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ABSTRACT

It is now generally accepted that the description of solitons in an easy
plane ferromagnetic chain in terms of a sine Gordon theory 1s inadequate. The
structural and dynamic properties of these solitons are not very clear. We
present here results of a numerical simulation of the dynamics of a single
soliton as well as collisions between a soliton-antiseliton pair. The
dynamics of a single soliton appears to be consistent with variational method
calculations. The energy dispersion (E(u) where u is the propagation
velocity), consists of three continuously connected branches. Only the first
branch is sine Gordon-like with an effective soliton mass. A soliton-
antisoliten pair collision leads to a variety of final states. As a function
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of magnetic field (B), there are four major regimes. At very low fields, the
pair transmit through each other similar to a pair collision for true sine
Gordon solitons. For somewhat higher fields, the pair forms a bound state
(breather mode) on collision. Further increase in magnetic fleld leads to
reflection of the soliton-antisoliton pair. As a function of increasing
collision velocity uge for an initial sine Gordon pair, the various critieal
fields decrease. Furthermore, there are details in the final state diagram
{in the usg—n plane) that correspond to resonance scattering (for breather
modes) and branch transfer (in the pair collison leading to reflection).
Implications of these results for quasi-one-dimensional ferromagnets such as
C5H1F3 and

CHAB ((CEHILHH3}EuEr3} are suggested. In particular, we suggest that
nonlinear elementary excitations in these chains are breathers rather than

isolated solitons.



l. Introduction

Solitons in an easy plane ferromagnetic (EPF) chain have been a subject
of considerable interest for several years (see various reviews by Steiner
1981, 1982). On the theoretical side, this interest came first from the
possibility that the nonlinear excitations in an EPF could be described in
terms of a sine Gordon (sG) theory (Mikeska 1978). Later it was predicted
that the sG description had an instability (Kumar 1982; Magyari and Thomas
1982) and that the soliton properties were in fact more complex; a fact which
added to the theoretical interest. On the experimental side, outside of
superfluid 3He, C5N1F3 (a prototype EPF) was the first systenm (along with
related anti-ferromagnetic chains) for which there was a demonstration of
soliton effects. A considerable body of experimental literature now exists
that includes observation of soliton effects in neutron scattering, specific
heat and nuclear spin relaxation. Again the experimental activity also seems
to be growing on account of the instability mentioned earlier.

From a theoretical point of view, the principal unknowns concern the
properties of distorted solitons (i.e. solitons for which a sG description is
inappropriate). We note briefly, the known properties of the distorted
soliton. In the presence of an applied field perpendicular to the chain
direction (and in the easy plane), the nonlinear excitations are the screw—
like rotations of the spin. At low fields, the spins remain close to the easy
plane as they rotate and these are the sC solitons. Thetinutabilitr refers to
the propensity for spins to deviate strongly from the easy plane, thereby
gaining exchange and Zeeman energies at the cost of the anisotropy energy.
For a statie soliton the instability occurs at B = B, = 2A/3, where B is the
magnetic field and A is the anlsotropy energy (see section 2). However, the

eritical field rapidly decreases for a moving soliton and is only a small



fraction of B, for a soliton moving with a velocity which is a fraction of the
spln wave velocity (the maximum velocity). Thermodynamic quantities, such as
the specifiec heat, have been calculated (Kumar and Samalam 1982) using the
transfer matrix methods. While these provide an experimentally measurable
quantity, they shed no light on the structure or dynamics of the distorted
solitons. The motivation of this study is to elucidate those features.

The results reported here are from numerical simulations of a discrete
EPF chain with two initial conditions: (a) a single sG soliton(S), launched
with a given velocity (emergy); and (b) a soliton-antisoliton (S5) pair,
approaching each other with an asymptotic velocity appropriate to their
relaxed (distorted) profiles. In the absence of analytical methods, numerical
simulation has been the traditional route to the understanding of strongly
nonlinear phenomena. 1In the present case we are able to test the walidity of
various analytical Ansdtze, which can form the basis for an understanding of
the rather complex seliton structures and dynamics.

We find the single soliton excitations to be "multibranched”*. (See
Fig. 1 and Section 2.) Given a magnetic field B ¢ B, and a propagation
velocity, there are two possible soliton solutions with different energies.
Only the lower branch can be sensibly understood in terms of perturbed sG
solitons. For B » Bc, the lower energy sclution ceases to exist. The higher
energy solutions are far from sG-like. The results for S5 collisions are
equally striking. Whereas at low flelds and intermediate collision
velocities, the collisions are sG-like (the solitons pass through each other),

at moderate fields they form breather like bound states. At even higher

*Note that the kink dispersion appears to be perfectly continuous. The
separation into “"branches” 1s therefore for descriptive convenience only.
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fields, the collision results in the reflection of solitons which move on a
third "branch” to be described in detail in section 3. Preliminary results
from a single soliton simulation have been reported earlier (Wysin et. al,
1982). Here we describe some corrections to those results which are possible
becase of improved numerical procedures (section 3).

The material in this paper is divided into twe parts. In section 2, we
describe the known analytical properties. These include a description of the
Hamiltonian, the equations of spin dynamics and properties of a single soliton
(based on a variational Ansatz) over essentially the entire field range. In
section 3, we describe the results from our numerical simulation. These
include results for a single soliton dynamics, largely in agreement with
analytieal results, and the pair collision. Finally, section 4 consists of a
summary of our conclusions and a brief discussion of their implications for

experiments and future analysis.



2. Model

The system we consider is described by the Hamiltonian
=+ - -ﬁz
H J E Sn.5n+1 + A & (En ) ghy B.L S , (1)

where En are dimensionless spin vectors at lattice sites n . The first term
denotes the exchange energy with exchange constant J > 0, the second term
represents the easy-plane (x-y) anisotropy emergy with A > 0, and the last
term describes the effect of an external magnetic field (hereafter chosen to
be in the x-direction). g and Ug are the Land& g factor and the Dohr magneton

respectively. The dynamics of these spins is described by the undamped Bloch

equation
S =8 xF (2.a)
n n n
where
- z ™
Fo=a@ ) +8 )+ g - 28] 2 (2.b)

and z is a unit vector inm the z-direction. Ehxﬁﬁ represents the torque on the
spin at site n. In terms of the polar coordinates of the spin vectors
En (i.e. 8, ¢ are out-of-plane and in-plane angles, resﬁectively}, the

equations of motion become

=
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where En = 5 lcnahncnsxpn,cuﬂBnainqn,sinﬂuj. These equations are for a discrete
lattice. We have integrated them numerically for a variety of initial
conditions. For each initial condition, the time evolution is determined by
only two constants: aZ2A/J andﬁsguHEIJs.

In the continuum limit (where the length scale ratio J/B»>1), Eqs. (3.a)
and (3.b) can be reduced to the partial differential equations

¢Tcusu = —BEE + [l-gﬁz}ainﬂcnsu + bsinGcosyg (4.a)

G_ = - 26 Q- 4.
. ¢ggc05U Eyﬁain bsing, (4.D)
where E‘z - .2% 32 and T = nﬁs E.

Ja

Here a 1s the lattice spacing and subscripts denote differentiation. In the
BEuL B
continuum limit only one constant, b=fa = —;%E, is needed to specify the time

evolution (as opposed to the discrete lattice case above). In the

limit O,b<<1l, Eqs. (4) can readily be seen to reduce to the sC equation:

¢££ = ¢, = bsing ) (5.a)

= ¢T, (5.b)

whose solutions are the well known sG solitons, breathers and small amplitude

ogclillations (spin waves).

To go beyond the sG limit, we note that Eqs. (4) can be obtained from a



Lagrangian:

1 2 z 2 L .2
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where
e = JIAT 8% . (6)

(Strictly speaking L is the negative of a Lagrangian and thus its minimum
determines the trajectories). An expansion of Eq. (6) in terms of the
fluctuations about a sG soliton is the basis of a stability analysis described
elsevhere (Kumar 1982b, Magyari and Thomas 1982). It results in a static
soliton instability field b.=1/3 and b (0)-b (u) = u?/3, where u is the
soliton velocity. We can also calculate the soliton effective mass, m*, for
b<{<b.: for small u, the stability analysis ylelds the energy E{u) of the

moving soliton as

E(u) = E(o) + % au (7)
b
m* c
with """'E = hc_br {E}

It is possible to obtain variational solutions which relax the assumption
of small deviation from a sG profile. Several Ansitze have been introduced in
the literature. The most recent and appealing effort along these lines is due
to Liebmann et. al.(1983). In a variational calculation, the choice of the
trial function is all important. Liebmann et. al.'s choice of a trial spin

profile for a soliton appears to avoid many of the difficulties assoclated



with previous approaches. More specifically, their Ansatz is (5., Sy, S, are
the spin cartesian components):
2
Sx{K} = l-¢ [1—cun¢{1}]
SF{K} = cgind(X) (9)

SZ{K] = cs[l-cna¢{x}]

where sin®/2 = sech¥: X=(f-ut)/w.

Here n-cua&mfz, s-sinﬁmfz and O and w are the variational parameters.

Hm represents the maximum excursion out of the easy plane at the soliton
center. The angles um and ¢ here differ from the notation used elsewhere in
this paper. In particular, note that Bm is a number, not a z-dependent
function.

The soliton dispersion following from Eq.(9) can be divided for
convenience into three different branches (see Fig. 1): (i) for b<b, and
E(u}—EEG{n}{(EEG(n}, the soliton motion is sG-like with the effective mass in
Eg. (8). This branch, which we refer to as branch I, terminates at a maxioum
velocity u=u_(b); (i1) The soliton propagation for E?E(u,) corresponds to
branch II where u decreases with increasing E, leading finally to a second
static soliton with an energy higher than E.g(o) and with Hh-ﬁb such that

E{Bﬂ] 13 the maximum energy for a soliton. The field dépen&ence of the
energy of the static soliton and the excursion angle E are given by

E = E (o) (2/3 + b)[1/3 + 2/(9b) |12
(10)
sinzﬂafi = (1/3-b);



(1ii) Finally, on branch III the solitons are moving with a negative velocity
(relative to sG). It can be shown that the energy dispersion (E(u)) in the
vicinity of the higher energy static soliton must necessarily be an inverted

parabola: The effective mass in this regioen can be written in general as

d
%6 (B
m** =

(11)
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and, since E(Bﬂ} is a maximum, m** must be negative. For b>b,, only branch
IIT survives; the soliton energy is always less than the sG rest mass E_.(o)
(see Fig. 1). The Liebmann, et. al. Ansatz for the effective mass of this

soliton yields

at* = - 1 /673 (3-b)T , Wb (12.a)
L 1 =1
=50 (3 - ) y BB . (12.b)

To summarize, Eq. (12.b) ylelds the effective mass for a soliton at the energy
extremum about Hm = 0. This is the branch I soliton for b<{b, and branch III
for h}hc. Eq. (12.a) refers to the energy maximum solutiom about En = Hu and
it corresponds to a branch III soliton for all b ( < b.) since

6 +*oasb+b .
0 c



3. Numerical Simulations

The discrete equations of motion (Eqs. (3)) were integrated numerically
on a lattice ranging between 100 and 130 spins. (The numbers of spins had to
be increased at low magnetic fields in order to accomodate the wider
solitons.) Periodic boundary conditions were used in all cases. Energy
conservation was used as a test of the computational accuracy (better than 1
part in 135). The sC single soliton and soliton-antisoliton pairs were used
as initial conditions. Since these initial conditions do not correspond to an
exact solution of Eqs. (3), the short time results showed relaxation,
involving emission of spin waves (particularly on branches II and III). 1In
order to approach the isolated single soliton more accurately before making
any measurements, we removed the energy contributions of the spln waves by
time-averaging in the soliten's reference frame for a sufficiently long
time. This scheme is very successful in all but the most extreme
circumstances where the maximum out-of-plane angle approaches n/2 and the
soliton width approaches a single lattice spacing. The results shown in Figs.
{(1)-(3) are an important improvement on the estimates contained in our earlier
report (Wysin et. al. 1982), and in good agreement with the Ansatz of Liebmann

et. al. (1983). (This agreement is less surprising since our averaging scheme

produces accurate traveling-wave kink forms.) In order to test the validity
of various continuum theories, most calculations were performed with
a=2A/J=.0954. Exceptions are indicated explicitly in the figures. This
choice of a minimized the various discrete lattice effects. We comment later
on the behaviour expected for am exchange constant appropriate to C5H1F3 or

CHAB.



a. Single Soliton Dynamics

Some of the results of this section have been reported earlier (Wysin et.
al., 1982). We summarize them below for completeness, because they have
direct bearing on the soliton-antisoliton collisions, and because of new
refinements in our numerical procedures (above). The motion of solitons was

observed starting from an initial sG soliton:

tang/4 = e:p[TfE(E“usGT]], {13)

2 -1/2
where y = |1-u aG} / y

and ¢ = L

and following the time evolution wvia Eqs. (3). The discrete lattice time
evolution requires specification of o and #. A series of runs was performed
holding o fixed (above) but varying g and Uoe, the veloclty of the input sG
soliton (and therefore energy). The soliton velocity was measured by
identifying the center of the soliton as the point at which g¢=n. The
oscillations in the soliton wvelocity were averaged numerically and this
average velocity was identified as the soliton's propagation veloecity. The
average velocity u always satisfied uu,. even for arbitrarily low ugg and
b<<b, -

It was found that the soliton motion for bibc could be classified into
three different regions ("branches") according to the size of the out-of-plane
angle, as explained in section l. For very low energy, the soliton behaved
rather similarly to the sG soliton. Its energy dispersion was accurately
given by Eq. (7) with the effective mass given by Eq. (8). This branch

{branch I) exists only for small u, more precisely for u{um{bj+ The

relationship between the maximum velocity u, and b agrees with the
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calculations of Magyari and Thomas (1982) and Kumar (1982b). For E(u)>E(uy),
the progapating solitons belong to another branch (branch I1). On this
branch, the energy of the soliton increases with decreasing velocity. The
further continuation of this branch (to branch III) leads to backward moving
solitons with monotonicaly decreasing energy. All of these results are
consistent with the predictions of Liebmann et. al. (1983). Figs. (2) and (3)
show the field dependence of the maximum angle of excursinn.ﬁu, and the energy
E of the higher emergy static soliton respectively. The solid lines are based

on the Liebman et. al. Ansatz, as given in Eq. (9). Note thatr this Ansatz

slightly overestimates the energy as we should expect.

b. Soliton-Antisoliton Collision

The soliton-antisoliton (S§) pair collision can be initiated by starting
with a sG S5 pair that is allowed to evolve in time according to the equations
of motion (3) with a and @ specified. The initial data then corresponds to

=, 3
9(E,T) = & tan * 4 Tt “ac " TG}J

Yoo cosh (/b £) (14)

05, 1) = ¢_.

The value of the parameter L A determines the initial separation of the pair.
If the pair were to move precisely according to sG dynamics, T, would
represent the time before a collision. Since a soliton moves more slowly
fu{uEG], the actual time of collision i1s later. The final states {after the
collision) were observed for times roughly 10 times the initial collision
time. We show in Fig. (4) the variety of final states observed in the form of
a phase diagram in the “sG‘b plane. The initial velocity Use can be

interpreted as the input energy. This phase diagram consists of four ma jor



reglons:

(1) Region I: For low fields, b<by (u ), the S5 pair collision is
essentially sG like (e.g. Fig. 5a). The solitons pass through each other with
little distortion of profile and therefore essentially no asymptotic change in
velocity. This is consistent with the low b expectations for single solitons
(Fig. 1). However, the largest b field where sG like transmission takes place
is only bl(max} = 0.06 (corresponding to Ugg = 0.5 and u (actual) = 0.3). An
interesting effect appears for small Uggs in that by {“EG + 0} + 0. In other
words, whlle one might expect the sG characteristics to remain intact at low
velocities, they do not. Instead, the low velocity collision even at low
fields leads to the formation of a breather. This is presumably a balance of
collision time versus energy dissipation (below) for the kink collective
(translation) coordinate. In fact the collision time decreases along bI{“sG}
as ugep increases, until approximately by (max), and then increases again since
the actual collision velocity decreases with further increase of Ueg (Fig. (3)
of Wysin et. al. (1982)). This explains the qualitative shape of hI{“sG} in
Fig. 4.

(2) Region II: For convenience we will drop the dependent variable Uge from
the arguments of critical fields. For by <b<b, the pair collides and forms a
bound state (e.g. Fig. 5b): a "breather”. As mentioned above, this region
extends all the way to b=0 (as usu*ﬂ )« This binding is reminiscent of bound
state formation in the 55 collisions for, e.g. ¢-four (Campbell et. al. 1983)
or double sine Gordon equations(Peyrard and Campbell 1983)., The small
fluctuation frequency spectrum in these systems includes an additional {to the
zero frequency translational mode) bound state corresponding to localized
internal soliton oscillations. The presence of this additional mode, which

can remove energy from the translational mode during a 55 collision, gives

=12~



rise to interesting effects including the breather formation at low velocities
and "windows" in the initial energy (in the region between a breather
formation and a hard core repulsion) where the §3 pair collide, undergo one
(or more) bounces and then separate. These windows have almost self-similar
structures depending on the number of bounces the palr executes before finally
separating to infinity. In as much as the fluctuatien spectrum of an EPF
soliton contains an additional bound state (Kumar 1982, Magyari and Thomas
1982), we expect windows here also and indeed find evidence for them. The
breather period shown in Fig. (6) illustrates an exanple of this feature. The
collision corresponds to usG-D.ﬂ. The behaviour for low fields is as
expected, the periecd diverging at b=b;, 1in anticipation of sG-like
transmission for b<by. Approaching the large field region, there 1s a window
between 0.1258 < b < 0.1289 where the pair is transmitted. Finally for

0.14 ¢ b < by(=0.16) the pair appears to decay into small oscillations before
entering region III for b>b,.

(3) Region III: For by<b<by, the S5 pair is reflected after the collision
{e.g. Fig. 5c). Basically, a soliton approaching the collision on branch I or
II, after the collision 1s transferred to branch III moving in the opposite
direction with a velocity larger than the incoming velocity. During this
collision process the predominant energy transfer is from magnetic field
energy to anisotropy energy, since Gﬁ (see section 3a) increases monotonically
== gee Figs. (7a) and (8).

This region also has interesting "window™ structure. For 1llustration we
choose b=0.21 and describe the final states as a function of u.c- After a
collision in the middle of the chain the solitons separate. As they reach the
ends, because of the periodic boundary conditions, they undergo another

collision. Thus even in this case of reflection, the soliton dynamics becomes
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a sequence of collisions; all the odd numbered collisions occur in the middle
while the even ones occur at the boundaries.The sequence of final states for
b=0.21 is then as follows: For u,,=0.1, the pair is annihilated after the
first bounce . For uﬁs-ﬂ.Z, after the first bounce it emerges as a pair on
branch III. The next collision takes place at the chain ends and leaves the
reflected pair on branch III. For ug=0.3 however, the initial collision
gives rise to a branch III pair, but the next collision at the chain end leads
to a branch II pair. For successive collisions, then, the final state
oscillates between branch II and branch III. On both branch I and II, the
soliton profile ig such that Bm>D for u>0. On branch III, however, Em)ﬂ for
u¢0. Taking these features into account together with the monotonicity

of Bm with u (Fig. 7a) the collisions in region III can be physically
motivated in terms of whether Hmwﬂ (and Emtﬂ) at the middle of the collisien,
or whether bm-q: and me 0 (where @E is the value for a static soliton). 1In
the former case we would expect no branch transfer (none is observed), while
in the latter case (observed at larger “sG} there is branch transfer. The
same reasoning explains why branch II te branch II transfer is not observed,
whereas branch III to branch III is, as in Region IV:

(4) Region IV: For b>by, the incoming solitons are on branch III (e.g.

Fig. 5d). They undergo reflection and emerge on the same branch. The further
sequence of collisions (in the center and at the chain end in turn) repeats
the process. Again this is physically sensible, since Egrﬂ and ém{ﬂ at the

middle of the collision (c.f. Fig. 7b).
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4. Conclusions and Discussion

To summarize our results: starting from a sine Gordon soliton initial
condition, we have studied the dynamics of solitons in an EPF chain. The
objective has been to explore the applicability of a sine Gordon type
description for nonlinear dynamics. The energy dispersion appears to consist
of three qualitatively different branches. Branch I corresponds
ko E = uz, however the effective mass i{s larger than the sG value and depends
sensitively on magnetic field. Branch II corresponds to a larger spin
deviation from the easy plane. On this branch, the energy of the soliton
increases with decreasing velocity and finally reaches the energy of a second
static texture. The latter corresponds to a solution where the energy is a
maximum as a function of the angle with respect to the easy plane. As a
consequence of this energy maximum, the energy dispersion around this texture
is an inverted parabola (negative mass). The other arm of this parabola (for
u<0, branch III) decreases monotonically until the soliton width diminishes to
a lattice spacing.

The collision of an S5 pair, again initiated with a sG palir, gives rise
to a variety of final states deseribed in a phase diagram, Fig. (4). The low
field collisions are sG like. With increasing field, there is a regime
where S5 forms a bound state, a breather. Further increase in field leads to
reflection of the pair. 1In the breather regime there are uvindows
corresponding to resonant energy transfer between the sniitnu‘a translational
mode and the internal modes. In the reflection scattering region there are
further details in the phase diagram where a branch II pair emerges as a
branch III pair, reverting to a branch II pair at the next collision.
Otherwise a branch II pair, after turning into a branch III palr remains on

that branch during further collisions. Analytical work 1s in progress to
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clarify these regions and the various physical factors affecting them.

For the quasi-one-dimensional easy-plane ferromagnet CsNiF4, the
parameter a = 2A/J = 0.382 (Steiner 1981, 1982). We have performed a limited
nunber of runs with this value of a. If the discreteness effects are not
critical, the soliton dynamics should be governed essentially by the
parameter b = g/a (see section 2). The chosen values of B were 0.0342 {B=5
kG) and 0.205 (B=30 kG), these both lie in the region where 85 collision gives
rise to breather modes in the final state. Such a behaviour raises a

fundamental issue. Namely, in the analyses of statistical properties for

CsNiF4 (thermedynamic and neutron scattering) solitons have been assumed to be
nearly independent quasiparticles. The assumption is justified on the basis
of substantial soliton integrity during collisions. If, however, the
collisions predominantly give rise to generalized breathers (including the

Heisenberg pulse-like solutions (below)), the fundamental excitations in

CsNiF, then become these breathers and the statistical properties should be

carefully reconsidered in light of results here. Such a reexamination is
under consideration at the moment, and complements existing arguments
(Bishop,198la, 1981b) for the dominant influence of breathers even in the sG
limit. Clearly the effect of damping on breather 1lifetimes needs to be
considered. However, it is worth noting that the strong deviations from ideal
sine Gordon S§ collision which we have found are likely to have an equally
serious influence on the thermal nucleation of §§5 pnira—-i;e., thermal
nucleation will predominantly generate breathers and not free solitons.

The analysis in this paper refers to a classical system. The importance
of quantum effects has been discussed by several authors. However, no
definite conclusions can be drawm as yet. Maki (1980) has derived a quantumn

renormalization of the sine Cordon soliton energy E , resulting in the
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reduction of E, by 20% (for B = 5kG) in agreement with a wide variety of
experiments. Mikeska (1982), however, has noted that if the sC assumptions
(A large) is relaxed and spin excursions off the easy plane are allowed
(albeit perturbatively), the quantum renormalization of E, is only 10%,
thereby worsening the agreement with experiments.

Our analysis involves the parameters a = 2A/J and g = gug B/JS (and in
the continuum limit b = g/a). 1If we interpret Maki's results on
renormalization of mass m = (/2AB) and energy E  as the dressing of coupling
constants A and J, the parameter B increases due to the quantum
fluctuations. The parameter o plays the role of the bare coupling constant in
the quantum theory--leading to an increase in an effective b. In as much as
results deseribed here support the view that a larger b leads to larger
deviations from a sine Gordon plcture, one might argue that quantum effects
lead the system further away from a sG description in terms of an ideal gas of
solitons.

The importance of our conclusions for real materials is further
emphasized by the recent observations of Kopinga et. al. (1982, 1983) on
CHAB Eiﬂﬁﬂllﬂﬂjj CuBr5) and its chlorine isomorph CHAC, both easy plane
ferromagnetic chains. 1In both of these systems, the intra chain exchange
constants are of order 50K but the anisotropy energy is much smaller. These
are also § = 1!2 spin chains. As a result the nonlinear properties should be
even further from a sine Gordon description than, say EBﬁiFE. This conclusion
is qualitatively corroborated by the experiments. As for EsNiFJ, the specifiec
heat and spin-lattice relaxation measurements have been analyzed in terms of
an effective sine Gordon theory where the soliton energy 1s treated as an
adjustable parameter. Whereas known values of J and B would yield for the

soliton energy En = 10.85/B K, the experiments vyield E = 8.4Y8 K, roughly
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the same reduction as in CsNiF45. Because of small A (and therefore a small
quantum coupling constant A/J) the quantum effects are weaker. We believe
that the deviation from sG theory in these experiments really originates in
the finite excursion of spins away from the easy plane and the resulting
anomalous nature of nonlinear excitations. A careful analysis is in progress.
The importance of breather bound states is further emphasized by the
scaling properties of Fig. (4). The phase diapgram is shown in terms
of b = g/a, which is all that is needed except for discreteness effects.
While the sG properties are clearly seen in the small b regime, SS eollisions
imply a closer affinity between CBH1F3 and the moderate to large b region. In
that case, the interesting limit to study for the Hamiltonian
(Eq. (1)) becomes u = A/J + o (and perturbations therefrom). In this limit,
the ferronagnetic chain becomes isotropiec (in exchange interaction) and exact
results are known for the continuum equations, since these become exactly
integrable, (Bishop 1980,1981). 1In particular, the principal excitations are
breather-like modes which correspond to "pulses” in the angle of declination
with respect to the magnetic field axis. Thus, the single soliton solutien in
the limit b+= should become the (one) exact soliton of the isotropic model
(Skylanin, 1979). Analytic work is in progress to demonstrate this
equivalence. An important outcome of this caleulation is expected to be the
profile of nonlinear excitations in the high field limit (c.f. Figs. (4) and
(7.b)). Note also that two types of nonlinear excitations are possible for
b<b, (kink-like and breather-like solitons). However, for b>b, only one type
survives, as we see both from our single soliton and SS collision studies
(consistent with the isotropic Heisenberg limit). Furthermore, the topology
of the single soliton changes for b>b, from kink-like to pulse-like. ... this

system: they correspond to the maximum of E{Hm} for b>b,; furthermore, they
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have negative mass, lowering their energy by accelerating to higher velocities
(Magyari and Thomas, 1983). We believe that the natural excitations in this
limic (b>b.) must be cleosely related to the pulse solutions mentioned above in
the a + o limit. Osano (1983) has also arrived at similar conclusions.

A further comment about the resonant §5 scattering is in order. The
resonant energy transfer between the internal modes and the translational mode
depends on the presence of the former. Thus a comparison between the present
system and the complementary case of Ising symmetry breaking, (Sklyanin, 1979
and Mikeska, 1981) is now possible. In the latter, the magnetic field is
replaced by an easy axis and it describes antiferromagnetic, easy plane
chains. 1In the Ising symmetry breaking case, it is easy to show that there
are no internal modes associated with the solitons and therefore the resonance
scattering windows do not exist. Thus we expect that ferromagnetic chains are
unique in having the nontrivial 55 collisions. The Ising symmetry breaking
case is also exactly integrable in the continuum limit (Sklyanin, 1979) and it
appears that the existence of integrability and of bound states are mutually
exclusive here as in all other known true soliton equations. A related
observation 1s that the analagous single soliton phase diagram to Fig. (1) is
in fact quite similar (Mikeska, 1981), except that b + w, This is again
consistent with the absence of any internal "mode softening”, which occurs
with magnetic field symmetry-breaking. Likewise, the exact bound state
("breather”) solutions known for the Ising ayﬁm&try-hreaking case (Sklyanin,
1979) form a disconnected set from the single solitons with no possibility for
windows or resonances.

To conclude, then, we emphasize the unusual features of an EPF chain
demonstrated by our numerical simulation. This simulation has stimulated

considerable analytic work, in progress at the moment, to fully analyze the
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nonlinear properties, and their experimental consequences for materials such

as CBNiFa and CHAE.
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Figure Captions

Soliton energy dispersion for different magnetic fields. The curves
refer to b = gu,B/2A5 = 0.13, solid line ( — ); b = 0.21, dashed line

( —= ) and b = 0.42, dash-dotted line ( =+-+= ). The curves are
symnetric in u as further shown in Fig. (7). Below the critical field

b. = 1/3, there is a region for small u where E a ui_ This reglon exists
only for b < b.. The soliton energy is normalized with respect to the
energy of a static sine Gordon soliton. Branch I (in text) refers to the
low energy low velocity dispersion. Branch III refers to the backward
moving soliton with negative dispersion. Branch II connects branch I

with branch III.

The maximum angle of excursion for spins off the easy plane, &m, as a
function of the magnetic field. This curve refers to the second static
solution in Fig. (1) that acts as the boundary between branch II and
branch III. The points are results from our numerical simulation and the
s0lid line is obtained from the Liebmann et. al. (1983) Ansatz for the

spin profile, described in Eq. (10).

The energy of the second solution (c.f. Fig. (2)) as a function of
magnetic field. Points are results from numerical simulation. Seolid
line is obtained from the Liebmann et. al. (1983) Ansatz, described in
Eq. (10).

Final state phase diagram for the scattering of a soliton-antisoliton

o A



Pair. The phase space here is defined by the velocity of the input sine
Gordon pair, a measure of the input energy, and the magnetic field. 1In
reglon I, at low magnetic field, the pair obey sG dynamics (they pass
through each other). In region 11, they form a breather-like bound state
(see Fig. (6)). 1In region ITI, they are reflected reminiscent of hard
core collision cbserved in ¢4 or double sine Gordon equations. While a
similar reflection takes place in region IV, the difference between these
regions (III and IV) lies in the relationship between the signs and
magnitudes of the deviations from the easy plane and the soliton

velocity. (See Section 3 for details).

Details of collisions in various regions described in Fig. (4). a,b,c

and d, respectively, refer to regions I, II, III, and IV of Fig. (4).

Breather period, T, in region II as a function of magnetic field b for
ugg = 0.4. The boundary between regions I and II is characterized by a
divergence in T. However, no such divergence takes place at the boundary
between II and III. Instead, preceding this boundary there is a window

characteristic of resonance scattering (Sec. 3).

A symmetrized dispersion curve for {a) b ¢ b, and (b) b > b.- This
figure is presented to motivate the physical differénces underlying
collisions in region III and IV. In region III, corresponding to (a),
the S5 pair after collision emerges with increased velocity lying on the
outer branch of the dispersion curve, corresponding to a reversed
relationship between the sign of Bm (off easy plane angle) and the

propagation velocity (see Sec. 3). The arrows indicate the direction of

_23_



inereasing am.

Various components of the energy density during collision: E,, Eg and E.
refer to anisotropy, magnetic field and exchange components, respectively
(see Eq. (1)). The figure corresponds to Usg = 0.6 and b = 0.13 in
region III. Also shown as functions of time are the (numerically
determined) instantaneous soliton velocity, u, (in units of e, the spin
wave velocity) and the maximum off easy-plane angle (i.e., at the soliton
center), 4, expressed in units of this quantity for the initial sine

Gordon solitom (0.532 radians).
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