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Abstract
We present the results of a mumerical simulation of spin dynamics on a
ferromagnetic chain subject to an easy plane anisotropy and a magnetic field.
The results show substantial deviation from the conventional sine-Gordon
description. The soliton like solutions have a varlety of effects including
large off-easy plane deviation, temporal oscillations and shock-wave

formation.



Soliton Dynamics on a Ferromagnetic Chain

The model we consider here, consists of a chain of spins, interacting
with a nearest neighbor ferromagnetic exchange Interaction and subject to an
anisotropy field, perpendicular to the chain direction. In addition, the
spins also experlence an external magnetic field in the easy plane. 5Such a
model is interesting for two reasons. On the one hand, the model describes
the thermodynamics of linear chain ferromagnets (e.g. CsNiF;) at temperatures
larger than their bulk ordering temperature (approx. 2K). On the other hand,
continuum versions of this model admit both linear (magnons) and non-linear
solitons and breathers) excitations that can be analyzed and understood rela-
tively easily. The importance of a theoretically tractable model, describing
an experimentally accessible system including the nonlinear excitations and
their intersctione, ie clearly central to developing the urderetending of nen-
linear phenomena. In particular, the nonlinear excitations here are fre-
quently taken to be described by sine-CGordon equation. The theoretical
understanding to date, and comparison with experiments have been reviewed by
Steiner (1980) and Mikeska (1980).

Recently, it was pointed out by Kumar (198la, 198]1b) and by Magyari and
Thomas (1981) that the sine-Gordon description of this model becomes inade-
quate at modest magnetic fields and soliton wvelocities. If the magnetic field
is small, the anisotropy field limits the spins largely to a plane. The non-
zero winding mumber excitations then are solitons and are described by the
sine-Gordon equation. A moving soliton has small excursions away from this
plane, the excursion angle is proportional to the soliton velocity. If the
external field is comparable to the anisotropy field (or as shown a fraction

larger than .4), the spins are unstable towards rather large off-plane



excursions. The texture narrows and becomes immobile. As expected, this
instability is aided by the soliton motion which causes spins to go off-plane,
such that the critical magnetic field for instability rapidly decreases with -
increasing soliton wvelocity.

Whereas the instability calculations above are limited to a continuum
version of the discrete chain, we have carried out a numerical simulation of
soliton dynamics on a diserete chain, without any sine~Gordon assumptions, to
understand (a) whether there are any serious discrete lattice effects on the
instability and (b) the nature of the nonlinear excitations after the

instability has occurred. The Hamiltonian igs described by (Steiner 1981)
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the z-axis. J represents the strength of the exchange interaction and A and B
respectively the anisotropy and the external magnetic fields. The spin

dynamlics is described by the Bloch equation
-y B % Fe (2)
The continuum limit of Eq.(2) has been analyzed. If the polar and

azimuthal angles of spins are & and ¢, Eq.(2) can be expressed in terms of the

field equations (the lattice spacing is given by a)
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‘the soliton veloecity,

where the magnetic field B is taken in the x-direction. The principal
conclusions (Mikeska 1981) in the sine-Gordon limit (low field, low wvelocity)

can be summarized:

(1) The ¢ profile is given by Bing$/2 = Hﬂdl(z-'ut)fﬂn(lmzfcz 1/2

é 2w 24782,

(b) The off-plane excursion is determined by & = n/2 = %I ﬁz.

)

where u is

= Jazfﬂ and ¢

A linear stability analysis of a static profile shows inmstability for
B > B_(0) = 2/3 A. However in the range A/2.4 < H < 2/3 A, the distorted
soliton has lower energy. For a slow moving soliton the excursion angle

y = 68-n/2 is given by ¢ = %E-- Qz and is always larger than the sG value.

S
BE-B
At B = Bc(ﬁ}; Vv a u” where n € 1/5 (Kumar 1981b). The critical field for
distortion decreases with the soliton velocity as B, (u) = B (0) - a?/3
(Magyari and Thomas 1981).

Our numerical calculations have been done on a chain of 180 spins with
periodic boundary conditions and energy conservation. Depending on the
magnetic field, static &G solitons vary in width from 10 to 20 spins.
Typically at time t=0, a discretized sG soliton is launced with a specified
velocity u o (thereby defining the total energy) and the subsequent time
evolution is described by Eq.(2). If the sG approximation is wvalid then the
soliton would propagate with unchanged wveloecity. We find, on the contrary,
that the soliton motion is different at arbitrarily low nun-zeru* velocities
and the difference increases with increasing magnetic field. In Fig.(1), we
show the observed weloecity ut of the soliton as a function of the initial
valocity usG for different magnetie fields. Even at low fields, the final
average velocity u is always less than u,,. The velocity u reaches a critical

maximum and then begins to decrease with increasing u ;(i.e. energy). This

maximum u, which we denote by U decreases with increasing magnetic field.



The initial slope of this curve g:
18

A, Kumar 198la and Magyari and Thomas 1981). The field dependence of u. is
2/3

a (B*-B) where B* = .62 A (c.f. B, - 2/3
consistent with the MT result in that EE(u} - Bc{u} ~u (Fig. 1b). Fig. le
shows E(U). We refer to solitons with E { E(u,) and E > E(u.) as belonging to
the lower and upper "branches"” respectively (cf. Magyari and Thomas 1981).

We have found no evidence for a discontinuocus change in passing from

thelower to upper branches at u_,. However, deviations from sG increase

c
continuously as we increase energy on the E(u) curves and these deviations
increase most strongly on the upper branch. Thus, as the energy increases the
anisotropy energy becomes an increasing fraction of the total energy and
begins to participate increasingly in the dynamics. This is consistent with
the distorted soliton picture. Similarly (see Fig. 2) the off-plane excursion

angle increases with increasing energy and is increasingly greater than the
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ofi~plane engie predicied in Liae 8G approximetiou. Tha Euctes tha! tho of££-
plane excursion angle and the anisotropy energy contributions increase, all
with decreasing velocity and that the soliton width decreases on the upper
branch are quite Iinconsistent with the sG approximation and can only be
understood in terms of a dlstorted texture.

The distorted texture remains well defined for E > E(u.). In as much as
the Poincare cycle period for our system is about 600 (in the units used here)
we deal with an essentially infinite system. The initial sG profile decays
very rapidly (with 10 time steps in a typical run of ome or two thousand) into
the stable distortions of the system (subject to the boundary conditions
$+(0,2n), z+(—=,=)). We expect that any further time dependent phenomena is
the natural evolution of the system's textures. It is characteristic of our

initialization procedure that internal oscillations are excited in the

relaxation to the distorted soliton profilesg, which are of inecreasing



amplitude as E increases (i.e. as the initial and final states are
increasingly different). These oscillations ceccur sympathetically in the
veloeity, shape, off-plane angle, etc., but most periodically in energy
components and are responsible for magnon generation from the (non-sG) dynamic
solitons. We have found that the amplitude of oscillations can be
significantly reduced by the use of closer initial conditions, but the
frequency of periodic fluctuations and mean values are essentially unchanged
(this supports the intrinsic nature of those features). The frequency
decreases as E increases on E(u) curves at fixed B and A (Fig. 2), whereas at
fixed E and A it is proportional te B.

The mean maximum off=-plane angle becomes large for upper-branch solitons
with increasing energy (decreasing velocity). For instance
with % = 0.012 and u = 0 (upper branch), the mean maximum of f-plane
excursion is ~50%. As the input energy increasez further, we find a single
kink solution which propagates backwards: E(u) is continuous at u=0 — see
Fig. le. The kink narrows further as the off-plane angle increases further,
and the frequency of oscillations (above) further decreases. This surprising
backward motion is limited by a shock-like phenomenon (below when the kink
width contracts to a lattice spacing and the out-of-plane excursion approaches
90°, However the maximum positive and negative propagation velocites are
unrelated. For instance at B = 0.254 (~7 kG in GuHiFa}. the forward motion is
limited by U, = 0.04 C, whereas the backward motion is possible to
=0 = 0.8 C. Beyond this speed the texture develops a "shock front™. The ¢
profile contracts such that the (0,2n) change occurs over a lattice spacing.
A nonlinear pulse is emitted which grows into & 2Zn kink and continues moving
backwards with the same speed. After a short time the new kink narrows and

the whole process repeats. Backward moving solitons also characterize final



states for B > BE{G) (Fig. le), for which there are no lower branches.
Backward propagation might be understood as a recoil to the rapid emission of
magnons . The "shock"” features ;re necessarily beyond a continuum description.
Clearly a symmetry of positive and negative energy velocities is restored by
starting with negative velocity initial conditions, but the spectrum of
propagating kinks is far richer than the sG approximation can predict.

In summary we have studied numerically possible single kink excitations
in the easy-plane ferromagnetic Heisenberg model in an easy plane magnetic
field. We have found a multi-branched single soliton excitation structure.
Only the lowest branch can be sensibly explained by perturbed sG travelling
wave profiles. The more gemeral solutions are far from sG with the
possibility of strong oscillatory components and coupling to the translational
degrees of freedom — in the presence of strong off-plane spin excursions this
is entirely reasonable ic.f. pulse-solitons w. ithe lesiropac Hsiec.iiip
model): appropriate components of linear and angular momentum are sensible
dynamical variables (e.g. Bishop 1980). Our conclusions clearly profoundly
affect conventinal sG-based phenomenological descriptions (e.g. for CsNiF, —-
c.f. similar modifications for antiferromagnets (Shiba, et. al. 1981).
However, before seriously assessing these it is essential to understand kink-
antikink scattering and bound state (breather) dynamics. The situation is
strikingly similar to that holding (Mikeska 1981, Sklyanin 1980) with Ising
{(rather than magnetic field) symmetry-breaking in an easy~piane ferromagnet,
but with important differences since that case is completely integrable (in
the continuum limit) with the usual consequences for kink and breather
dynamics. We will report on our results for these problems, and on the

crossover to isotropic Heisoberg,in a succeeding article.



Footnotes

* Static (uaﬂ-ﬂj initial sG conditions are preserved (without oscillation) to
a high accuracy (i.e. u=0), for B { B (0). This is expected since the sG

description is strictly valid for static (lower branch) solitons in the

continuum limit.

+ We determine soliton "velocity”™ without sophistication, namely from the
w-crossing for the in-plane angle or the maximum in the out-of-plane angle.
We do not consider more precise mumerical definitions appropriate at this
point, but it should be cautioned that asymmetric shape oscillations can

lead to apparent tramslatioms.
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Figure Captions

Numerical procedure: initial conditions of sine Gordonm kink with
velocity Uen result in kink progating with mean velocity u, which may
be negative and oscillates. A/J = 0.0477 and gu B/2AS =

(a) 0+ (i.e. sine=-Gordon limit), (b) 0.0419, (ec) 0.0839, (d) 0.1258,
(e) 0.1677, (£) 0.2096, (g) 0.2516, (k) 0.2935.

Maximum (mean propagation velocity (i.e. bifurcation velocity between
"upper” and "lower” branches — see fig. 1(iii) ) versus magnetic
field.

Energy versus (mean kink velocity with A/J = .0477 and guB/ZAS =

(a) 0+ (i.e. sine=Gordon limit), (b) 0.05, (c) 0.10, (d) 0.15, (e)
0.24. Notice the "upper” and "lower” branches and bifurcation points
described in the text. The dashed lines indicate the additionzl
branches found numerically as negative velocity regimes (the figure
is symmetric in u + =u). These terminate with a "shock” phenomenon
when the out-of-plane deviation approaches /2 (see also Fig. 2(1)).

For B > Bc only this branch survives.

Properties as functions of progating kink energy for A/J = 0.0477 and
guBEfZAS = (a) 0.0419, (b) 0.1258, (c) 0.2096, (d) 0.2935, (e)
0.3354. Case (a) lies entirely on the lower branch, whereas cases
(b) = (e) include points on both upper and lower branches.

The maximum (mean) out-of-plane angles Bm in radiations. Note how

rapidly the “"instability” limit (w/2) is reached for B ~ Bc.



(11)

(i11)
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The same data as (i) normalized to the predictions for the sine-
Gordon limit 4 = ﬁm’éigm(aine-ﬂnrdon}; [Em{sine-Gardun} -
Eu(l*uZFCi)_IIZ(EHBBIQAS]IIZ]. Note that this always underestimates
the out-of-plane deviation.

The oscillation frequency for energy components. (Time measured in
units (JS)'lJ. The amplitude of these oscillations depends on
initial conditions but the frequency does not. Additiomal frequency

components appear for kinks near to instability.
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