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ABSTRACT
T

The long time behavior of a number of driven dissipative nonlinear
systems, with many degrees of freedom, can be characterized by a small
number of dominating modes. These modes are responsible for the low
dimension of the strange attractor in the chaotic regime, as estimated
by the Grassberger and Procaccia algorithm. While in the chaotic regime
these systems can nevertheless exhibit coherent spatial structures,
reflecting a strong mode-locking between the underlying normal modes of

the unperturbed system.



In recent years considerable attention has been given to the proper-

ties of low-dimensional maps as models for complicated dynamics 4n
1

higher-dimensional dynamical systems. This attention has been merited
by the proof of "universal" properties in classes of one-dimensional
Ilp!.l However, with few exceptions, the low-dimensionality has been
introduced explicitly by restricting consideration to models with a very
small number of degrees-of-freedom. On the other hand, equally active
research has focused on the subject of spatial pattern selection in
non-equilibrium nonlinear systems with many degrees-of-freedom (e.g.
convection :Ells,z reaction-diffusion srstensa}. In these cases mode-
locking is very strong and a small number of modes dominate the spatial
structure and temporal evelution in a nonlinear partial differential
equation (p.d.e.) or large system of coupled ordinary differential
equations (o.d.e.'s).

The perspective we wish to emphasize in this report is that the two
phenomena of pattern formation and low-dimensional chaos are intimately
connected in perturbed, dissipative dynamical systems with many degrees-
of-freedom. More specifically, chaotic dynamics can develop by chaotic
motions of the collective coordinates identifying the dominant (determining)
patterns in the quiescent regimes. In this way only a small loss of
mode-locking is responsible for the temporal chaos which can coexist
with spatial coherence.

There are many examples of this ||=|::ae:m|:i4:|,*':I which gives the problem
of identifying and testing {nnnlinent}5 mode reduction schemes a general
importance. We have chosen to concentrate here on a set of driven and
damped nonlinear partial differential equations (and their discrete
analogs) in one spatial dimension. In all of these cases, coherent

nonlinear modes ("solitons" or nelr-aolitunsﬁj are fundamental excitations



of the underlying unperturbed Hamiltonian system. Detailed results for
a number of examples will be presented elseuher:.?'l Here we will
merely abstract typical cases from five examples so as to illustrate the
interconnectedness of pattern selection, low-dimensional chacs, and
coexisting coherence and chaos.

Four of our examples are based on perturbed sine-Gordon (5G) equations
¢tt - ¢xx + sin ¢ = F(x,t) - E*z . (1)

Here ¢ is a scalar field and x, t are space and time, respectively.
Subscripts denote derivates. F(x,t) is a forcing field and £ a damping
constant. In the four examples below we have studied egn. (1) numerically
on a finite line (length L) and with a high density spatial mesh
(approximating the p.d.e.):

Case A. Here L = 24 with 120 grid points and periedic boundary conditions,

€ =0.2 and F(x,t) = y sin wyt with wy = 0.6. The initial data is a

static "pulse" profile (the actual shape of the pulse is not very important --
there is a large basin of initial data with the same ltt::ttor?J. As
reported elswhtre,? this system undergoes a spontaneous spatial period
doubling for 0.6 < y < 0.9 but remains simply periodic in time. Typical
spatial profiles are shown in Fig. la, and should be thought of as "breather-

0,79 As ¥ > 0.9, the duration of a "chaotic" initial

soliton" wavetrains.
transient diverges, resulting in temporal chaos for 0.9 vy <1l.4. (Diag-
nostics for chaos are discussed in ref. 7). Accompanying this chaos are large
(>> 2n) variations in the spatial average of $(x,t) [denoted by i(t]] and
large amplitude (~ 2n) spatial variations in ¢ relative to ¢. Instantan-

eous spatial correlation functions suggest strong structural disorder un-

less the functions of ¢ being correlated are selected carefully (e.g. cos).



However, following the evolution in detail through a period of the
driving field (Fig. 1b) shows transparently that the basic cohaffnt
structures in the quiescent pre-chactic regime are preserved, but that
their mode-locking relative to each other has been (chaotically) broken
so that the structure fails to repeat by a small amount after each driver
period. Consequently, we can decompose the field at each instant of
time into either two "breather solitons" or two "kink-solitons" and two
"antikink-solitions" (at instants of kink-antikink collision the field -]
may appear to be flat -- see Fig. 1b). Furthermore, chaotic evolution
of ¢(t) through multiples of 2m does not take place via single particle
dynamics but rather through the slow diffusion of the kink (antikink)
solitons =-- as with thermally assisted transport in such systems.

We have confirmed the identification of the small number of coherent
"soliton" modes in the chaotic regime by projecting the field at successive
times onto a true solition hlaisﬁ == the optimal modes for the unperturbed
system (1). Results are described elsewhereln but fully support the
strong implications of Fig. 1. This small number of dominating collective
modes suggests that the chaos will be governmed by a low-dimensional
strange lttrlctor.ll We have checked the dimension (v) using the algorithm
proposed by Grassberger and Pruc.ccin.iz We estim.ttlz that v(y = 1.0)
= 2.5 % 0.3, and in fact the dimension is found to lie within this range

throughout the chaotic regime. Thus v is indeed low. 13

[For y < 0.9, v
is 1.0, as expected. v also approaches 1.0 for large ¥y 2 10 where the
nonlinear potential is a small perturbation om the dynamics.]

Case B. Here conditions are the same as case A, except that the initial

data is a single static kink with periodic boundary conditions mod (2m).

The attractor is fnund? to be kink plus a "breather" and for y > 0.9,



these coherent structures move randomly with respect to each other
producing temporal chaos. The dimension of the chaos is again ebrrespond-

T N 3

ingly low: e.g., for y = 1.0, we estimate
Case C. lfltre'!I we adopted boundary conditions appropriate to a finite

Josephson junction oscillator in zero magnetic field,llﬁ viz. tlix = 0,t)

= ¢k(x L,t) = 0. The number of grid points = 120, L = 6, € = 0.1, and

F(x,t)

Yo t ¥ sin wyt with Yo = 0.35. Even with single kink initial
conditions i.e. on the first "zero field step" (zrs;‘* a great variety

of dynamical behaviors (including jumping between ZFS's) are nhs:rved.s
For our present purposes we report an example which illustrates a prevalent
source of chaos: for Wy = 1.25 and y = 1.2, the kink initial data is
attracted to a nonchaotic "symmetric" statel® on the third ZFS as shown

in Fig. 2a. Increasing y to 1.5, we find a chaotic long-time evolution

in which the strongly mode-locked coherent structures of the third ZFS

are still dominant but their relative mode-locking has been (chaotically)
broken -~ see Fig. 2b. Consistently, we entinutelz the attractor dimension

to be low: wvw=254%0.4.

Case D. In this cnse? we used outflow boundary conditions, L = 40, 800
grid points £ = 0.05, and completely flat initial data (¢(x,t = 0) =
¢t(:.t = 0) = 0. Chaotic evolution is induced by choosing a spatially

0 elsewhere.

L]

inhomogeneous driving field F(x,t) = Y, x €[15,25], F(x,t)
Our estimates of v for 0 < y < 5 show that v increases from 1 at Y=0
to 2.8 £ 0.4 for y = 2 (with a rapid increase at the chaotic threshold Y
= 0.4) and then decreases to 1 at larger values of y (as in Case A).
Again the low dimension is entirely consistent with an examination of
spatial profiles: once more ¢ evolves by the separation of coherent
kink-antikink pairs which are periodically nucleated at the center of

the line.?



L e

Examples A-D are all based on perturbations of the SG system,
although with a great variety of initial data, boundary conditions and
perturbations. The perturbations are sufficiently strong that this
choice is not a limitation om the general phenomena we have described.
In particular, the near integrability of the unperturbed Hamiltonian
system plays no role. To emphasize this, we consider a non=integrable,

two-component field example in:

Case E. Here we ntudicda a strongly perturbed magnetic chain of classical

- | X z
Epins En = [Sn, SE. Eu} = [cnsﬂn :ostn, fusﬂn lin¢n, ninﬂn], n=1, 2, 3

. N, governed by the Hamiltonian

N N 2 N
H=- 3 8 -§£*1 ta z s -B. 3§ s (2)
n=1 = n=1 n=1 o

where o > 0 is an easy-plane anisotropy {@n and Bn are the in-plane and
out-of-plane angles) and B is an applied magnetic field. A Gilbert-Landau
dissipation terms of strength £ is added to the equations of motion follow-
ing from (2). Again a great variety of chaotic and nen-chaotic eveolutions
are pansiblz,lg depending on magnetic field configurations and parameter
values. However, spontaneous pattern formation, consequent low-dimensional
chaos, and coexisting coherence and chaos are once again prevalent pheno-
mena. An example is illustrated in Fig. 3. Here we have used periodic

boundary conditions, N = 150, € = 0.1, o = 0.1907, B = (8%, 87, B?) =

(3; sin (wst), 0, 0), w, = 0.05144, and random initial data o (t =0),

5" 0.03425. The period-% spatial structure

Bn{t =0). In Fig. 3a, B



seen in Fig. 3a forms spontaneously as the long time attractor with
simply-periodic entrained motionm. Decreasing B; to 0.02743 we have
entered a chaotic regime characterized (Fig. 3b) by chaotic motions of
the coherent nonlinear mode components of the precursor period-} spatial

12

pattern. The Grassberger-Procaccia estimate - of the attractor dimension

is correspondingly low -- for BX = 0.02743, we find v = 1.7 # 0.4 for §7

0
and v = 1.9 % 0.4 for Sz.

In conclusion, we shown in a large variety of driven, dissipative
p.d.e.'s that a small number of determining modes are typically responsible
both for spontaneous pattern formation in quiescent regimes and for
low-dimensional chaos in subsequent chaotic regimes. Thus coexisting
coherence and chaos is a natural corollary. The identification of
determining nonlinear modes clearly motivates the choice and study of
specific truncated systems of coupled o.d.e.'s to be compared with the
dynamics of the full p.d.e.'s. These studies are in Progress,
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Figure Captions

Figure 1.

Figure 2.

Figure 3,

Space-time evolutions of ¢(x,t) for the SG system (1) through
two driving periods for £ = 0.2, w, = 0.6, with periodic
boundary conditions, and driving strengths a) y = 0.8, which
results in periodic time evolutiom, b) y = 1.0, which results
in motion nearly repeating every two driving periods.
Space-time evolutions of ¢t(x,tJ for the 5C system (1) through
1.6 driving periods for e = 0.1, wy = 1.25, with Neumann
boundary conditions, D.C. driving Yg = 0.35, and A.C. driving
strengths a) y = 1.2, which produces a nonchaotic standing
wave state on the third ZFS, b) y = 1.5, which produces a

pair of driven pulses.

Space-time evolutions of the in-plane angle ¢(x,t) for the
easy-plane ferromagnet (2) through two driving periods for £ = 0.1,
wy = 0.05144, with periodic boundary conditions, and driving
strengths a) E: = .03429, resulting in a standing wave pattern,
b) B; = .02743, resulting in intermittency between smooth
standing wave structures and complicated breather-like

pPatterns.












