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Costa and Costa [Phys. Rev B 54, 994 (1996)] studied vortices in a two-dimensional easy-
plane anisotropic ferromagnetic model. They found different vortex behaviors depending
on whether the anisotropy parameter λ is less than or greater than a critical value λc,
reproducing well-known results [Phys.Rev.B 39 11840 (1989)]. They claim that the out-of-
plane dynamic correlation function Szz(q, ω) exhibits a central peak only for λ > λc, where
the static vortices are of the out-of-plane form, but not for λ < λc, where the static vortices
are planar. However, their data are physically inaccurate for such a conclusion.

PACS numbers: 75.10.Hk, 75.30.Ds, 75.40.Gb, 75.40.Mg

Recently Costa and Costa (CC) [1] simulated the two-
dimensional anisotropic Heisenberg model, with classical
nearest neighbor spin Hamiltonian on a square lattice,
H = −J
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j ). Static vortex

structures were found by a relaxation procedure, and dy-
namic correlations were calculated by Monte Carlo–spin
dynamics simulation. We point out that the results of
the static calculations are well-known, and second, that
the dynamic correlation functions presented there appear
to be physically unreliable for their conclusions.

Using simulated annealing, CC found that the mini-
mum energy vortex structure remains planar for λ < λc,
where λc ≈ 0.709, whereas, for λ > λc, the structure has
a nonzero radially-dependent out-of-plane form, Sz(r).
The existence of this crossover at a critical anisotropy
λc is a well-known result. To our knowledge, the possi-
bility of two types of vortex solutions (in-plane and out-
of-plane) was first pointed out by Takeno and Homma
[2] and further analyzed by Hikami and Tsuneto [3].
The crossover from in-plane to out-of-plane vortices for
λ > λc was discussed by Wysin et al. [4] and by Gouvêa
et al. [5], and different values of λc were found depend-
ing on the type of lattice (λc ≈ 0.72, 0.86, 0.62 for square,
honeycomb and triangular lattices, respectively). Wysin
[6] made an analysis of the core region of a vortex on
a discrete lattice and was able to make a more precise
estimate of λc (≈ 0.7044 for square lattice) by analyt-
ical means. Zaspel et al. [7] used this method to show
that λc increases in the presence of a magnetic vacancy.
A particular normal mode of oscillation of the vortex,
which softens at λc, is responsible for this vortex insta-
bility [6,8]. CC found λc slightly higher because of this
lengthening of time scales near λc, where they did not
wait long enough for equilibration, similar to the over-
estimated values found earlier in Refs. [4,5].

For T > TKT , the Berezinskii-Kosterlitz-Thouless
vortex-unbinding temperature [9], the vortex ideal gas
phenomenology of Mertens et al. [10] predicts central
peaks (CP) in the dynamic correlation functions of in-
plane and out-of-plane spin components [Sxx(q, ω) and

FIG. 1. Simulation of Sxx for λ < λc at temperatures below
and above TKT , for wavevector (3π/32,0) on a 64x64 lattice.
Results for λ > λc are similar. Dotted lines are guides.

Szz(q, ω)]. One Mertens et al. prediction is that the
static out-of-plane vortex structure for λ > λc as well
as the dynamic vortex structure due to vortex motion
for any 0 ≤ λ < 1 is expected to contribute to a CP
in Szz. CC used a combination of cluster Monte Carlo
(MC) [11] and spin dynamics, for a 64 × 64 system,
averaging Sxx and Szz over 200 MC initial conditions.
The transition temperature for λ = 0 is known to be
TKT /J ≈ 0.70 based on finite size scaling calculations
[12], and decreases monotonically as λ approaches one.
CC studied λ = 0.5, 0.8, at temperatures T/J = 0.6, 0.8.
For both of these anisotropies, 0.6 < TKT /J < 0.8.

CC reported that a CP in Szz(q, ω) appears only for
λ > λc, where the static vortex structure is out-of-plane.
However, the Sxx and Szz data presented by CC appear
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to be inadequate to support any conclusion, for two rea-
sons. First, the CC data for both Sxx and Szz do not
reproduce the sharp spinwave peaks expected for tem-
peratures below TKT [12]. In the low-T phase, spinwaves
dominate and should have narrow linewidths ∆ωq with
some weak dependence on λ, possibly decreasing with
λ in step with the λ-dependent dispersion relation ωq.
Second, the CC data for Sxx do not show the drastic ap-
pearence of a CP that is expected when crossing TKT .
Any numerical simulation may be vulnerable to system-
atical or programming errors, whose ultimate source we
cannot possibly determine here. In this case, however,
one source of these problems could be the inadequately
short time of integration used in the spin-dynamics sim-
ulation, as we describe below.

Lacking an exact theory for ∆ωq, we can compare the
CC results to those of Evertz and Landau (EL) [12],
and to our own simulations. We repeated the MC-spin-
dynamics simulation as described in Ref. [13], with the
addition of the Wolff cluster algorithm [11] applied to
the in-plane spin components, averaging Sxx and Szz

over 400 MC initial states. Each of the 400 initial
states used were separated by 200 steps consisting of a
Metropolis sweep followed by Wolff single-cluster move,
all following 5000 equilibration steps (e.g, 85,000 total
steps). We used a fourth order Runge Kutta scheme
with step dt = 0.04 for the time integration out to
tmax = 410/JS, in order to reach a frequency resolu-
tion down to δω/JS = 2πJS/tmax = 0.015. In Figs. 1
and 2 we show the raw data without the application of
an unnecessary smoothing window [12].

For L = 64, λ = 0, T/J = 0.6, and wavevectors near
qa = (3π/32, 0), the EL data and our own data for Szz

have spinwave half-widths ∆ωq/JS ≈ 0.03 . The CC
data for this same case, but with λ = 0.5, exhibit much
broader spinwave peaks, with ∆ωq/JS ≈ 0.2. In the
same case but for λ = 0.8, the half-width of the CC data
has reduced slightly to about ∆ωq/JS ≈ 0.15, while our
data exhibits ∆ωq/JS ≈ 0.015. Clearly, tmax > 410/JS
is necessary to resolve this peak.

For low-T Sxx data, we obtain, consistently with EL,
a weak and oscillatory intensity below the spinwave fre-
quency, and intensity rapidly aproaching zero above ωq.
It is impossible to tell if such a feature appears in the
CC data. The low-T CC data, especially for Szz, ex-
hibit unphysical oscillations above ωq and extremely long
high-ω tails, rather than rapidly approaching zero. This
spread out noise effectively reduces the sharpness of the
KT transition and appearence of the CP in Sxx when
crossing TKT , compared to what we find (Fig. 1).

CC used 1200 time steps of size 0.025/JS to get a max-
imum time of only tmax = 30/JS, leading to a frequency
resolution δω/JS = 0.21, which is much larger than the
physical spinwave width at these low wavevectors. This
is an inadequate resolution to study the low frequency
form of the low-wavevector spinwaves or for studying the
CP properties. CC applied a cutoff function to the data,

FIG. 2. Simulation of out-of-plane structure function for a)
λ < λc and b) λ > λc at temperatures below and above TKT ,
wavevector (3π/32,0) on a 64x64 lattice. Dotted lines are
guides to the eye. Solid lines are fits to Lorentzian spinwaves,
and the dashed line is a fit to Lorentzian spinwaves plus a
Gaussian CP component. T=0.6 data has been scaled by the
indicated factors.

but it is clear that this process cannot improve the fre-
quency resolution. This limited resolution may also be
responsible for the unphysical oscillations above the spin-
wave frequency.

There is no controversy that a CP emerges in Sxx

above TKT , although it is possible that sources other than
vortices may be responsible. The more difficult question
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is whether a CP develops in Szz, and if so, whether vor-
tices are responsible. It is possible that heavily damped
spinwaves with low ωq and large ∆ωq can make Szz ap-
pear to have a CP. Therefore we show fits of our Szz

data for T > TKT to the sum of symmetrically located
Lorentzians (damped spin waves) at ±ωq. This form
fits well near ωq, however, it has particular trouble in
the high-ω tail of the spinwave peak, lying well above
the data there. It suggests that at this high tempera-
ture, Lorentzian functions are not adequate to describe
the spinwave lineshape, or additionally, a different spin-
wave component in combination with a CP component is
needed. Other fits, including an additional Gaussian CP,
produce some improvement near ω = 0 for λ > λc, but
still do not describe well the high-frequency tail. From
our data it appears likely that there is indeed a CP in
Szz for λ > λc. For λ < λc, in the absence of know-
ing the precise CP and spinwave lineshapes, we cannot
rule out a weak CP in Szz. More precise data and more
information about the shapes of the CP and spinwave
contributions are needed in order to decide this question.
For both λ < λc and λ > λc, it is clear that the CC data
are inadequate for this purpose.

The ideal gas theory is approximate: it assumes ballis-
tic motion, it ignores vortex-vortex and vortex-spinwave
interactions, and it assumes an infinite free-vortex life-
time, although there is evidence that typical vortex life-
times are short [14], and that over this lifetime a typical
vortex moves on the order of one lattice constant. There-
fore it is good to consider alternative explanations even
for the CP in Sxx. CC have suggested that creation-
annihilation processes may contribute to CP intensity.
But in the absence of a detailed creation-annihilation
theory it is impossible to account for the relative contri-
butions to Sxx and Szz due to vortex motions compared
to those due to local vortex number fluctuations.
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