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Abstract

We present an Ansatz for kink excitations in an easy-plane classical
antiferromagnetic chain with a magnetic field in the easy plane. The
utility of the Ansatz is that it presents the in-plane (XY) and out-of-
plane (YZ) kinks as belonging to one continuously connected energy
dispersion curve. Linear stability analysis applied to YZ kinks shows
that there is a velocity dependent critical field necessary for
stability. We also present results of a numerical integration of the
equations of motion which verifies the YZ kink stability regimes, as
well as showing that XY kinks are stable over a wide range of fields

and velocities.



I. Introduction

Recently there has been considerable experimental and theoretical
interest in the low temperature properties of 1-D easy-plane anti-
ferromagnets in the presence of magnetic fields applied in the easy
plane. A typical Hamiltonian assumed to describe these materials is

(Hikeska 1980):

= i Zv2 _ X
H= i{ﬁﬂ By A(SD)" - gugB SX) , (1)
where the notation is standard and J > 0; A > 0 represents the effect
of dipole-dipole interactions, and the field Bx is in the easy (XY)
plane. Neutron scattering experiments (Heilmann et al. 1979, Boucher

et al. 1982) on the S = 5/2 compound (CD Nin Cl, (TMMC), an example

34
of this type of material, have shown an interesting behavior of the
in-plane and out-of-plane spin wave dispersions measured as functions
of the applied field. In particular, there is evidence for a crossover
field, where these spin wave energies become equal, which can be con-
sidered to be a switching of the hard anisotropy axis from the dipole
anisotropy axis to an axis parallel to the field (Harada et al. 1981).
While this hard axis switching arises simply in a linear spin wave
theory, it is also manifested in the nonlinear regime (Harada et al.
1981, Fliggen and Mikeska 1983). The nonlinear dynamics in the continuum
limit has been mapped approximately to the sine-Gordon equation, with
kink or "soliton" excitations being m rotations of the spins either in
the easy plane (XY kinks) or in a plane whose normal is parallel to the
field (YZ kinks). These have static energies gu B S and (Eﬁjsa}%, 50
that the critical field at which the two energies are equal is

Bt = [EAJSE}EIEEUE}. This is the same field for which the in-plane and

out-of-plane spin waves (at the zone boundary) have equal energies.



The XY and YZ kinks have previously been considered as distinct
special solutions of the continuum equations of motion resulting from
(1), belonging to two distinct branches in energy dispersion. Through
the application of a variational Ansatz (Wysin 1985), we show here that
they are actually just two limits of a single continuously connected
dispersion curve. The Ansatz (below) is motivated by a corresponding
classical ferromagnet Ansatz used by Liebman et al. (1983). The spins
are assumed to rotate in a plane tilted at some angle to the XY plane,
with a sine-Gordon motion of the spins in that plane. General features
of results derived from this Ansatz are very similar to those for the
ferromagnet -- including the existence of a maximum XY kink velocity
which is less than the spin wave velocity (see also Wysin et al. 1982,
1984). There is an important difference, however, between the ferro-
magnetic and antiferromagnetic Ansatz: For the ferromagnet, the ground
state is unique, g = (1,0,0), while for the antiferromagnet, the ground
state is two fold degenerate, with godd = (4B, J]—%Eﬂz,ﬂ}, §ewen =
(%B, 'Jl-%gﬁz,ﬂ} or vice versa, with p = ngBxIJE. In any antiferro-
magnet Ansatz, the spin at a given lattice site must rotate from one
ground state to the other. The fact that the two ground state sub-
lattices are not exactly antiparallel (due to the spin flop effect)
leads to considerable complications which cannot be ignored. We should
note that for an easy-plane ferromagnet with an Ising symmetry-breaking
field (J < 0 and ﬁxsz replaced by ﬂxfszjz in Eq. (1)) the two degenerate
ground states are exactly antiparallel, and this Ansatz precisely repro-
duces the soliton solutions given by Sklvanin (1979).

We have also considered the stability of kink structures in these

systems. This has been approached in two ways: (i) The stability can



be tested by numerical integration of the discrete equations of motion.
We have used an initial kink profile obtained from either the XY or Y2
sine-Gordon limits of the equations of motion, and followed the time
evolution. Alternatively, one can use an initial kink profile as
obtained from the Ansatz presented here. Details are given below; or
(ii) A linearized stability analysis about sine-Gordoen static kink
profiles can be used. This can be followed through analytically for

the YZ static kinks, but we have not been able to generally solve the
stability equations for the XY static kink. We find from both approaches
that static YZ kinks are stable only if B > Eci there is no corresponding
instability field for static XY kinks -- they are always stable over a
wide range of applied field. For moving YZ kinks one finds from the
numerical simulations that the stability can either be enhanced or
diminished by the motion, depending on whether the motion causes the
spins to cant further toward the field or away from it. The linear
stability analysis confirms this behavior. The numerical simulations
indicate that dynamic XY kinks are always stable.

II. The continuum sine-Gordon limits

First we consider the continuum equations of motion resulting from
(1), and the XY and YZ sine-Gordon limits, as given by Fliiggen and
Mikeska (1983). The spins at the even or odd lattice sites, referred
to as the A and B sublattices, have been parametrized in terms of four

angles in spherical polar coordinates:

S = $S(sin(020)cos(®2¢), sin(620)sin(d%4), cos(028)) . (2)
A
B

S is the length of the spin vectors, and 8, B, @ and ¢ are all functions



of time and position x on the chain. In order to take the continuum
limit, we must assume O, ¢ << 1, as well as slow spatial variations in
¢ and ©. Measuring time in units of W/JS, and using the lattice con-

stant as the length unit, the evelution equations are:

(¢xu-%¢]sina + E{Ei¢*-%é$}tosﬁ = -Eﬂz sinf sint cosd + kﬂé £in® cosd (3a)

(ﬂxx-ié}cscﬁ - (¢:—k$2}cose = (kﬁz cnsz¢-a}cusa - &B&sinﬁ cosd , (3b)

where B = guBBx}JS and o = 2A/J, and space and time derivatives are
denoted by subscripts and dots, respectively. The "small" angles 6 and

¢ are given by:

L (P cos® cost-d sind) (4a)

% cscO(6-p sind) . (4b)

=
In

Here we have assumed ¢ << 4, which is the case for most real materials
(0 = .04 for TMMC).
IIA. XY kinks

Statically, Eq. (3b) is satisfied exactly when © = 4n. Equation
(3a) then becomes a static sine-Gordon equation for the variable § =
2¢ - n. More generally, one can assume € = %m - BB, where 95 << 1, and
linearize the equations in Es: this yields a dynamic sine-Gordon eguation

for y:
Uy = % U = 487 siny (52)
and

(0,,-¥6,) + (02-1d43p%cos0-0)0, = 4 cose . (5b)



A kink solution to Eqs. (5), for ﬁz << @, is a M rotation in the XY

plane, moving as a traveling-wave at velocity v:

=242 tan"! exp(z); z = LBy(x-vt) (6a)

[T |

0, = -4 (p2yv/0) sech?(Z); y = (1-%v?)7¥ . (6b)

Note that the spin wave velocity c = 2 in these units. Although solution
(6) is valid only at low fields, we have used these profiles as initial
conditions in numerical simulations for arbitrary B. The energy of the
kink in Eq. (6) is Eyy = ByJS” plus corrections which depend on B2/a.
There is considerable experimental evidence in TMMC demonstrating the
existence of these modes (Boucher and Renard 1980, Boucher et al. 1983,
1984, Regnault et al. 1982).
I1.B. YZ kinks

Equation (3a) is satisfied exactly by taking ¢ = %1, in which case
(3b) becomes a sine-Gordon equation in the variable 20 - n. The

dynamic kink solution is now a m rotation in the YZ plane:
= K %] e = o
e = 2 + 2 tan ~ exp(z) ; z = yo(x-vt) . (7)

Although result (7) has been obtained "exactly" within the small angle

approximations B, ¢ << 1, substituting (7) into (4) one finds 8 = 0, but
¢ = ¥(yJov sechz+B)cothz . ' (8)

Thus at the center of the kink (2z=0), ¢ is no longer small as has been
assumed, and this solution is not walid. The profile has an unphysical
cusp in s* which prohibits its use as initial conditions in numerical

simulations.



One can correct this problem, and still obtain an exact sine-
Gordon equation for YZ kinks, by using a more appropriate coordinate
system. Spherical polar coordinates, where the x-axis (i.e., the
field direction) is the polar axis, exploit the symmetry of the YZ
kinks. With this motivation, we have re-parametrized the spins in terms

of new angles 8, 6, ¢, ¢ in x-polar spherical coordinates:

§ = #S(cos(8+6), sin(60) cos(d*¢), sin(OB) sin(d*g)) . (9)
A
B

The dynamical equations for the four variables now become (Wysin 1985)

Qe
L]

4 sin® + o(d sin® cos2d+%B cosd sin2d)

$ = -40 cscO + (B sind sin2¢-¢ cos® sin2¢)-p
(11)

g = -(2¢, 8 +40B)cosd - ¢ sind + %o sind sin2¢

- (4% +42-40°

-
n

csczﬂ}cnsﬂ - Bxx cscB - o cosB sin2¢ i

Elimination of the small angles 8, ¢ << 1, under the assumption o << 4,

leads to equations similar in structure to Egs. (3) and (4):

(¢xx'i;)sinﬂ + 2{9x¢x-ié$3cnsﬁ = %o sin® sin2¢ + 4BO cosd (12a)
(6, ~%8)cscd - (¢2-4é2)cosd = (osin® ¢-%p%)cosd - 4Bb. cose (12b)
6 = %0 csch (13a)

@
n

-4 (p+d)sind . (13b)



The YZ kink is now found by taking © = 4n, which satisfies (12b)

exactly, and then (12a) becomes a sine-Gordon equation for 2¢, with kink

solution
® = 2tan | expz; § =0 (14a)
8 = -4(B-yJ/ov sechz) . (14b)

We now have smooth functions for 6 and ¢, and we have used this profile
as initial conditions for numerical simulations. The kink in Eq. (14)

has energy

_ 2
Ey, = zyJa{I-EE{I-ivE})+

IIC. YZ stability analysis

The stability of the YZ kink solution to Eq. (12) can be deter-
mined by assuming small perturbations ©, 6, ¢, § about the sine-Gordon

solution Bﬂ, 2] ¢o‘ ¢°, substituting into (11) and linearizing in

ﬂ‘
these perturbations. The small angles 8, $ can be eliminated from the
resulting equations, and we obtain decoupled equations for &, ¢. For

o << 4, they are

~ Bl Bl Bl o

axx + {¢°x &Bn+a51n ¢Q}B = 46 (15a)

¢kx - o cus2¢u = 4 (15b)
iwlt 5 iw,t

We assume B ~ e y &~ e time dependences, and using Eqs. (14),

(15) yields the eigenvalue problems (Wysin 1985)
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-12§= + (1-2 sechz z - Byv sech z)8 = A, & (16a)
z - 1
2Jo
48 # (-2 mech® £)8 = A.D (16b)
ZzZ 2

with

w? = ba(h -1)+ g’ (16¢)

we = 4ok (164)

2 2

For a zero velocity kink, both equations have sech(z) bound state solu-

tions, with eigenvalues ll = hz = 0. The corresponding eigenfrequencies
are
mf = B2 - Lo
(17)
ué =0

The bound state associated with the & variable is the Goldstone transla-
tion mode and involves mo structural instability. The bound state for
E. however, can have an imaginary eigenfrequency indicating an
instnbility.++ Specifically, for fields ﬁ2 < 4o, static YZ kinks are
unstable, and the mode responsible for this instability causes the spins
to tilt away from the z-axis. This result has been confirmed by numer=
ical integration of the discrete equations of motion. Starting from a
static YZ kink profile, the spins move toward a configuration involving
a lower energy XY kink, with the excess energy given to spin waves.
Conversely, for Bi > 4o, static YZ kinks have been found numerically to

be stable.

** The analysis by Fliggen and Mikska (1983) did not reveal this
instability due to their use of z-polar spherical coordinates.
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For nonzero v, the potential for B is modified, and therefore so is
the bound state eigenvalue Al' If v is positive, then the potential
becomes deeper, and therefore AI becomes less than zero. From (16c),
the field necessary for the kink to be stable is now Bz > ﬂn(l-ll}i that
is, a kink with positive velocity requires a larger field to be stable
than does the static kink. For a kink with negative velocity, the
opposite is true == a smaller field is necessary. Even if ﬁz < 4o, there
can be stable moving YZ kinks. This has been verified by numerical simu-
lation.

These comments can be made guantitative by estimating hliv} using
perturbation theory. A simple first order calculation gives hliu} =
-(nﬂfﬁua}(vfc}; to get a result correct to order {vf:]z one needs to
use second order perturbation theory (Wysin 1985). To first order in
v/c, then, the stability criterion m% > 0 for moving YZ kinks becomes
v/c < [Bz-ﬂu}f(nﬁﬂh}+ The numerical simulation (section IV) gives
results consistent with this relationship.

It should be noted that this direction dependent stability does not
really imply a preferred direction of motion for YZ solitoms, since we
have presented the stability arguments only for one of the four possible
soliton solutions (there are two kinks and two antikinks possible).

The conclusion that can be drawn, however, is that those YZ solitons in
which the motion causes the spins to cant further toward the field
(compared to the ground state canting) have increased stability.

I11. The Variational Ansatz

In the above discussion the XY and YZ kinks have been assumed to
be two independent types of excitations. For a dynamic XY kink, the

spins of the A sublattice rotate approximately in a plane tilted at an
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angle Bﬁ to the XY plane, while the spins of the B sublattice move in a
similar plane which may be at a slightly different angle EB' For low
velocity kinks Bjlb and BB are near zero, and as the velocity increases
so do Eﬁ and EB‘ For dynamic YZ kinks, BA and EIB are near &, and
should approximately satisfy 8, = in-6, EE = 4n+6, where 6 is a small
parameter. (In fact, the Ansatz predicts that & is proportional to the
velocity.) These observations suggest that one can make an Ansatz for
a general kink excitation which will include both the XY and YZ kinks as
special limiting case:. The Ansatz will involve variational parameters
Bﬁ, BB and a width w, these parameters being determined by extremizing
the Lagrangian with respect to the parameters. This Ansatz calculation
closely parallels a similar one for the corresponding ferromagnet
(Liebmann et al 1983).

An appropriate Ansatz for the xyz components of unit length spins,
5A, &B' is constructed as follows: Consider the spins on the A sublattice
first. The trajectory on the unit sphere must be an arc starting from
one ground state (%P, -{l-Bzflﬁ]a, 0), passing through a point (cos q, 0,
sin q) at the center of the kink, and then ending at the opposite ground
state (4B, +{1-ﬁ2f16}a, 0). The plane in which the tips of the spin
vectors move is tilted on an angle BA‘ such that ta"BA =
sin q/(cosq - %B) (see Fig. 1). In the x'y’z” coordinate system,
obtained by rotating the xyz system through Bh about Fhe y axis, the
equation of this plane is simply z = -% B sinf,. In order to determine
the x” and vy~ components of this trajectory, consider the sum and
difference vectors M = &(EA+EBJ. N = B{EA-&B] (supposing for the moment
that the B sublattice moves in the same plane). The vector H approxi-

mately traces out a circle of radius Ty = % B tnsEA, with center at
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(x,y7) = (% B cosB,, 0). The vector N approximately traces out a semi-
circle of radius Iy = {]-ﬁzflﬁ}a, centered at (x,y") = (0,0). Therefore

we take (see Fig. 2)

2

Hx' = rH(1+tns¢EG} = IrH tanh™ z (18a)

Hyp = 1y sin¢EG = -2IH tanh z sech z (18b)

Hx' =1y sin(k ¢5GJ =Ty sech z (1Be)

ﬂy' = Iy cos(% ¢SG} =1y tanh z (18d)
where

0o = 4 tan ! exp(z) ; z = XML (19)

Transforming back to the O variables, it is necessary to multiply the
x"y” compenents by a factor £,(2) = (1-sin> £, sech? z}'k‘ in order to
keep the spin length fixed {sﬁ is shown in Fig. 1). If we assume now
that the A and B sublattices rotate in planes at different angles BA and

EB‘ then we can write the Ansatz as follows:

n
I

Oax

> fA(Z} [Hx.+Hx.} - an;- fE(z} (Hx._-ﬂx,,} ,

o f,(2) (H¥'+HF'J » Opy-- = f5(2) {Hy---H?--] , (20)

Ay~

Op,c = =4P sinﬂﬁ » Oy o” = g1 squB .

Here single primes refer to the "A" coordinate system at angle Eﬁ, while
double primes refer to the "B" coordinate system at angle BB' The
single function ¢sG describes the distribution of the spins on the

trajectories for both sublattices.
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Using energy units JSE. and time units K/JS, the continuum limit

Lagrangian is:

R P 1 L .
’ i
a6, db
- (8,t85h 5= ¢ T (21)

The first term in Eq. (21) is simplified by changing u; + ﬂ: = 1 and

nﬁ + U; + 1, which changes the Lagrangian by an additive constant that
depends only on B, and removes unphysical step functions at ER = %n and
BB = =%m. Since we minimize L with respect to the variational para-
meters w, Eﬁ and BE, this constant does not affect any of the results
that follow. After rotating the Ansatz back to the original xyz coor-

dinate system, and considering 45, B and A = ﬂB = Ea as small parameters,

the Lagrangian (relative to the ground state) is found to be (Wysin

1985):
— -a]_ -
L(6,,8,%) = VK(8,,8) - 1 F(8,,8) - w6(8,,A) , (22a)
where
2. 85, 8 g 1 .2
F(Eﬁ,ﬂ} = (rH - 4§ °os EAJ - (15 Ty s1nBA}& -z 4 (22b)

6(6,,8) = (ary sin’0,+4 B° cos’8,) + h(arg-} Bz}ainZEA'a + 8% (220)

K(B,,8) = + A+ Eﬁ (sinB, +%Acos8,) = k_ + kA . (224)

Minimization of L with respect to the width w leads to
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L=vKk -E (23a)

E(8,,8) = 2[F(8,,0)G(8,,8)]" = e, + €8+ het? (23b)

where e, By €, are functions of EA' Next, if we minimize with respect

to A, we obtain

b= (vky=e;)/e, (24a)
2 2
_ 1 ki€ Ky 2
L(ﬂh) = (% ;; - *u} + (k - e v + (% ;;}v : (24b)

Then, finally, variation with respect to BA leads to a quadratic equa-

tion for v, with the possibility of two solutions as functions of Eﬂ.

These solutions are considered acceptable only if they give A << 1,

Considering EA as the independent variable, we then have obtained the

velocity, width, energy etc., all as functions of Bﬁ.
We have also made a two parameter Ansatz for XY kinks by taking

EIA = BB' or A =0, in which case we find the static XY kink energv to be

B(1-%/24), slightly smaller than the sine-Gordon result. Similarly,

a two parameter Ansatz for YZ kinks is made by assuming EA + 6, =m,

and we find the static YZ kink energy to be 2Ja(1-B>/16), which has a

stronger field dependence than the sine-Gordon result. These differ-

ences are probably due to using xyz components instead of spherical

coordinates.

IV. Numerical and Variational Ansatz Results

In Fig. 3 we show results obtained from this Ansatz using o = 0.04,
as appropriate for TMMC (Regnault et al. 1982), and for a series of
fields P ranging from 0.2 to 0.5 (the critical field being B. = 2Ja =

0.4), and for EA ranging from zero to m. For a given value of 6,9
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solving gil = 0 (using Eq. (24b)) gives two solutions for v, which are
then substituted into Eq. (242) to give A, and finally A is used in (23b)
to obtain the energy. In Fig. 3 we have kept only those solutions which
satisfy |[A| < 0.2. The solid and dashed curves correspond to the two
roots for v (plus and minus from the quadratic formula). From the curves
of A versus BA' it is seen that there are two distinct regions which
correspond to kinks which are either YZ-like (the approximately linear
portions of the curves, near BA = 4n) or XY-like (the parabolic segments,
generally at 6, # 4n). Note that A measures the deviation of the kink
from being "flat"; for A = 0, we have HA = EB* such that both sublattices
rotate in the same plane. A nonzero A corresponds to a situation in
which the two sublattice planes are canted, and in particular, for stable
YZ kinks, the canting is toward the field.

In Fig. 3 we also show results of numerical integration of the
equations of motion on a discrete lattice. The data points were obtained
by using initial profiles from this Ansatz, using both roots for v. We
used initial profiles with BA over the entire range from zero to m which
gave |A|] < 0.2. Cases where the kink was unstable were obvious -- an
unstable YZ kink would deform to an XY kink, accompanied by spin waves.
Even for stable kinks, there was usually relaxation accompanied by the
emission of spin waves; therefore we have time averaged the kinks in
their own (moving) reference frame as a means of remuﬁing gpin waves from
the system. Such time averaging usually produces smooth travelling wave
solutions, except in cases where discreteness effects are severe (e.g.
for high velocity kinks). The velocity of the resulting profile was

measured by taking the center of the kink as the point at which s¥ is
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zero. We have used lattices ranging from 101 to 301 spins (depending
on the kink width), an odd number being necessary to simulate a system
with one kink satisfying periodic boundary conditions. Characteristic
kink widths can be estimated from Egs. (6a) and (7) =-- typical widths
for zero velocity kinks were 10 lattice units (YZ) and 8-40 lattice
units (XY). The equations written in terms of xyz components were
integrated using a fourth order Adams-Pece predictor corrector method,
with a fixed time step of 0.04. Energy conservation and spin length

5, were used as checks of

conservation, both to better than 1 part in 10
the numerical accuracy.

We have found that only one of the two roots for v always gives
stable kink profiles (the dashed curves), the other root can correspond
to an unstable branch. The most striking feature of the results, how-
ever, is that the stable root corresponds to either an XY or YZ kink,
depending on BA; the XY and YZ kink branches are continuously connected.
Furthermore, for % ﬂz < o, where static YZ kinks are unstable, the
numerical simulations show that there is a velocity above which YZ
kinks are stable, confirming the linear stability analysis results
already given.

The energy versus velocity data points from the numerical integra-
tion do not agree exactly with the Ansatz calculation, especially for
YZ kinks, probably due to discreteness effects for high velocity kinks
and also than 5 lattice units) along with the small parameter approxi-
mations made to evaluate the Lagrangian (Jo, B, A << 1), For a kink of
given energy, the actually velocity is less than that predicted by the
Ansatz or sine-Gordon theory, but this effect is most pronounced at

higher velocities. We should note that the spin wave velocity in these
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upits is ¢ = 2, and the greatest discrepancies occur for kink velocities

greater than 2 4c. Also the kink energies may be slightly overestimated
by the numerical integration, since it is not always possible to com-
pletely eliminate spin waves from the system.

V. Discussion and Conclusions

From Fig. 3, for p # ﬁc' vhere ﬁc = 2o the XY branch merges into
the YZ branch at some maximum XY velocity less than c¢. This can be

compared to the ferromagnet (J < 0 in (1)), where the critical field is

Ferro _ 1
Be -3

there is also a maximum kink velocity less than c, but the character of

o (Kumar 1982, Magyari and Thomas, 1982). For B < Bierrn'

the kinks does not change suddenly as one moves along the dispersion
curve through the maximum velocity point. There is only a continuously
increasing deviation from the sine-Gordon profile.

In the Liebmann et al. Ansatz (1983), as their variational parameter
Y Em (approximately equivalent to BA here) increases from zero to Ln, the
kink geometry ranges from planar to a small amplitude wave packet (i.e.
pulse-like). The kink branch resulting from their Ansatz therefore
terminates at zero energy and velocity (i.e. no kink). In the Ansatz
here, there is no analogous topological decay of the kink as EJll is
varied from zero to &n; the spin profile is always a large amplitude
deviation from the ground state configuration, as a result of the
boundary conditions. The boundary conditions strongly affect the
dynamics.

From our numerical integrations, XY kinks are stable above and
below the critical field, for @ = 0.04, 0.08 < B < 0.6 and |v/c| < 1.
Even for B > BE. they show no tendency to decay to lower energy YZ

kinks. Whether they can be viewed as slightly perturbed sine-Gordon
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kinks is doubtful, especially for B > B.. For small velocities v << ¢,
the two parameter Ansatz reproduces the velocity dependence of the energy
as found by Fliiggen and Mikeska (1983), with the curvature of E versus

v proportional to {Ei-ﬂgl_l. This curvature can be thought of as a
kinetic mass for the kink, which diverges and changes sign at the
critical field. For fields B ¢ BE, this mass is positive and the kinks
are close to sine-Gordon kinks, but move at speeds less than that
predicted by sine-Gordon theory for a given energy. At the critical
field, the mass diverges, and there is a continuum of XY kinks with a
range of BA' all with the same energy and velocity. Magyari and Thomas
(1983) have referred to this effect in the corresponding ferromagnet

as a "soft velocity change". At the critical field, infinitesimal
perturbation of a kink (for instance by varying ﬁﬂ} leads to one with the
same velocity. Above the critical field, the mass is negative, and the
behavior strongly deviates from sine-Gordon. The situation is the same
as in the ferromagnet above the critical field, where the kinks are dyna-
mically stable but move in a direction opposite to that predicted by
sine-Gordon theory (Wysin et al. 1982). We conclude that XY kinks are
not adequately described by sine-Gordon theory, and that there is ne
structural instability induced at the critical field.

For small velocities v << ¢, the two parameter Ansatz for YZ kinks
reproduces the velocity dependence of the energy given by sine-Gordon
theory. We find that sine-Gordon theory adequately describes the YZ '
branch. Concerning stability, we have shown that static YZ kinks are
stable only if B > Bc’ and that dynamic YZ kinks require a minimum
applied field to be stable, where this minimum field decreases with

increasing velocity. Stated differently, the only stable YZ kinks have
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a velocity greater than some critical velocity which decreases as the
field increases. For P < ﬂ:, the critical velocity is pnsitiv=+ (see
Fig. 3, p = 0.3); a certain amount of canting of the two sublattice
planes toward the field is needed to insure stability. For B = Bc. the
critical velocity is zero. For B > B:, the critical velocity is nega-
tive (see Fig. 3, P = 0.5); a certain amount of canting of these planes
away from the field is allowed before instability results. For YZ
kinks, stability is determined by the field and the velocity, i.e.
there is a stability field (i.e. a minimum field for stability) which
depends on velocity.

Finally, we recall that experimental data on TMMC is available for
magnetic fields beyond the critical value (e.g. Boucher et al. 1984),
and is consistent with a crossover from XY to YZ kinks as suggested here.
However, we have found numerically that XY kinks are stable both below
and above the critical field. Thus both XY and YZ kinks should carry

thermodynamic weight at high fields and be reflected experimentally.

*Hert positive and negative velocity refer to v as seen in Fig. 3.
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Figure Captions

Fig. 1.
Fig. 2.
Fig. 3.

Geometry for the Ansatz. (a) The dot represents the ground
states projected onto the x-axis, the arrow is the spin on
the A sublattice at the center of the kink. The dashed line
represents the plane in which the tips of the spin vectors ﬁﬁ
move in this Ansatz. (b) View of the two ground states as

seen looking down the z~ axis; the Ansatz assumes that the

spins EA move in the circular path connecting them.

(a) The sum vector M as seen in the xy" coordinate system.
¢$G rotates through 2n for the kink Ansatz. (b) The differ-
ence vector N as seen in the x“y” system. The radii of these

circles are derived from Fig. 1.

Kink energy vs. velocity and A vs. EA for fields (a) B = 0.2,
(b) B=0.3, (¢) P=0.4 (the critical field), (d) B = 0.5.
The solid and dashed curves have been obtained from the two
solutions given by the Ansatz. The data points are results
of the numerical integration, time averaging initial kink

profiles derived from the Ansatz.
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