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Abstract

We consider the theory of optical bistability in reflection from
a nonlinear interface. When an intense laser pulse is incident on
a'medium with an intensity dependent index of refraction near the
critical angle for total internal reflection the reflected intensity
may display hysteresis as a function of the incident intensity. We
discuss Kaplan's plane wave theory for this phenomenon and derive
a simple procedure to calculate the reflectivity. For a medium with
a positive nonlinear coefficient we find that a significant region
of bistable operation does exist. However for a mediumn with a
negative nonlinear coefficient, limited bistability exists over only
a small region. Estimates of the incident power required to achieve

bistability are given.



[. Introduction

There is current interest in phe mena associated with optical t:vist.atlmi!itg.r.“:I

(2-6) Kaplin has developed a plane wave theory of

In a series of publications
the optiEa1 bistability of light reflected from the surface of a nonlinear
medium. An apparent observation of this phenomenon was first reported by

Smi th et.a].{?] The experiment involved a ruby laser pulse incident at an
angle exceeding the critical angle on a glass — L5, interface. By analysis
of the shape of the reflected pulse in comparison with the input, the authors
were able to infer the existence of a discontinuous transition between total
internal reflection (TIR) and partial transmission as the interface responded
to the changing field intensity in the incident pulse. Recently the same
authors-have reviewed the status of the comparison between experiment and

theury.tﬂ}

The explanation of the phenomenon seems to be straight-forward. In
a nonlinear medium in which the dielectric constant depends on the amplitude
of the electric field in the medium, the critical angle of incidence for TIR
depends on the intensity of the incident light, and therefore as the intensity
is increased for a fixed angle of incidence L it can happen that the critical
angle is shifted to the opposite side of 8, and that the amount of reflected
light is changed from that corresponding to partial reflection to that corres-
ponding to total reflection or vice versa. The resulting effect is interesting
to the extent that the change occurs abruptly rather than gradually (i.e.,
discontinuously rather than continuously). The discontinuous type of change
can occur only when the two-medium-interface system, for some range of
incident intensities, simultaneously supports two stable modes of reflected
or transmitted light, in which case the system is said to be "bistable".

We show that in order to investigate the possible optical bistability

of a given two-medium-interface system it is necessary only to determine the
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reflection coefficient R of the syster as a function of the incident light
intensity. In contrast to Kaplan's mr-e formal approach to bistability

theory, we here take this direct apprrach and present a simple procedure for
calculating R. This procedure allows direct calculation of optical bistability
in reflection for all regions of interest; e.g., for positive and negative
nonlinearities, arbitrary angles of incidence, wave guide geometries, etc.

The present authors have applied this method to the calculation of optical
bistability with surface p]asmnns.[g}

We focus here exclusively on the case of s-polarization where the electric
field vector of the incident wave is perpendicular to the plane of incidence.
Since this case can be analyzed exactly, it allows the conditions for
bistabiiity to be exhibited clearly. In order to derive the equations for
the reflectivity it is necessary to follow Kaplan's method of solution of
the wave equation in the nonlinear medium. On the other hand, for our
analysis it is sufficient to determine only the derivative and phase of the
field at the interface. This is done in Section I1(a). In Section 11(b)
particular cases corresponding to positive and negative nonlinearities are
considered and the nature of the possible bistability is discussed. In
addition we display here computed graphs of reflectivity versus incident

intensity for certain representative cases. We conclude with some sunmary

comments in Section II].



I1. Theory
Consider a plane electromagnetic wave incident from a linear medium into

a medium which exhibits an optical Ke'r effect. The plane of propagation
is defined to be the x-z plane with the boundary interface at z=0. The

dielectric constant €4 of the nonlinear medium is assumed to be of the form

e = e0 +alE ", (1)

where :t° is the dielectric constant of the nonlinear medium at zero intensity,

Et the field in the nonlinear medium, and a a nonlinearity constant which

is connected to the optical Kerr dielectric constant n, via the relation

na = i Qa
= 5 2
E:t

In® the case of s-polarization the spatia] dependence of the incident,
reflected, and transmitted fields can be represented by the respective functinnsilu]
Ei =y Ei ei{ijx'+kizz}. Er =y Er ei[kixx' kizzj and Et =y Et{x,z}. where
kix and kiz represent the components of the incident propagation vector in
the linear medium with magnitude ki = % JE;: and ft corresponds to a (transverse
wave) solution of Maxwell's equations in the nonlinear medium. For a (non-
magnetic) medium described by the dielectric constant e, given above, and Et
polarized perpendicular to the plane of propagation (as in s-polarization) the

latter equations are equivalent to the vector wave equation

2 il "
0 2
vZEt + %I Izt + ﬂfEtI ]Et =0 . (2)

We are interested in determining the ratio of the reflected to the incident
intensity, IE,.szlEiJ". This ratio is strictly determined by Maxwell's
equations (which require the above forms for Ei and Er in the linear medium)
and by the associated boundary conditions at the interface z=0. The latter

boundary conditions require Et to have an x-dependence of the form
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Ey(x,2) = Erz)e'kix® | (3)
and result in connections between the amplitudes E;, E_, and £(0),
E; +E. -El0) (4.a)

kiZI:ET' - E'I} = i isézgl ' [q'b}

which we choose to re-express in the form

E. = }:. [E(0) + ﬁi%‘_,_ﬂl] (5.a)
Z
. i dE(0
£; = 7 (€0) - - 52h (5.b)

For a given incident amplitude E; relations (4) or (5) provide two
equations for the three unknown quantities Er' E(0) and d_Edj%J,}_ An additional
connection between the last two quantities is provided by Eq. (2) which

requires E{z] to satisfy the equation

g;? + {%; (c,° + o€} - kgx]€= 0 . (6)

Following [-f;iu:-lan{I':"'E:l it is useful to re-express the complex function £(z) in

terms of real amplitude and phase functions U(z) and %{z} via the definition

E(z2) E’% uiz}eﬂig*fz;I ; (7)

EI-
where the factor hﬁr is included in the amplitude so as to simplify certain

later equations. With no loss of generality the phase function can be written
in the form
z
3(z) = k; [, 6(z7)d2” +3(0) (8)
with ki.stz} = ﬁd(fl By use of Eqs. (7) and (8) in Eq. (&), the real and

imaginary parts of that equation separate into the two equations



o
d?u =t ) a
= -k ¥[—— L girip, + Uz - g2 u , 9
T -t [t TEr U - e2) (9)
M rngy o

The ratio ‘tufzi in Eq. (9) defines the zero field critical angle of incidence

g 9 by the relation
. 0

'3
. ci.9: ©
> sinfe ~ . (11)

The subsequent analysis of the above equations can be made independent
of the magnitude of « (and dependent only on the sign of a) by introduction

of the dimensionless intensities

{5 Jal 2 < dal ¢ g2
s €15 U, = c: €17 Uy

. lﬂ‘iil I€0)]2 = [U(0))* (12)

in terms of which the absolute squares of Eqs. (5) assume the form

k 2
_ 1 i 2 ] du (0
Ur-a-{[] *m{{ﬂ']] Ut+;$—~ {_E{i!_l] } '“3.&}
Z
k. 2
u; = %-{[T + E?i g{ﬂ]]zut + ;%—- [E%égl] } ; (13.6)
¥

In addition it is convenient to introduce the notation

= gin2a P _ cin2
& = sin®e_ sinfe, . : (14)

To determine the reflection coefficient R = U./U; from Egs. (13) it is
necessary only to have expressions for £(0) and E%ﬁgl in terms of the quantity
Ug-  In Section II(a) the required expressions are extracted from Eqs. (9)
and (10). Since the resulting Egqs. (13) are in qeneral nonlinear, these
equations have no simple analytic solutions. Instead it is convenient to

adopt an indirect method of solution of Eqs. (13) based on their re-interpretation
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as equations for U. and Uj in terms o' the "parameter" ut. By incrementing
Uy over an appropriate range of value: and computing :urrespunding' values
of U, and U; from Eqs. (13), we are t'en able to determine the variation
of U, with U; quite simply.

It is worth noting on the basis of Eqs. (13) that solutions of Egs. (9)
and (10) corresponding to a zero value of £(0) will result in equal values of
U. and U; and will therefore correspond to the physical situation of TIR.

In this case the amplitude U(z) will be attenuated as a function of z and
the field in the nonlinear medium will propagate as a surface wave in the

approximate vicinity of the z=0 boundary.

(a) Integration of Monlinear Wave Equation

We are interested in solutions of Eqs. (9) and (10) which represent waves
propagating along or away from the boundary in the nonlinear medium.‘ll}
In the case of such solutigns the amplitude U at z = = needs to approach a
constant value U, which (in the absence of damping) can be non-zero. The
appropriate boundary conditions on U and its derivatives at infinity therefore

can be expressed as

u2(z) — U2 (15.a)
L =+m
2
lim -g! 1img—z%= 0 . ' (15.b)
L +m L +m

In terms of U, and £, Eq. (10) assumes the form
U2k = U £m (10)°
where the value g, is obtained for U= # 0 by use of condition (15.b) in (9),

2 _ a 2 2
Ew 'ﬁ"'muml_ Uwfﬂ . {IE:I
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In the special case that Un?vanishes. (10)” (for non-zero UZ) requires £ to
be identically zero, which value corrrsponds to the case of TIR. It follows

in general that £2 can be expressed ir terms of U2 as

- [+ 2 U:
g% = (ﬁ“'mun}‘ﬂﬂ . (17)
Making use of Eq. (17) and writing ﬁ%—= g% é% . &Eg- 3 JL {du 2, Eq. (12)

can be integrated once to obtain an equation for g%, which, subject to the

boundary condition (15.b), reduces to
(3" = k(U2 - UD2La + O U2+ Lo y2] (18)
dz i . ToT U= * 2 Ta7 V21 -

(17) and (18) provide the relations between , g%. and U, = u2(o)
required for evaluation of Eqs. (13). In what follows we analyze the impli-
cations of these equations in the separate cases of a positive and negative
nonlinearity constant a. The interest in the analysis is in the possibility
of a bistable variation inithe reflected intensity as a function of the
incident intensity. Such a bistable variation requires the existence of a
transition between the transmission and TIR modes of the boundary interface
which can occur in the case of a positive (negative) nonlinearity only where
the angle of incidence 05 is greater (less) than the zero field critical
angle o, , or equivalently & is greater (less) than zero. The above conclusions
can (also) be seen to follow directly from Eqs. (9) and (18). In particular,
since in the case o and 4 positive, the quantities on the right and left hand
sides of (18) have opposite signs when Uﬁ? = g= 0, there can be no solution of
(18) corresponding to the TIR mode. On the other hand since, in the case a
and A negative, the factor multiplying U on the right hand side of (9) is
positively definite, g—g can vanish at infinity only if U vanishes at infinity,

2
énd therefore there can in this case be only a TIR mode (with U. =¢ = 0).
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The possibility for a bistable t' insition between the TIR and transmission
modes thus exists only in the two remoining cases, a > 0, A <0, and a < 0,
4 > 0, which we consider in the folloving. For bistability to be exhibited
in Eqs. (13) in either of these cases the intensity U, for some range of Ui

will need to be a multi-valued function of Uj.

(b) Analysis of Specific Cases

Case of Positive a and Negative &

In the case of a > 0, a < 0, relations (17) and (18) result in the equations

Yy
R N N e (19)

2
UG = k202 - u)P[fa] - U2 - 0], (20)

which, since ¢ and U are required to be real, have allowed solutions only when
their right hand sides are non-negative. Applied to Eq. (19), this require-

ment restricts Us to the values
U< =0, or Us 2 [a] ,

while, applied to Eq. (20), it restricts U< to the values

2 du 2
Ua = U2, {;ﬁ=ﬂ]. or Us < |4

Since two of the latter possibilities are mutually exclusive, thE;E remain
only the possibilities U2 = 0 and U2 = U2. The first leads to an allowed
solution of (19) and (20) (with ¢ = 0) only if U2 is less than or equal to
TR

2

Ua = £2 =0, U% = 2a| , (21.a)

while the second leads to an allowed solution of (19) and (20) only if

U2 (= U ) is greater than or equal to la],
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U< = U2, =0, uz2 (sl . (21.b)

(=

In the case of a solution of type (21.4), (19) and (20) result in the equations

E» 5
< 2]a] (22)
-y 2 - 1 y22
()" = k200l - 3 vz2
and Eqs (13) reduce to the TIR relation
U = Uy -ﬁ-{l + sec?o. [|a] - t}:!u U, < 2]a] , (23)
which is equivalent to the set of equations
T ‘1 - iseco, [Lu, - |al 2LI
r 4 {32 ¢
— 2|a]  (23)°
3 : 1 2
Ui = ]-+1secﬂijE-Ut- IMIUt

[n the alternative case of a solution of type (21.b), (19) and (20} result in

the equations

= U2(0) - |a] = U, - |a] ,

Uz > |aj (24)
du _
gz o
and Eqs. (13) reduce to the relations
] r"""“
Uy 2 Ja| (25)

U, = % {1 + seco, JUE - iﬂj}z

Equations (25) are completely equivalent to the usual Fresnel relations
connecting the amplitudes of incident, reflected and transmitted plane waves
at a boundary between two media with dielectric constants €; and ¢, = ¢, 0+ a|E|?.

Similarly Eqs. (23)" are equivalent to the Fresnel relations at a boundary



between two media with dielectric con-tants €5 and :t' with

€, = €y 4 1 €2 . (1)

The nonlinear interface for a » 0 therefore effectively supports two distinct modes

of reflection corresponding to two nonlinear dielectric constants €4 and ct'

and associated with two effective critical angles 0. and ac' given by

. Ct
28 mob u ednd
sin®e_ ‘. sin%g; + 4 + Ut (26.a)
sing - = EE: = sing. + p + 1 U (26.b)
C £ 1 2t " ‘

i
Examination of the restrictions on Ut associated with the Eqs. (23) and

(25) shows that, for values of Ug within the range
[a] = Uy = 2[a] (27)

the two modes of reflection can coexist. In particular, for values of Ug
within this range there exi¥st two possible connections between Up, Ui and Ut
and two possible values of Up for each value of Us. The range of values of
incident intensity U; corresponding to the range (27) can be gotten directly
from Eqs. (27) and (23) by setting Uy equal to the extreme values |a] and 2|a|

respectively, with the result

ﬂ L4 L & =
JTL-u,--JTL . | (27)

For values of U; within this range the system can be expected to be bistable.
This can be confirmed for given values of the parameters A and 0, by
numerical evaluation of the reflectivity U./U; determined by Eqs. (23) and (25),
with Uy varied as a parameter in the manner discussed following Eqs. (13).
Figure (1) shows the results of such an evaluation (for positive a) with the

linear critical angle ﬁc“ chosen to be 88° and 0, taken to be EB.E“.{IZJ
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Here, between the values U;® and U15 »fined by the extreme values in Eq.
(27)", each value of Uj is associated vith two distinct values of R, one
corresponding to partial transmission and the other to TIR. For small values
of incident intensity Uj, with the angle of incidence 8; greater than ﬂcﬂ,
the incident field must be totally reflected and the physical value of R lies
along the R-equals-unity curve corresponding to the TIR solution (23). As
the incident intensity is increased, however, the field dependence of the non-
linear dielectric constant st' increases the critical angle ac' corresponding
to this solution in the direction of 0, until at the value uis equal to i%l .
Bc' becomes equal to 8;- Beyond this value of U; the only allowed value of R
is that corresponding to the transmission mode solution defined by Eq. (25)
and the-reflectivity nmust therefore discontinuously switch to the transmission
curve at U; = U;® and advance along this curve as U; is further increased. On
the other hand when U is then decreased from values above Uis to values below
U;S the operating point can remain on this curve as R changes in accord with
the transmission mode solution of Eq. (25), until at Ui = ui“ = l%l-, 0. becomes
equal to 0; and the interface returns to the TIR mode. The multivaluedness
of R in the region of U; defined by (27)" therefore leads to hysteresis in
the reflectivity as a function of Uj.

For given values of the parameters, bistability can be observed only
if the dimensionless intensity U; can be increased at least to the switching
value Uis. In addition, the discontinuity at the switching value is maximally
large only when tt[st'} is close to € in which case the reflectivity shifts
at the critical angle from a value equal to unity to a value near zero. But
if €y is close to €;» the critical angle is near grazing incidence. On the
other hand, since the nonlinear term n[EI2 in ey 15 in practice quite small,

the critical angle can be shifted from one side to the other of the argle of
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incidence as |£J2 varies only if the ‘nitial offset angle Iai - Ecnl is

also quite small and therefore 8, alsr close to 90°. Therefore, although

the present analysis shows that bistal'ility can occur in principle for angles
far removed from 90°, the switching intensity required at such angles to
achieve a significant effect may be increased by an order of magnitude
relative to that required for the grazing incidence case corresponding to
Figure 1.

The numerical values of the critical angle and offset angle for Figure 1
are chosen to be those appropriate to the recent experiment of Smith et. a1.{?}
For this experiment which used CS5; as the nonlinear medium we calculate the
incident critical switching power to be 7 x 10? watts/cm2. Since the present plane
wave ‘analysis ignores the Gaussian shape of the incident beam, the excellent
agreement between this calculated switching power and that observed in the
experiment may be somewhat fortuitous.

Case of Negative a and Positive &

In the case a < 0, 4 > 0 relations (17) and (18) result in the equations

Iy
62 = (8 - U2) S (28)
V2(GD? = kU2 -U2)P[Ud+ L U2 - 4] (29)

which again have allowed solutions only when their right hand sides are non-
negative. Since, whenever U2 < %—ﬁ (for U2 # U2 ), the right hand side of (29)
must become negative as U2 approaches U.?, Eq. (29) is inconsistent with a
value of U=? less than % a, unless U2 = U=?. On the other hand, for all values
of U2, Eq. (28) is inconsistent with a value of U«Z greater than &. It

follows that allowed solutions of Egs. (28) and (29) are constrained to have

values of Us in the interval % & £ U2 S A, when U2 # U<, and to have values
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of Us less than or equal to & when U2 : U 2. Since the former condition
effectively eliminates the TIR solutirn, Us? = £2 = 0, U2 # U2, bistable
switching between transmission and TI'' modes cannot occur in this case. On
the other hand, because, with U< in the interval %—a 2 U= £ 4, there exist
more than one form of transmission mode solution (with £2 # 0), there exists
the possibility of a bistable switching between distinct transmission modes.

It is emphasized that the transmission modes with uuff U2 {in the interval
% a5 U2 S a) are quite distinct from the transmission modes previously
encountered with U< = U2. Since the fields associated with the latter modes
have constant amplitude (= U=), these modes can be referred to as homogenous
plane waves (PW). In contrast, Kaplan refers to the transmission modes with
U # U2 as "longitudinally in-homogeneous travelling waves" {LITN].{E‘E} In
these modes the amplitude, phase, and direction of propagation of the
associated fields all vary with z. '

Because the boundary conditions at z=0 and at z== are insufficient to
determine the exact form of the LITW modes, there is in general a continuum
of possible such modes with U.?]ying in the interval % A5 Ul S A, By
analysis of these modes in Ref. 5, however, Kaplan has succeeded in demonstrating
that only the LITW mode with Us® = %-a persists in the presence of an infinites-

imal amount of damping. Moreover, by the same analysis, Kaplan has eliminated

the plane wave modes with U = U2 > § 4. Since with U2 = £ 4, the right

hand side of Eq. (29) can be nonnegative for U2 # U.2 only if U2 2 e 4, the
3

value of UZ2(0) U, corresponding to the LITW mode is restricted by the

4. It therefore follows that the physically allowed solutions

LaPa

condition Ut 2

of Eqs. (28) and (29) are of only the two types.

U2 = U2 # 0, g—gﬂn. Uzs%—a (30.a)
Ut = % b, u2 2 %a i (30.b)
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In the case of a PW solution of type /10.a), (28) and (29) result in the

equations

€2 = (a-0%(0') = (a-u,) ,

U, <24, (31)

t = 3

ﬂ=[}
z ¥
and Eqs. (13) reduce to the relations
Ur=%£] - SEEH.I J-ﬂ ‘Ut]zu "

E 2

Ut < i A {32}

U. =

; %-[1 + seco, JE_:-E;]Z Ug

In the alternative case of an LITW solution of type (30.b), (28) and (29) result

in the pquations

iz

g = 2(5)7 2

(§7 = 5 k22 - L3z

and Eqs. (13) produce the relations

£ 413
U, =1 {[1 - seco, 2(2)¥?u 12U, + % sec?o EEE—:—E—EE—}
re g { ey Tl AR Sl U ’ 5
Ut 2 3 il {34]
] Ay 3/2 1 E“t % % a)?
Ui = 3-{[] + EECB_i Zf‘j] fUt]z Ut + 7 Seczﬂi —T——} "

For U, = % 4, (where u; = % (1 +d[§-5ECﬂi}z} the two sets of relations (32) and

(34) coincide.

Since the phase function g in (33) varies with z (as does U?), the direction
of propagation of the LITH mode, determined by the gradient of the phase
of Et{x,z}. also varies with z. For large U,» at the z = 0 boundary the
direction of propagation with respect to the surface, given by the angle
¢ = tan~! E%ﬁgf + is approximately parallel to the boundary as in the case
of a surface w;ve; but as z increases.away from the boundary this direction
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of propagation changes so as to asymp'otically approach that of the plane

wave mode with Uy = % 4. This behavir~ of the LITW mode is consistent with

its interpretation as a frustrated evonescent wave mode. As the incident
intensity increases in the case of negative a and the critical angle

approaches the angle of incidence 8; from above, the field in the nonlinear medium
tends to become evanescent; but the resulting fall-off of the field away

from the z =0 boundary prevents the TIR condition from being maintained for
larger values of z, and the field reverts to that of a transmission mode.

By computing U. and U; from (32) and (34) with U, varied as a paraneter,
the negative a reflectivity Urfui can be determined as a function of Uj for
arbitrary values of 8; and ﬂ.{TE} Figure 2 shows the resulting graph of R
versus U, (for a < 0) with the zero field critical angle 8.0 chosen to be 88°
(as in Figure (1)) and 0, set equal to 87.5°. The LITW mode, which replaces
the TIR mode for a < 0 and & > 0, corresponds to the right hand branchof the
curve. In this case the reflectivity is everywhere single-valued and there is
no bistability.

KEF1EHEB} has shown that bistability can be obtained in the case of
negative a only if the parameter o is increased sufficiently such that, for an
angle of incidence B;r 8 2 3cuszui. Figure 3 shows a graph of R versus u; for
a case where 5 = Ecas?ai, with 0; taken to be BB“.{Iaj Here R becomes a
multivalued function of Ui in the vicinity of the Ui value corresponding to the
transition between the PW mode and the LITW mode. The amplified insert shows
the nature of the bistability which occurs in this case. MWe point out that in
this region where bistability of the LITW mode exists with respect to the PW
mode, the LITH mode itself also exhibits a multivaluedness of Ut with
respect to ”i* This case has been discussed by Kip]an.[ﬁl In comparison to

the case of a positive nonlinearity, the discontinuous change in the
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reflectivity in this negative nonline'~ity case is seen to be quite small.
Moreover, by inspection of the scale ¢ values of Ui in Figures 1 and 3, the
incident intensity required to reach ‘he bistable region in Figure 3 can be
seen to be a factor of five times higher than that required to reach the
bistable transition in Figure 1. Even with the availabilty of the large
negative nonlinear susceptibilities of semiconductors such as InSb in the
infrared.{lﬂi the amount of bistable switching action would appear to be

insignificant.
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IIl. Conclusions

In sunmary we have presented herv a simplified plane-wave analysis of
the reflectivity as a function of incilent intensity at the boundary between
a linear medium and a Kerr-type nonlinear medium. Our method of calculating
the nonlinear reflectivity should provide a simple procedure for predicting
bistable behavior in future devices. Consistent with the predictions of
KapTanfz'E] for a single interface, the analysis shows in the case of a
positive nonlinearity that there exists significant bistability associated
with a discontinuous transition between the TIR and partial transmission
modes of reflection. In the case of a negative nonlinearity, the present
analysis shows the bistability to be much less significant. Because the
change in reflectivity at the bistable transition is in this latter case
quite small and the incident intensity required to reach it is larger than

in the former case, this case would appear to be mainly of academic interest.
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the nonlinear medium,

D. A, B. Miller, S. D. Smith, and C. T. Seaton, "Optical Bistability and
Multistability in the Semiconductor in Sb," in Proc. Int. Conf. Opt.
Bistability, C. M. Bowden, M. Ciftan, and H. R. Robl, eds., New York,
Plenun, 1980.
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Figure Cintions

Graph of the reflectivity R vursus the dimensionless incident

intensity Ui for the case of positive a and & = sinza;’- sin?—a1=
= -0.28 cos?e.. The arrows indicate the direction in which the
operating point moves when U; is increased from zero to a value

beyond U* and is then returned to zero.

Graph of the reflectivity R versus the dimensionless incident
intensity U; for the case of negative a and A = 0.36 cﬂszﬂi.

The transition point between the PW and LITW modes is indicated.

Graph of reflectivity R versus the dimensionless incident
intensity U; for the case of negative a and 4 = 6 cos?a;. The
insert shows an amplified view of the region of transition between

the PW and LITW modes where bistability is possible.
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