening of the spin
stiffness constant at Ty, this is correct enly for an infinite system at q = (7, 7) and q = (0,0) [28], but
not for q-values away from these points. Having additional intensity from spin waves at finite [(7, 7) = q]
and g can explain the decrease of the observed amplitude ratia (the intensity of the spin wave peak near
q = (7, 7) is much larger than the intensity of the peak near q = (0 N balow Tyr) and is probahly alsa
responsible for the small difference in the values of £; and &..

As for the pure FM and AFM models, we find that the values of £ obtained from the width and the
ones fitted from the intensity do not agree with each other [17,18]. This is probably due to the fact that
we assume a dilute gas of freely moving vortices without taking into account the still present in-plane spin
wave contributions (see the discussion above), and that we also neglect any interactions with vortex pairs
and clusters which can be also found in these systems above T, However, from our fits we conclude
that these additional interactions will mainly renormalize the vortex parameters rather than changing the
functional form of the CP’s.

For the out-of-plane correlations we basically observe the same scenario as for the pure AFM model,
i.e. below Tr there is a single spin wave peak in §¢%(q,w), following the w -dispersion, while above T
there is an additional CP with maximum intensity and width at q = (=, 7).

In contrast to the model discussed above, Pomerantz [7] suggested that the in-plane anisotropy of the
lipid layer material Mn(CyaH35032)2 is caused purely by the Dzyaloshinsky interaction. If we simulate
an isotropic Heisenberg model (i.e. A = 1), but choose the strength of the Dzyaloshinsky interaction as
e = 0.64, so that A = 0.8, then we observe quite a similar dynamical behavior as in the previous case
again we find two CP’s above Tx7 as expected from our vortex gas phenomenology. By fitting the data
to our analytic expressions we obtain values for the vortex average velocity @ and the vortex correlation
length £ which are slightly smaller than for the model with A = (.85 and ¢ = 0.36. However, the ratio
§a/Ex remains approximately the same. This indicates that the dynamics of the system as revealed by
the correlation functions is qualitatively the same for the two sets of parameters, while there are small
quantitative differences.

In view of the above results, we expect that Mn(C;sHa504); will have vortices as fundamental magnetic
excitations. However, if Pomerantz’ suggestion is correct, it would mean that because of the small easy-
plane character (A = 1, e = 0.064, leading to A = 0,998) the crossover from planar to isotropic behavior

would occur at a temperature Ty = 0,835 = 1.52K (i.e. £(T3) = (1 = A)~Y? [4]) which is very close to the



Kosterlitz-Thouless temperature Tir = 0.81 = 147K, On the other hand, in the low temperature regime
the small easy-axis anizotropy will dominate leading to an Ising-like spin dynamics with an ordered phase

below T'= 0.5K [7.8.9).

4 Summary

In this manuscript we have discussed the spin dynamics of an easy-plane AFM Heisenberg model with
additional Dzyaloshinsky interaction. We were able to show that the combined Hamiltonian can be mapped
onto a Hamiltonian for a pure AFM Heisenberg model with appropriate renormalized parameters and
rotated spins. The rotation points, for neighboring spins on different sublattices, in the same direction
and, thus, leads to a local ferromagnetic moment. This canting accounts for the presence of a second spin
wave peak in the dynamical correlation function below the Kosterlitz-Thouless transition temperature
Tkr. Above Tir we can also observe an additional CP at q = (0,0) due to this uniform canting of
the spins, Our theoretical predictions were qualitatively confirmed by numerical MC-MD simulations.
However, a quantitative comparison, especially of the data obtained by fitting the intensity (which reflects
static properties) and the width (which reflects dynamic properties of the system), revealed that our vortex
gas ansatz is too simple and should be extended, probably by including interactions with the remaining
in-plane spin waves and with vortex pairs and clusters,

Because the Dzyaloshinsky interaction enhances the easy-plane character of a system, we observe planar
spin dynamics even in an isotropic Heisenberg model, if we add this antisymmetric exchange interaction.
This fact implies that the lipid layer material Mn(Cy5HasO42)2, even if it is described by an isotropic
Heisenberg model with additional Dzyaloshinsky interaction, might serve as a literally 2d magnetic material
with planar spin dynamics. However, due to the small value of the anisotropic exchange interaction
and the additional weak easy-axis anisotropy, as suggested by Pomerantz [7], there would be only a
limited temperature regime, where typical 2d easy-plane spin dynamics, and especially vortex dynamics,
could be observed: at low temperatures we would expect that the system will exhibit Ising-like behavior,
while for temperatures just above Txr there would be a crossover to isotropic spin dynamics. More
experiments at low temperatures would certainly help to form a better understanding of the spin dynamies
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Figure Captions

I. Tn-plane strueture of a single static vortex for A = 0.85 and e = 0.36; the arrows show the projection
of the spins onto the xy-plane; solid (dashed) arrows indicate a positive (negative) z-component of
the corresponding spin. All the spins are rotated away from the vortex core by the same canting

angle é arctan(e) = L7.28.

2. Spin wave dispersions as seen in the in-plane correlation function; +, = T'=0.3: ¢, A: T = 0.5

solid and dashed line: linear theory for T = (.

3. Vortex CP's in 577(q, =) for a system with A = 0.85 and e = 0.36 at T = 0.86 near the AFM (a)
and the FM (b) Bragg point; —: numerical data; - - -: fit to Eqn. (18).

4. Correlation length as function of temperature; <: simulation data (obtaind by fitting the width of

57%(q,w)); —: fit to Eqn. (24). The dashed line indicates the ¢ritical temperature Txr = 0.81.
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0.83 || 32.50 | 2.27

0.85 || 14.29 | L33

D86 || .88 | 1.26

0.87 818 | 1.23

0.80 4.96 | 0.97

0.95 604 | 1.45

Table 1: Data for £ and 4 obtained by analyzing the width of the CP at q = (7, 7) in 577 (q,w)

‘| q=(7,7) q=(0,0)

T A

T ]| E‘r ;'JI L 'EI:I- ."1.[] h iﬂ.

0.83 || 4.56 | 0.69 || 4.25 | 0.0117 || 0.93 | 0.017

0.85 || 5.05 | 0.58 || 4.70 | 0.0141 || 0.93 | 0.024

0.86 || 3.86 | 0.45 || 3.64 | 0.0089 || 0.94 | 0.020

0.87 || 3.73 | 0.41 || 3.46 | 0.0090 || 0.93 | 0.022

0.90 || 3.97 | 0.33 || 3.61 | 0.0074 || 0.98 | 0.022

0.95 || 2.12 | 0.18 || 2.96 | 0.0037 || 1.40 | 0.023

Table 2: Data as obtained by analyzing the intensities of the two CP’s in 577 (q, w)
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