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Motion of vortex pairs in the ferromagnetic and antiferromagnetic

anisotropic Heisenberg model

A. R. Valkel, F. G. Mertens®, A. R. Bishop, G. M. Wysin™
Theoretical Division and Center for Nonlinear Studies,

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

We study the motion of a pair of unbound vortices in two-dimensional classical
spin systems with easy-plane exchange symmetry (XY symmetry). Assuming a velocity
independent shape we derive an equation of motion for one vortex in the presence of the
other. The results are compared with a direct molecular dynamics simulation on a 50x50
square lattice at zero temperature. For both the ferromagnet and the antiferromagnet
there exists a critical value A, of the anisotropy parameter A which separates two regimes
with different stable vortex structures. For A < A. the spins creating a vortex are
essentially in the easy-plane and the motion of a pair of vortices is mainly determined
by repulsive or attractive forces for equal or different vorticities, respectively. For A > A,
the vortices have additional out-of-plane spin components which depend on A. In the
ferromagnetic case these z components are parallel to each other and act effectively
on the other vortex like a magnetic field. Together with the attraction or repulsion
discussed above, this effective field leads to rotation of the vortices around each other,

or to a translation parallel to each other, depending on whether the products of the
vorticity and the sign of the out-of-plane components are equal or different for the
two vortices. For an antiferromagnic out-of-plane vortex, however, the z components
of the spins are antialigned and therefore do not give an effective magnetic field, here
the vortices move essentially on straight lines. In our simulations we observe the above
discussed trajectories. The fluctuations around these trajectories due to the discreteness

of the lattice are more pronounced for A < A, than for A > A..



I Introduction

In many areas of condensed matter physics and materials science it is important
to understand the relationship between microscopic (atomistic) and macroscopic prop-
erties. This connection between underlying elementary interactions and macroscopic
responses often rests on the structure, dynamics and interactions between collective, co-
herent excitations of an intermediate (“mesoscopic”) scale. In nonlinear systems these
collective excitations include not only spatially extended modes such as spinwaves or
phonons, but also spatially local structures such as dislocations or vortices, which may
have quasi-particle-like characteristics. It is then important to develop phenomenologi-
cal theories based on the collective variables - these theories approximate the complete
many-particle description in terms of a tractably-small number of dominant modes.

The recent hightened interesting in quasi-two-dimensional magnetic materials has
provided opportunities to apply the above approach. Here the underlying Hamiltonian
may take the form of spins with Heisenberg interactions and Landau dynamics, and
collective excitations may be, e.g., vortices, domain walls, and spinwaves. Inelastic
neutron scattering allows measurements of dynamie structure functions.

Examples from the rapidly growing class of quasi-two-dimensional magnetic ma-
terials are : (1) layered magnets’, like K;CuF4, RbyCrCly, (CH3NH;),CuCly, and
BaM3(XOy4)z2 with M = Co, Ni,... and X = As, P,...; (2) CoCl; graphite intercalation
compounds?; (3) magnetic lipid layers®, like Mn(C,5H3502)2; here even monolayers can
be produced, which are literally two-dimensional as concerns their magnetic properties.
The above materials fall basically into XY or “easy-plane” symmetry, described by the
anisotropic Heisenberg Hamiltonian

H=-J ) (55524 5%8%4AS5S3). (1.1)

<mnz
Here (m,n) label near-neighbor sites and (x,y.z) spin components. J > 0 and J < 0

correspond to ferromagnetic and antiferromagnetic coupling, respectively, and 0 < A < 1

for XY spin symmetry.



The XY symmetry leads to a well-known topological phase transition® at a tem-
perature Tgr (the “Kosterlitz-Thouless” transition). Below T g, vortex-antivortex
spin configurations appear as thermal excitations in bound pairs, for T > Ty, these
bound states dissociate and the density of unbound vortices increases with T. At suf-
ficiently high T, the mean spacing between unbound vortices approaches the vortex
core size and diffusive spin dynamics results. However, close to T g1, the unbound vor-
tex density is small enough that a phenomenology built on weakly interacting vortices
moving ballistically between interactions is possible. A model of dynamics built on
such a “vortex gas” has been constructed®, assuming a Gaussian velocity distribution
from vortex-vortex random interactions. This model suggests a vortex contribution to
dynamical spin correlations in the form of a “central peak”, i.e. scattering intensity cen-
tered at zero frequency. Central peak scattering calculated in a vortex phenomenology
for T2 Txr has been satisfactorily compared with a combined Monte Carlo molecu-
lar dynamics simulation for both ferromagnetic®® and antiferromagnetic” models (1.1).

Here Landau-Lifshitz dynamics is assumed, viz.

ds
5 = [S,H]. (1.2)

Our aim here is to derive effective equations of motion for the collective (center-
of-mass) vortex variables and to test predictions of vortex-vortex and vortex-antivortex
interactions against molecular dynamics simulations of the full spin system. Vortex
equations of motion follow the general procedure suggested for magnetic systems by
Thiele®, Huber® and Pokrovsky!?. Namely, vortex solutions of (1.1) are used to mo-
tivate an ansatz spin profile which is substituted in (1.2) and allowed to evolve under
constraints of a finite number of collective variables : for simplicity we restrict our
discussion here to a center-of-mass variable, excluding additional shape variations. We
consider only a square lattice and we include damping terms in eqn. (1.2).

There is some similarity here to vortex dynamics in other contexts, including in-

compressible fluid flows!!, flux lines in superconductors!? and vortices in superfluids®?.
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However, there are important differences. First, the spin model (1.1) is on a diac;ete
lattice : this leads to lattice pinning effects in certain situations which can dominate
vortex-vortex interactions. Second, the spin system contains variables, S* and SV, in
which the vortex singularity resides, but also an out-of-plane component §7 : impor-
tantly, this leads to two types of stable vortex structures, depending on A, with distinct
dynamics. For A < A. (= 0.72 on a square lattice) static vortices are purely in-plane;
for A > A. an additional out-of-plane component develops : the size of this S* compo-
nent increases with A, allowing a continuous crossover to the isotropic Heisenberg limit
(A = 1), where the topological excitations are merons and instantons'* rather than
vortices. Thus, for A > A, vortices are characterized by two “quantum numbers” : g,
the vorticity (i.e. vortex or antivortex) and p, the sign of the out-of-plane component.
As we show below, the interaction between two vortices depends on both p and g and
can result in either parallel motion or mutual rotation. For A < A., vortex motion is
dominated by attractive or repulsive forces along the connection line.

The structure of the remaining sections is as follows. In section II we derive effective
equations of motion for in-plane and out-of-plane ferromagnetic vortices and pair inter-
actions. In section III those predictions are compared with direct molecular dynamics
simulations. In section IV, these results are extended to the antiferromagnetic case by
introducing two sublattice spin variables. In this case it is found that vortex-vortex
interactions are purely attractive or repulsive along straight lines for all A. Section V

contains a short summary.



IT Pair Interactions of Ferromagnetic Vortices : Theory

Equation of Motion for a Single Vortex

A theory which describes the motion of localized excitations in classical magnetic
systems was first developed by Thiele® , who explicitly considered domain walls. Based
on this approach, Huber? and Pokrovsky et al'® made similar calculations for the mo-
tion of vortices. In XY symmetry magnetic systems the vortices occur in two different
phases : in the low temperature phase there exists pairs each consisting of two vortices
with different vorticities which start to dissociate above the Kosterlitz-Thouless transi-
tion temperature Txr. Close above Ty there are only a few free vortices which can
be treated as an ideal gas of particles with with an average distance 2£, where £ is the
correlation length.

In this paper we consider the motion of free vortices on two-dimensional anisotropic
Heisenberg systems with ferro- or antiferromagnetic nearest neighbor exchange inter-
actions. The dynamics of these kinds of systems is described by the Landau-Lifshitz-

Gilbert equation

dMn _ e B0 dM. M,
7 V dt M,

(2.1)

where M, is the magnetization vector and is proportional to the spin S,, w is the
energy (given by eqn. (1.1)) per unit volume and « is the damping parameter. For a
temperature just above Ty we have only a few vortices so that we can assume that they
do not change their shape during their motion. With this assumption we can follow the
calculation of Thiele? to obtain an equation for the average velocity of a single vortex

in the continuum limit

Gxv+D-v+-LF=0, (2.

MMy

I
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With the magnetization field M expressed in terms of the spherical coordinates o(r)
and 6(r) which describe the in-plane and the out-of-plane structure, respectively, the

gyrovector G and the dissipation matrix D are defined by

G = fdfr sinf(r) gradé(r) x grade(r) (2.3)

and

Dy = —a fd'zr[?gﬂ(r]?fﬂ{r] +sin®8(r) Vi d(r)V d(r)]. (2.4)

~ is the gyromagnetic ratio and mg is the local magnetic moment per unit area, which,

on a square lattice (lattice constant a) and at low temperatures, has the form®

h
mo = —1. (2.5)
a
The static force between two vortices is
F =2xJ5%q1q2 R“, (2.6)

12

which was calculated for the planar XY model!, but should also be valid for systems with
small A, where the static vortex is purely in-plane (A describes the coupling between
the z components of the spins and has values of 0 < A < 1 for our systems). For
systems with a A larger than the critical A, the vortices have a stable static out-of-plane
structure, which is confined to an area of a few lattice constants around the core (2.9).
If the distance between the vortices is large, so that their cores do not overlap, they will
only be sensitive to the in-plane structure of the other vortex, which should give the
same force (2.6) as for A < A..

If we make the transformation M goes to —M, then the first term of equation (2.1)

becomes positive and, going further in our calculation, the gyrovector also changes its
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sign. That means, that all the motion which is caused by G changes its direction. In a
microscopic picture the magnetization is the sum over all the magnetic moments in the
sample and in a classical system these magnetic moments are caused by moving/rotating
charges. Thus the sign of M is determined by the sign of the charge of the particle. The
same change of the sign of the first term in (2.1) is obtained if one makes a transformation
from time ¢t to —t. The solutions of (2.1) therefore remain unchanged if one changes
the signs of both the charge and time; they differ if one applies only one of these two
transformations.

Though eqn. (2.2) describes the motion of one vortex in the presence of an arbitrary
number of other vortices, which produce the force F, we focus in this paper only on
pairs of free vortices which should give us already a good understanding of the dynamics

of a dilute gas of vortices.

Out-of-plane vortices

To find the excitations in a system described by the Hamiltonian (1.1) we express

the spins using spherical coordinates,
S, = 5(cos¢,sind,, sing,sinf,, cosf, ). (2.7)

For A > A, we find stable localized solutions with, in the continuum limit, the static

form®

é(r) = q arctan% (2.8)

p(1-35) r—o0:

cz\f%&ﬁ"""“ r — oo;

cosf(r) =

1
=5\ T (2.10)



We call these “out-of-plane” vortices due to their non zero z component. r, is the radius
of the vortex core® and the constants ¢; and ¢; are determined by matching® the two
asymptotic solutions in eqn. (2.9) at r = r,. The integer ¢ = £1,£2,... denotes the
vorticity and a vortex with negative g is called an antivortex. In the present paper
we only allow values |¢| = 1, which agrees with observations for temperatures T > T,
where we have a dilute gas of vortices and where we can assume that they will follow
eq. (2.2). pis +1 if the out-of-plane structure is above the xy-plane, and —1 if it is
below. The deformation of the shape for a slowly moving vortex is very small® and can
be neglected for our purposes.

Inserting the equations (2.8) and (2.9) in (2.3) gives the gyrovector®
G = 2rpge,, (2.11)

where e, is the unit vector perpendicular to the plane. For the dissipation matrix we

find
Dy = Dpbg

2.12)
Dy = —1-.:::{11'111£ + const.), (

r
where Dy is increasing with the total radius E of the vortex; r, is a cutoff of the order
of one lattice constant and denotes the lower bound on the range where the continuum
approximation is valid. The constant in (2.12) is mainly determined by the out-of-plane
structure and is for ry € L much smaller than the logarithmic term.
With (2.11) and (2.12) we obtain from (2.2) an expression for the velocity of one
of the two vortices under consideration (i = 1,2)
“p

Df +G*

V=

['"Dﬂerii + Grr1'El,:|.|']
(2.13)

f‘?lff‘l

= m[fer.i + ?-‘Pi%.i],



with f = J5%a?h~!, e = —D, /27 and e, e,; unit vectors parallel and perpendicular
to the line connecting the two vortices, respectively. Because of the definition of the
force, the unit vectors for vortex one and two are antiparallel, which means that the
r components of the velocities are always pointing in opposite directions. The angular
parts of the velocities, however, depend on the products p,g; and so we have two different
types of trajectories :
(1) prg1 = paqa (or equivalently p1gz = p2qu) :

Here the vortices rotate around each other, while the “center of mass” of both

vortices is at rest

Y1+ V2

ch = 2 = U. {2-14]

In the rest frame the velocities have the form

vi(t) = %[{EQIﬂﬂma(t) — piga—isina(t))e,,

(2.15)
+(€eq1 gasina(t) + pigs—icosa(t))e,, ]
with
€o = €,(t =0)
(2.16)
Efo = e'llit = n},
and we obtain for the distance between the two vortices
2fe =
rA(t) =15 + Tt (2.17)

and for the angle between the two coordinate systems (that is the angle between

the lines which connects the two vortices at times zero and t)

A €
ai(t) = ag, + ,}fqlln (rg H Tfﬁzqm':*) ~ (2.18)

where ag 3 = ag; + .



(i) prq1 = —p2q2 :
For this case the velocity of the “center of mass” has a component perpendicular
to the line connecting the two vortices

frge

Vem = ;m w1 (2.19}

Now the unit vectors e, and e, are already static and an integration over the r
components of the velocities gives the mutual distance as a function of time, which
has the same form (2.17) as in case (i). The motion perpendicular to the line

connecting the two vortices is described by (2.19) and has the form

_h 2 2fe 2

The motion in both cases (i) and (ii) can be divided into two different parts. First,

the vortices move along their connecting line and the direction is determined by the
product of their vorticities (repulsion for equal, attraction for different ¢'s), while the
speed is proportional to the damping parameter o«. Because of the logarithmic potential
between the vortices, which is infinitely extended in two dimensions, a vortex-vortex (or
antivortex-antivortex) pair would separate for all times on an infinite lattice. Second,
there is also a velocity component perpendicular to their connecting line. Whether these
components appear for each vortex in the opposite or in the same d_irectinn depends on
whether the products of the two numbers ¢; and p; of each vortex are equal (g;p; = q2p2)
or not (g1 p1 = —qapz), respectively (Therefore in a magnetic system the product of the
vorticity ¢ and the sign of the out-of-plane component p of a vortex corresponds to the
vorticity in the hydrodynamic case''). The sign of the product of the two vorticities

q1q2 determines the direction of this motion (c.f. eqns. (2.18) and (2.20)).
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We also can see that in each of these cases the velocities increase with decres-asing
distance., Because we performed our analysis in the continuum limit, our results are
only valid for distances between the vortices of at least a few lattice constants, where
the effects due to the discrete lattice are not so important. In particular the divergence
of the angle a at

1+¢€

o= r2 (2.21)

2fe

for a vortex-antivortex pair occurs in a range where our theory is not correct — a calcu-

lation which deals with the discrete lattice should give a finite & in this range.

In-plane vortices

For A < A, a pure planar vortex is stable in the static case. If this kind of vortex
is moving, it develops some additional out-of-plane components so that its structure to

first order in the velocity has the form® ((r,) are the cylindrical coordinates)

é(r) = g a.rctan% (2.22)
—gsrsin(p—1n), r—0

cosf(r) = : (2.23)
e

where 1 is the angle between the direction of the velocity v and the x-axis and § = 1 - A,
For A < A, the vortex core r, is smaller than one lattice constant, so that the large r

limit of 8(r) can be used in the integrals that give G and D. We obtain
G w0 | (2.24)
for the gyrovector because of the ¢ asymmetry and

Dyt = Dybgi

L
D, = —a{'.rrln;* + const. ),
&
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for the dissipation dyadic with a different constant than in eqn. (2.12) due to the
different out-of-plane structure, but which is also small compared to the logarithmic
term for large L. Because of the vanishing gyrovector and the diagonal dissipation
matrix, the motion of the vortices in this case is mainly determined by the static force
(2.5). This means attraction for ¢1¢g2 < 0 and repulsion for ¢;q; > 0, without any
velocity component perpendicular to the connecting line (rotation or translation) as in
the case A > A.;

F _ fa1q:

=—— = ; 2.
i | Dy | r|Dy| 2 (3:24)

III Pair Interactions of Ferromagnetic Vortices : Simulations

For the numerical simulation we used the Landau-Lifshitz Hamiltonian spin dy-
namics with Gilbert damping

dSn/dt =S, x Fp = aS, x (Sn x Fy)

3.1
Fo=JY (Shex+ Shey +ASke,), W84

where m denotes all nearest neighbors of the spin n and « is the damping parameter.
In our simulations a = 0.1. We considered a 50x50 square lattice with free boundary
conditions. The integration was performed with a fourth-order Runge-Kutta method
with time step 0.04 ( in units of i/JS). For A < . we initialized the simulation with
two planar vortices each at the middle of a plaquette of four spins at (zy.y;) and (22,12 ).

respectively : viz.

#(r) = g, arctan (i: 31 ) + g7 arctan (ui) : (3.2)

1

When the vortices start moving they develop out-of-plane components, which have

the form (2.23). We also made simulations for A > A, with the same initial conditions.
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Here the vortices develop out-of-plane components after some time, deseribed by (2.9),
but with “random” p's, depending on numerical effects. To obtain well defined values
for p we initialized the simulations with a superposition of vortices with different kinds
of out-of-plane structures : (i) single static out-of-plane structure and (ii) pure in-
plane structure with small z components of the spins surrounding the vortex cores. We
obtained the structure of a single out-of-plane vortex by placing an in-plane vortex
with a small perturbation in the middle of the lattice and integrating the equations of
motion (3.1). Due to the damping this initial shape relaxes to the in-plane or to the
out-of-plane structure for A < A. and A > A, respectively. For single static vortices on
a 50x30 square lattice we found with this method that A, = 0.715 £ 0.005. (This value
can also be obtained by numerically generating the magnon spectrum in the presence of
one in-plane vortex as a function of A : above A, one of these magnon modes becomes
imaginary, corresponding to the change in the vortex structure's,)

To determine the position of the vortices we used two steps : (i) we searched for all
plaguettes with four spins whose total difference in the in-plane angle ¢ is almost plus
27 (vortex) or minus 27 (antivortex); (ii) to estimate the position of the vortex in this
plaquette we used the fact, that the difference in ¢ between two adjacent spins is large
if the vortex is close to this lattice sites, and v.v.

While the theory was developed in the continuum limit, the simulation was per-
formed on a discrete, finite lattice. The discreteness effects can be described through
a periodic ("Peierls-Nabarro”) pinning potential'®. The vortices have minimum energy
if their core is in the middle of a plaquette, and they have maximum energy if their
core is on a lattice site. The energy difference (table 1) is biggest for A = 0, decreases
with increasing A, and is near zero for A = 0.7 (ref. 6). For A < A, the core has an
extension of about one lattice constant, which has the effect that a moving vortex causes
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big changes in the direction of the spins close to its core — the energy is smallest if the
“ferromagnetic order” is less disturbed. In the case A > A, the out-of-plane structure,
which defines the size of the core here, is extended over several lattice sites and the =
components of the spins involved are ferromagnetically ordered. Both of these effects
give only small changes in the energy while the vortex is moving through the lattice,
This behavior, which shows the strong dependence on the underlying lattice, is valid
for our classical simulations performed at zero temperature. In a real system, however,
we can observe free vortices only above the Kosterlitz-Thouless transition temperature
Ty, which has in our system a value ~ 0.8. For A = 0 this 1s of the order of the
maximal variation of the energy difference as a function of pesition on the lattice for a
single vortex (AE = 0.8, see table 1). Therefore the discreteness effects are negligible
in a real system . This is true even for A = 0 because the thermal fluctuations are large
enough to allow the vortices to overcome all the maxima of the lattice potential.
There are also strong effects due to the boundaries : in an area of about ten lattice
constants along the border line the vortex dynamics is quite different than in the middle
of the system. In some of the simulations (mainly those which we initialized with two
single static out-of-plane vortices) we could observe an additional vortex, which was
created at one of the edges and which had also some influence on the dynamics of the

two vortices under observation.
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Vortex-vortex simulations (equal ¢'s)

We expect from our analysis above that we have different dynamical scenarios
depending on the anisotropy parameter A. For A > A, the motion of the vortices mainly
depends on their out-of-plane components. Fig. 1a shows the trajectories of two vortices
with equal p's. In this case we have p;q = p;qz, which means that they rotate around
each other. We also expect that vortices with equal ¢ values repel each other, so we
started with a small pair separation in the middle of the lattice, to avoid effects of the

boundary for as long as possible :

(z1,11) = (23.5,23.5)
(3.3)
(z2,y2) = (24.5,25.5)

(units in the lattice constant a). The time difference between neighboring points is
twelve in our units (this true for all the ferromagnetic simulation, if not otherwise
noted), except for the first six points which are separated by four time units. In fig. 1b
and lc we have plotted the velocity and a quantity (gn), which measures the out-of-
plane component of the vortices as a function of time, respectively. gn is the average
value of the S. components of the four spins surrounding the vortex core. The velocities
have been averaged over four time units, but still show some fluctuations due to the
discreteness of the lattice (the vortices move not more than one lattice constant during
this time) and errors in calculating the exact position of the vortex center. Even for
A > A; the velocity depends a little on whether the core is moving tr;:ward or away from
the middle of a plaquette. In fig. 1¢ we can see that after about twenty time units the
vortices adapt from the static out-of-plane structure to their final, stable forms, which
have smaller out-of-plane components. The velocity is larger for smaller separations and

decreases with time, as expected from (2.17). The small asymmetry of the trajectories
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for large t is caused by an additional antivortex created close to (50.0, 50.0) and pinned
at the boundary.

Fig. 2a shows the trajectories of a system with the same initial conditions but with
out-of-plane components in different directions. This is a case where p;q; = —p24q2, and
we observe that the vortices move in the same direction perpendicular to the connecting
line. The rate of increase in the distance is large at the beginning and becomes smaller
later. We also see that the perpendicular motion slows down for increasing time. Both
behaviors agree with our theoretical results (equations (2.17) and (2.20)).

For A < A, the dynamies of the two vortices is quite different as one can see in
fig. 3. In this case the vortices experience strong lattice effects, which will stop their
motion after a relative short time — the static force between them decreases as rl_il (ri2
is the mutual separation) and beyond a certain distance 1s too weak, to push them over
the walls of the “lattice potential”. We also can see that for small A's the trajectories
are almost straight lines and there are only small fluctuations caused by the underlying
lattice structure. The theoretical result, which yields motion along straight lines, is only
valid in the continuum limit, but for these small A values the vortex core is of the order
of one lattice constant so that this approximation is no longer valid.

The out-of-plane components are due to the velocity (2.23) and increase with in-
creasing velocity and A. As can be seen from (2.23) all the spins on the left side of the
trajectory have negative z components, and all the spins on the ﬂthe; side have positive
z components. Hence, along the direction of the motion, the out-of-plane components of
the spins are antiferromagnetic ordered, which is not very favorable for a ferromagnetic
system. So, if the spins on this line have a certain z component, depending on A\ and
v, the out-of-plane vortex, which has a ferromagnetic out-of-plane structure, will have

lower energy and will become stable — the vortices will change their shape. This scenario
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can be seen in fig. 3 for A = 0.6 : the initial separation is so small, that the velocity
the vortices develop at the beginning is big enough to cause a change in their shape
and they start to rotate around each other due to a nonzero gyrovector. But after a
short time the velocity decreases and soon is so small that they become again in-plane
vortices. For A = 0.7, which is very close to the static critical A., this behavior is even
more distinct (fig. 4) : the vortices adapt their shape to an out-of-plane structure for
quite a long time and, because of their equal p values, rotate around each other. But
eventually the velocity, which is decreasing with ¢=% (for t > #; and A > A.) is too
small and the vortices will stop as soon as they have changed their shape.

The stability of the in-plane vortex structure also depends on the initial conditions :
if we start with two pure in-plane vortices with equal = or y coordinates, then they will
move on straight lines (along the r or y direction) even for A< A.. If we use this kind
of initial conditions for a A which is bigger than A., then we can see that the in-plane
structure is also stable for a quite a long time : about 25 time units for A = 0.8 and
(z1,91) = (23.5,24.5), (z2,y2) = (25.5,24.5) (fig. 5a,b). During this period the vortices
are moving on straight lines but finally the out-of-plane structure develops and the

dynamics of the vortices changes accordingly.
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Vortex-antivortex simulation (different g's)

If we start with a vortex and an antivortex they will attract each other and finally
annihilate. To make the dynamical behavior in this case visible, it is necessary to start

with a bigger initial separation. In our simulation we chose

(z1,11) = (21.5,21.5) (vortez)
(3.4)
(z2,y2) = (29.5, 30.5) (antivortez).

Fig. 6 and 7 show the trajectories of two vortices in a system with A = 0.9 for equal
and different p's respectively. In fig. 6a and fig. Ta we started with a superposition
of two static out-of-plane vortices. Though this seems to be a good initial condition,
for small times we obtain results that do not agree with our theory, which predicts for
these cases a monotonic decrease of the distance between the two vortices (2.17). In
the simulations, however, we observe during the first four time units that the vortices
move perpendicular to their initial connecting line before they increase their mutual
distance for about eight to twelve time units, and only after these steps they behave
as theoretically expected. An explanation of this different behavior is that the initial
condition is not sufficient : namely, with these two vortices having the “single, static
shape”, the system has much more energy than it would have with two moving vortices,
and the process of adaptating to this configuration is responsible for the repulsion at
the beginning of the motion.

In order to avoid this “excess” energy behavior, we started with two vortices with
the pure in-plane structure, where the four spins around each core had a z component
of 0.1p to guarantee that the out-of-plane structure of the vortices would develop in
the desired direction (£p). The trajectories for these simulations are shown in fig. 6b

and Tb for equal and different p’s. respectively. After a short adaptation process, which
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occurs within the first four time units, the vortices indeed move along their predicted
trajectories : viz.

— For prq1 = —p2gs they move parallel and decrease their separation slowly. Because
our system is too small, we cannot observe the final annihilation process.

- For piq1 = p2q2 they rotate and finally annihilate each other. As one can see from
equation (2.18), the rotation angle o is changing faster for smaller separations
between the two vortices.

For A < A, the vortices move towards each other without any systematic motion
perpendicular to their connecting line and finally annihilate. However, this can only
happen if the initial separation is small enough, such that the attraction between them

is bigger than the pinning forces due to the lattice.

IV Antiferromagnet

If the exchange coupling J in (1.1) is negative, then the system is an antiferro-
magnet, i.e. we have two sublattices with mutual antialigned spins. To calculate the
excitations and their dynamics it is appropriate to parameterize the spins by four angles
as introduced by Mikeska!”

S = (=1)"S(cos(®n + (=1)"6n)sin(On + (—1)"6n))

S¥ = (=1)"S(sin(®n + (=1)"dn)sin(On + (—1)"6,)) (4.1)

5% = (=1)"S(cos(On + (~1)"0a),
where the even n describe one sublattice, the odd n the other one. The capital angles
describe the perfect antiferromagnetic structure, while the small angles describe the
deviations from this state. We are interested here in vortices and, depending on the
anisotropy parameter A\, we obtain two stable solutions as in the ferromagnetic case

(appendix A) :
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(i) A < A; (in-plane vortices) :

$(r)=gq arctan%

o(r) =

ofr) = = (4.2)
s7srsin(p —¢) r—0

8(r) = S
_ﬁ sin 2 L3 r — oo:

(ii) A > A. (out-of-plane vortices) :

P(r)=gq nrctan%

#(r) = f(r,v) cos(p — €)

5':":’- r—=0 (4.3)
O(r) =

E—ouy/te” r—roo

B(r) = g(r,v) sin(p — €);
c3 and c4 are constants which match the asymptotic out-of-plane solutions at r = r,
(ry 1s given by eqn. (2.10)), 6§ =1+ A, and the functions f(r,v) and g(r,v) are given
by the eqns. (A.10) and (A.12). At the beginning of chapter II we observed that the
magnetization field M in (2.1) could be expressed through the spin field. Here we have
to average over both sublattices to get the appropriate field.

In the out-of-plane case (eqn (4.3)) the even and odd spins are perfectly antialigned
in the static case and the resulting magnetization field is therefore exactly zero. Though
even and odd spins are located at different lattice sites, in the cﬂntiﬁuum limit we have
angle fields which are defined on the whole plane for each sublattice. For this reason we
are able to calculate an average at every coordinate r of the plane. The small deviations
from the static structure due to the motion do not contribute to the gyrovector, but

give a finite, velocity dependent dissipation. Thus, from the three terms in equation
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(2.2) only the dissipation term and the static force remain, which causes pure repulsion
or attraction depending on whether we consider two vortices with equal ¢'s (fig. 8a) or a
vortex and an antivortex (fig. 9). For the simulations with equal ¢'s we used the initial
positions from equation (3.1), while for the other simulation we started with initial
positions

(21,41 ) = (18.5,18.5) (vorter)

(4.4)

(r2,y2) = (32.5,33.5) {antivorter).
The time between two following points for all these simulations (fig. 8,9 and 10) are
four in our units. The asymmetry in the velocities of the two vortices in fig. 8a is caused
by an additional vortex, which is pinned at (46.5,49.5). Fig. 8b shows the averaged
out-of-plane components of the four spins around the vortex core. As expected, this
quantity is zero on the average. The fluctuations around this value are due to the
discrete lattice : if the vortex core is not exactly in the middle of a plaquette then the
four spins, which contribute to gn, have different distances to the core and therefore
have slightly different z components.

For A < A. the in-plane angles describe a perfect antiferromagnetic structure, which
vields a vanishing gyrovector, but the out-of-plane angles show the same behavior as in
the ferromagnetic case : on one side of the direction of motion all the spins point above,
and on the other side all the spins point below the xy-plane. The magnitude of these
components increases with increasing velocity but decreases if A becomes larger. This
is different from the ferromagnet case. But here the two ferramagnétic domains in the
z components of the spins on the left and right side of the direction of motion will be
less favorable for the system because they will increase the energy, which depends on

the magnitude of S, and A.

The trajectories of two vortices for A < A, (fig. 10, equal ¢'s) is very similar to the
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equivalent ferromagnetic case
- the vortices move on straight lines with small deviations due to the discreteness of
the lattice;
- the motion will stop after a short time, because the force between them becomes
too weak beyond some distance to overcome the discreteness potential.
Because the antiferromagnetic vortices move (almost) on straight lines for both, A < A,
and A > A., it is not possible to observe whether there is a change in the structure for
the fast moving vortex with A = 0.6 (fig. 10) in contrary to the ferromagnetic case (see

discussion in chapter III).

V Conclusion

In the present paper we discussed in detail the dynamics of vortex pairs in XY spin
symmetry magnetic materials using both analytical and numerical methods. In the
analytical part we used an ansatz introduced by Thiele® to obtain an effective equation
of motion for the center-of-mass of a single vortex in the presence of other vortices,

Below a critical value A. of the anisotropy parameter A the vortices are almost
in-plane (Ac 2 0.72 for the ferromagnetic and A, = 0.71 for the antiferromagnetic 50x50
square lattice). This structure is responsible (i) for an attraction or repulsion of the
vortices depending on whether the product of the two vorticities q1¢; is positive or
negative, respectively, and (ii) for a damping of the motion which is proportional to
the logarithm of the vortex radius. The out-of-plane components which are due to the
velocity give a small contribution to the damping, but do not change the form of the
trajectories. This behavior is true for both, ferromagnets and antiferromagnets.

For A > A, we also find attraction (repulsion) and damping depending on whether
7192 < 0 (> 0), but there is now also the out-of-plane structure which yields different
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results for the ferromagnet and the antiferromagnet. In the ferromagnetic case the z
components of the spins around the vortex centers act like an effective magnetic field on
the other vortex and v.v. Now the vortices rotate around each other or move parallel to
each other depending on whether p;q1 = p2q2 or p1g1 = paga, respectively (p carries the
sign of the out-of-plane structure). For the antiferromagnet the antialignment of the
spins in the two sublattices does not produce an effective field and we find no velocity
component perpendicular to the line connecting the vortices.

All these features can be seen in our molecular dynamies simulations. However, in
contrast to the analytical work which was done in the continuum limit we see here, for
A < A, strong discreteness effects of the lattice : the trajectories of the vortices are
no longer straight lines (the centers of the vortices try to avoid lattice sites) and for a
certain distance the lattice pinning is stronger than the force between the vortices. For
A > A. the out-of-plane structure which is extended over several lattice constants and
which yields a ferromagnetic alignment of the §* components makes the vortices less

sensitive to the disereteness effects.
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APPENDIX A

Equtions of Motion and Vortex Solutions for the Antiferromagnet

To derive the equations of motion from eqn. (1.1) in the antiferromagnetic case for

the continuum limit we start with the following ansatz for the spins

S§*¥" = (cosa r,sina z.m) (Al.a)

§°4 = (cosf y,sind y,n), (ALb)

where even and odd denote the two different sublattices, (a,m) and (4, n) are pairs of

canonical conjugate variables and
T=1V1-md
yv=+v1—-—n

The equations of motion then are simply given by (H is the Hamiltonian defined in

equation (1.1))

&= gm—H (A2.a)
= -g% (A2.b)
=2 (A2.c)
i u%+ (A2.d)

or, if we use the variables introduced in eqn. (4.1), by
d=i(a+9)
=175 {4cos26[tg(© + B)cos(© — 8) — tg(© — B)cos(@ + )]+
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8Asinfcos® + 2\ A(sinfcos©)+

t2(© + 8) [sin26 [A(® — 9)cos(@ — 6)—
2grad(® — ¢)grad(© — #)sin(© — 8)] -
cos26[[(grad(® — 6))? + (grad(© — 6))*|cos(© — )+
A(© - §)sin(© - 0)] |-

tg(© — E'}[silﬁd:[ — A(® + ¢)cos(O + 0)+
2grad(® + ¢)grad(© + f)sin(O + 8)] -
cos26[[(grad(® + 6))* + (grad(© + 6))?]cos(© + 8)+

A(© +8)sin(0 +0)] | } (A3.a)

6 =i(a - 9)
=;.r5{4cos2¢[tg{e +8)cos(© — 8) + tg(© — §)cos(© + 8)]—

8\sin@cosf — 2\ A(sinOcosh) +

tg(© + 6) [sini?é [A(® — ¢)cos(© — 8)—
2grad(® — ¢)grad(© — 8)sin(© — 6)] -
cos26[[(grad(® — ¢))? + (grad(© — 8))*]cos(© — 8)+
A(O — 8)sin(© — a)]] +

(0 — 6)[sin26[ — A(® + 9)cos(@ +6)+
2grad(® + ¢)grad(© + f)sin(© + 8)] -
c0s26 [[(grad(® + ¢))* + (grad(© + 8))*]cos(© + 8)+

A +0)sin(@ +6)) |} (A3.b)



e ==

m n
_+_}
Ty

B2

=175{ - 8sin2pcos@cos + sin26[A(© — B)sin(O — 6)+
[(grad(® — 9))* + (grad(© — 8))*|cos(© — 8)] +
cos26[A(® — ¢)sin(© — 6) — 2grad(® — ¢)grad(© — f)sin(© — 6)] +
sin2¢ [A(© + 8)sin(© + 6)+
[(grad(® + 8))* + (grad(© + 6))*|cos(© + 6)] +
cos20[ — A(® + ¢)sin(O + 8)+

2grad(® + ¢)grad(© + 8)sin(© + 6)] } (A3.c)

-
[

( )

;15{ — 85in24sinOsind + sin26[A(O — 8)sin(© — 8)+

Bd | =
CREE
= |3

((grad(® — 6))* + (grad(© — 6))*]cos(© — )] +
cos2¢ [A(® — ¢)sin(© — 8) — 2grad(® — ¢)grad(© — 8)sin(© — )] -
sin26 [A(© + 8)sin(© + 6)+

[(grad(® + 9))* + (grad(© + 8))*|cos(© + )] -
cos26[ — A(® + ¢)sin(© + 8)+

2grad(® + ¢)grad(© + 0)sin(© + )] }. (A3.d)

As in the ferromagnetic case®® we first look for static solutions. We furthermore make
the assumption that here the static vortex solutions are only described by the capi-

tal angles ® and ©, because a local perfect antiferromagnetic structure (which results
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from this assumption) should give minimal energy in the continuum limit. With these

considerations the equations (A.3) reduce to

AP + (grad®)(grad®)sin® = 0 (A.4a)

sin’@ + Acos’®
cos®

AB + (1 — A)sin®(grad®)? — [4(1 — A) — (grad®)?]sin® = 0. (A.4b)

The eqns. (A.4) have a pure in-plane solution
®(r)=g¢g a:ctg% + @
O(r)=0
and an out-of-plane solution
&(r)=gq ar:tg% + &
{ w it 0 (A.6)

Z—cg /e, r =0

A numerical stability analysis shows that the vortex solution (A.3) is stable for all

O(r) =

A < A. and the solution (A.6) is stable for A > A, with A, = 0.71 on a 50x50 square
lattice (if the vortex core is in the middle of a plaquette of four spins then the discrete
solution is, because of the high symmetry, comparable to the continuum solution).

To caleulate the change of the vortex shapes due to a small motion we insert the
static solutions (A.5) and (A.6) in eqn. (A.3) and expand to first order in the velocity.
For A < A (in-plane vortex) only one of the four differential equations becomes velocity

dependent

l.ﬁﬂ+{4{l+}u}— (E)z]ﬂ= %%,-_E} (A.7)

and we obtain

qu sinlg—¢) ["‘LS}
Ti0+NJS r Fi=t 2%

—Z=r sin(y — €) r—0
J5
B(r,p) = { !

26



while ®, © and ¢ are no functions of the velocity in this linear approximation; ¢ is the

angle between the x axis and the direction of motion. The vortex develops out-of-plane

components which point on one side of the line of motion above on the other side below

the plane. A similar solution was found for the ferromagnet®, but there the denominator

n (A.8) for the large r limit contains a factor (1 — A) instead of (1 + A).

For the out-of-plane vortex and for large r we obtain two velocity dependent dif-

ferential equations : one for the angle # which has the same form than eqn. (A.7) with

the large r solution of (A.8), the other for the angle ¢
A6 + [8 - (grad®)?]6 = —=(8,©)cos( — ¢)

with the solution

ve Ty —-riry ™
= Ut el — )y eI (1 o)

For small r we obtain two coupled differential equations from (A.3), viz

vg sin(y

~ L3P = 61 _ 5(gradd)(gradd)?
= [80 + 420’ — [(grad®)’ + (grad®)’]20 — AO]6

— 2(grad®)(gradf)©? — OA4
and
i %(Bre)cm[rp — €) — 2(grad®)(gradf)
= [ — 80 + [(grad®)? + (grad®)?]20 — AB]s

— 2(grad®)(grade) — OAg¢.
In lowest order in r the solutions of (A.11) are

5+ 2¢°
Hr) = Tess+ag " P —¢)
8(r) = ovges

TSro(35 + 4¢°) r* sin(p —¢),

| B
=]

(A.9)

(A.10)

(A.1la)

(A.11b)

(A.12)
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table 1

energy (in units of 1/J5% ) of a single vortez on a 50x50 lattice for different positions
r, of the vortex core {in units of the lattice constant)
Ty energy
(25.5,25.5) 14.53
(25.5,25.0) 14.81

(25.0,25.0) 15.33
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Fig. 1 Vortex-vortex simulations on a ferromagnet with A=0.9, g1 =g =1, p, = p» = 1

Fig,

Fig.

Fig.

Fig.

Fig.

Fig.

2

o

and initialized with two static out-of-plane vortices at positions defined in eqn.
(3.3); a) trajectories (star : start positions; circle : vortex 1; triangle : vortex 2),
the dashed line is a guide to the eye and connects successive points by straight
lines; b) vortex velocities vs. time (solid line : vortex 1; dashed line : vortex 2);

¢) out-of-plane components gn (see chapter III after eqn. (3.3)) vs. time.

Same simulation as in fig. 1, but with ¢ = —g; = 1 : a) trajectories: b) gn vs.
time.
Trajectories of vortex pairs on a ferromagnet with A < A. (square : A = 0.0;

triangle : A = 0.3; star : A = 0.6), g1 = g2 = 1 and initialized with two static
in-plane vortices. Only a part of the lattice is shown : 18.0 < z,y < 30.0, and the

time between two successive points is four in our units.

Trajectories for a vortex-pair on a ferromagnet with A = 0.7 and initialized with

two static in-plane vortices; other parameters as in fig. 1.

Same simulation as in fig. 4, but with A = 0.8 and initial positions (z1,y1) =

(25.5,24.5) and (22, y2) = (24.5, 26.5).

Trajectories for a vortex-antivortex pair (g = —gz = 1} on a ferromagnet with
= 0.0 and p; = p; = 1. The initial positions are given by eqn. (3.4) and the initial
shapes are a) static out-of-plane and b) static in-plane with small perturbations (see

chapter III after eqn. (3.2)).

Same simulation as in fig. 6a and b, but here with py = —p; = 1; in b) the time

between two successive points is four in our units.
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Fig. 8 Vortex-vortex (¢ = q2 = 1) simulations on an antiferromagnet with A\ = 0.9 and

initialized with two static in-plane vortices; a) trajectories and b) ¢gn vs. time.

Fig. 9 Vortex-antivortex (q; = —gz = 1) simulation on an antiferromagnet with parame-

ters as in fig. 8.

Fig. 10 Vortex-vortex simulations analoguous to fig. 4, but for an antiferromagnet.
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