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The critical temperature Tc of Ising models is obtained
quite accurately by simple improvements over the standard
molecular-field theory. The important physical effect we in-
clude is that the effective field of neighboring spins is influ-
enced by the spin state of the central spin. When used in
combination with a self-consistency condition, this correlated
molecular field theory leads to estimates of Tc more accurate
than those obtained from the Bethe-Peierls-Weiss approxima-
tion.
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I. INTRODUCTION

Decades have passed since introduction of the Ising
model1 for magnetic phase transitions. The exact solu-
tion in one dimension (1D) by Ising1 exhibits no phase
transition at a nonzero temperature. In two-dimensions,
the exact critical temperature Tc for the square lattice
Ising model was obtained by Kramers and Wannier.2 In
his famous work shortly afterwards, Onsager3 determined
the free energy exactly. Other exact results, includ-
ing Tc, have been found for honeycomb and triangular
lattices.4–6 For other lattices and higher dimensions there
is no exact calculation of Tc, however, various forms of
molecular field theory7 have been applied and improved
upon. In this work we present a simple, physically mo-
tivated modification to molecular-field theory that gives
reasonably accurate estimates of Tc.

In magnetism the molecular or mean-field (MF) ap-
proach originally used by Pierre Weiss8 was very success-
ful at showing the transition to a magnetically ordered
state for Heisenberg and Ising models at a non-zero tran-
sition temperature Tc. However, the usual mean-field
approach can be shown to be equivalent to having each
site interacting equally with all other sites; its predic-
tion of critical temperature is not very accurate. Phys-
ically, having a particular spin interacting equally with
all others of the system ignores both the presence of a
finite correlation length and the strong fluctuations near
Tc. MF theory has other faults; it can predict a phase
transition at finite temperature in the 1D Ising model,
an impossibilty not present in the exact solution. Being
a high-temperature and local theory, the MF approach
does not produce the correct decay of the magnetization
as expected from spinwave theory (T 3/2 Bloch law9) at

very low temperature. The influence of physically im-
portant effects near Tc have been evaluated at length
via the renormalization group approach due to Wilson,10

Fisher,11 Kadanoff12 and others. Despite its known lim-
itations, it is still interesting to consider how to improve
the MF approach and see whether it is possible for it to
include, at the very least, some local correlation effects.

This is a subject with a long history; here we can men-
tion some of the more notable approaches. The book by
J. S. Smart13 gives an excellent review. Significant im-
provements to MF theory were achieved by Bethe,14 who
developed a procedure to analyze exactly a small cluster
of spins near the central one, and then the interaction
of the edges of the cluster with the rest of the system is
effected by a mean-field. Bethe originally developed the
procedure for an order-disorder model; it was applied to
the Ising model by Peierls15 and the Heisenberg model
by P. R. Weiss.16 The Bethe-Peierls-Weiss (BPW) ap-
proach includes local spin correlations and fluctuations,
and details of the type of lattice, beyond the effects of
the coordination number, z. To obtain a solution, a
self-consistency condition is imposed: the mean values
of the spins in the cluster (the central spin and some set
of neighbors) must all be the same. This condition de-
termines the mean-field due to the spins outside of the
cluster. In principal, this cluster approach can be carried
out to larger and larger clusters, resulting in a sequence
of improved Tc estimates. In practice, however, it is diffi-
cult to calculate exactly beyond a few nearest neighbors.

Oguchi17 applied a correction originally used by Van
Vleck,18 by considering an interacting pair in the mean
field of its surrounding sites, however, the method gives
little improvement over the MF approach in the estimate
of Tc. A more systematic approach for correcting the
MF theory has been developed by H. Callen19,20 and co-
workers, using a diagrammatic expansion method. The
zeroth order approximation in this scheme recovers the
MF results, while the first order approximation tends
to underestimate Tc for Ising models. More recently,
Mattis21 considered an Ising model where each spin is
subjected to the entire distribution of all allowed values
of the molecular field, based on ideas due to Marshall22

and Klein and Brout23. The scheme does not predict Tc

as accurately as the BPW approximation.
Thus we are interested in other MF approximations

that include correlation of the neighbors to the central
spin and total self-consistency. Here we present a simple
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improved MF calculation where the molecular field acting
on a central spin is allowed to depend on the state of the
central spin. While this type of effect is included in the
BPW approximation, the approximation we present is
much simpler and gives estimates of Tc better than the
BPW approximation for most lattices.

For Ising, XY, or Heisenberg models, characterized by
the number of spin components n = 1, 2, 3, respectively,
the Onsager reaction field (ORF) theory24 is another ap-
proximate method that includes correlation effects. A
clear review of the ORF method is given by White.25

Before presenting our modified molecular-field ap-
proach, we summarize the procedures and results of the
BPW and ORF methods, for later comparison of results.

II. THE BETHE-PEIERLS-WEISS

APPROXIMATION

The Ising Hamiltonian under consideration is

H = −J
∑

(i,j)

σiσj , (1)

where the sum is over near-neighbor pairs on some lat-
tice, J is the bond coupling strength, and each σi takes
values ±1. In the lowest approximation due to BPW,
the z nearest neighbors σ′

i of a site σi do not take on the
mean-field values. Instead, the second nearest neighbors
σ′′

i have the mean-field values, the nearest neighbors are
allowed to take on the values ±1 and are treated exactly.
The constraint that the averages 〈σi〉 and 〈σ′

i〉 must both
give the same value leads to the prediction for the critical
coupling βc ≡ J/(kBTc),

coth βc = z − 1. (2)

The result is only a function of the coordination number
and is a surprising improvement over the mean-field re-
sult, βc = z−1. For the 2D square lattice Eq. (2) gives
kBTc/J = 2.885, compared with the mean-field result,
kBTc/J = 4, and the exact result kBTc/J = 2.269... from
Onsager’s equation3 sinh 2βc = 1. There are correspond-
ing (lesser) improvements for other lattices with higher
coordination number, these are summarized below after
we discuss our improvements to the standard mean-field
approach.

III. ONSAGER REACTION FIELD CORRECTION

In the ORF calculation (See Ref. 25 for more details),
the spin at a chosen site interacts with the mean-field
reduced by a “reaction field” that depends on the spin
at that site.24 The idea is that the mean-field is strongly
determined by the polarization of the central spin being
considered, so in essence one should subtract this reac-
tion part to avoid counting a self-interaction part. The

reaction field is determined self-consistently, with the cal-
culation realized in wavevector space. The ORF proce-
dure depends on a Fourier transform of the spin field σi

into the reciprocal space quantity, σq. As such it in-
cludes effects dependent on the coordination number z,
the number of spin components n, and the actual lattice
structure. For reference, the ORF theory predicts the
critical temperature Tc as

kBTc

J
=

z

nI
, (3)

where the constant I is given from a q-space sum for N
sites,

I =
1

N

∑

q

1

1 − J(q)/J(0)
, (4)

and J(q) =
∑

j Je−iq·aj is the Fourier-transformed ex-

change interaction (sum over displacements to nearest
neighbors, aj). From sums over the appropriate Brillu-
oin zones, the values of I are 1.516, 1.393 and 1.345 for
sc, bcc and fcc lattices, respectively. When applied to
the Ising model (n = 1) in three dimensions, one gets
kBTc/J = 3.957, 5.742, 8.924 for sc, bcc and fcc lattices.
The ORF procedure, however, does not work in one or
two dimensions, where the sum I diverges. Also, there
are modifications necessary to apply ORF to lattices with
a basis.26 For the diamond lattice, using the underly-
ing fcc lattice with a basis, one gets I = 1.79288 and
kBTc/J = 2.2310.

IV. CORRELATED MOLECULAR-FIELD

THEORY: NEIGHBOR CORRELATIONS

Here we consider an even simpler idea to modify and
improve the standard MF theory for Ising models, that
we refer to as “correlated field” (CF) approximation. The
calculation is carried out in real space. A central spin di-
rectly influences the mean-value of its nearest neighbors,
which then act back on the central spin, similar in spirit
to the Onsager reaction field. Thus, it is reasonable to set
the molecular field of the nearest neighbors to be two dif-

ferent values, say, m+ and m−, depending on whether the
central site has values +1 or −1, respectively. With this
“correlated neighbor field,” the correlated-MF Hamilto-
nian for a given spin σi can be written

HMMF = −σi heff , (5)

where the effective field due to its z nearest neighbors is
taken as

heff = zJ(δσi,1 m+ + δσi,−1 m−). (6)

The delta functions constrain the neighbor-field to the
different values m+ and m− according to the value of
the central spin σi. The neighbor fields m+ and m− are
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determined self-consistently in this theory, below. Aver-
aging over the values ±1 of site i, with this Hamiltonian,
gives

m ≡ 〈σi〉 =
eβzm+

− e−βzm−

eβzm+ + e−βzm−

, (7)

where β ≡ J/(kBT ) is the inverse temperature.
Now suppose the average value of one of the nearest

neighbors (σj) of site i is evaluated, separately for the
two cases, σi = +1 and σi = −1. There are (z − 1) near
neighbors of site j which are second nearest neighbors
to site i, and we can suppose in a first approximation
that they take some mean magnetization value, m. This
is reminiscent of the BPW approximation. The average
values of σj , depending on whether site i is +1 or −1,
are

m+ = 〈σj〉|σi=+1 = tanhβ [(z − 1)m + 1], (8)

m− = 〈σj〉|σi=−1 = tanhβ [(z − 1)m − 1]. (9)

Substitution of Eqs. (8) and (9) into Eq. (7), followed by
expansion for m � 1, which is the limit T → Tc from
below, leads to

coshβc =
√

z(z − 1) βc. (10)

The equation gives a modest improvement over the stan-
dard mean-field approach. For example, applied to the
2D square lattice, z = 4, this predicts kBTc/J = 3.312,
less accurate than the BPW approximation, but simpler
to obtain. However, this correlated-field approximation
contains an interesting physical effect–the local neighbor
fields m+ and m− as determined by (8) and (9) do not
go to zero even for T > Tc, although the average magne-
tization m does. Thus the theory in some sense includes
fluctuations away from the mean magnetization.

V. SELF-CONSISTENT CORRELATED FIELD

APPROXIMATION

As described above, the correlated field approximation,
and Eqs. (8) and (9), do not fully implement the idea that
the neighbor fields should depend on the central spin.
That is, the (z − 1) neighbors of site j that were given
values m should really also be allowed to have values m+

or m−, corresponding to when σj has values +1 or −1,
respectively. This further improvement we refer to as
“self-consistent correlated field” approximation (SCCF).
Then averaging over σj = ±1, with σi held fixed at the
values +1 or −1, Eqs. (8) and (9) are replaced by

m+ = 〈σj〉|σi=+1 =
eβ[(z−1)m++1] − e−β[(z−1)m−+1]

eβ[(z−1)m++1] + e−β[(z−1)m−+1]
,

(11)

m− = 〈σj〉|σi=−1 =
eβ[(z−1)m+

−1] − e−β[(z−1)m−

−1]

eβ[(z−1)m+−1] + e−β[(z−1)m−−1]
.

(12)

As T → Tc from below, the mean magnetization m
given in Eq. (7) goes to zero, while the local molecular
fields m+ and m− remain nonzero. Their algebraic aver-
age,

∆ ≡
m+ + m−

2
, (13)

however, by symmetry, must go to zero at Tc. Thus it is
advantageous to express m, m+ and m− in terms of ∆,
and make an expansion for ∆ � 1 to determine Tc. One
has

m = tanh zβ∆, (14)

m+ = tanhβ [(z − 1)∆ + 1], (15)

m− = tanhβ [(z − 1)∆ − 1]. (16)

Eqs. (13), (15) and (16) result in an equation that de-
termines ∆:

2∆ = tanhβ [1 + (z − 1)∆] − tanhβ [1 − (z − 1)∆].

(17)

Expansion around ∆ = 0 gives leading terms,

∆ = x sech2β

{

∆ +

(

2

3
− sech2β

)

x2∆3 + ...

}

, (18)

where

x ≡ (z − 1)β. (19)

The critical temperature occurs where the linear order
terms cancel, and only a ∆ = 0 solution remains, leading
to

cosh2 βc = (z − 1)βc. (20)

This equation gives a further improved estimate of Tc,
except for the lowest values of z.

VI. DISCUSSION OF RESULTS

In Table I we display Tc from SCCF, Eq. (20), and
from SC, Eq. (10), as well as the ORF and mean-field
results, together with either exact or approximate val-
ues from series estimates,27 for various lattices. Our
CF and SCCF calculations almost always overestimate
Tc, just as the simple mean-field prediction. In particu-
lar, for the 2D square lattice Ising model Eq. (20) gives
kBTc/J = 2.595, closer to the exact result than the BPW
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approximation. We could also compare with the Mattis21

approach, which gives kBTc/J = 3.090 for z = 4 and
kBTc/J = 5.073 for z = 6, both somewhat higher than
the BPW results. The ORF calculation does not work in
2D or 1D, however, in 3D, where it is applicable, it con-
sistently underestimates the true value of Tc, and gives
results quite close to the diagrammatic expansion of Hor-
witz and Callen.19 Both the Eqs. (10) and (20) do not
give a phase transition at the 1D limit, z = 2, just as in
the BPW approximation.

Note, however, that at z = 4, the transition temper-
ature from the SCCF estimate is below the exact Tc for
the diamond lattice, as determined from series. For this
unusual case SCCF somehow is overestimating the fluc-
tuation effects and thus underestimating Tc, although not
by very much. However, we realize this accuracy seen for
the SCCF prediction of the diamond lattice Tc is at odds
with the corresponding higher error for the 2D square
lattice. As SCCF uses only the coordination number z
as input, it certainly can’t accurately predict Tc for both
of these lattices simultaneously. For the 3D lattices con-
sidered, however, it is interesting to note that the ORF
calculation of Tc also is most inaccurate for the diamond
lattice; it seems to be a difficult case for the ORF ap-
proach. (The ORF procedure does take into account the
specific lattice structure, beyond the coordination num-
ber, but unfortunately does not work in 2D.)

Unfortunately, at z = 3 (2D honeycomb lattice) the sit-
uation is worse: Eq. (20) has no solution and this SCCF
approximation wrongly predicts a disordered phase for all
temperatures, whereas the CF and BPW approximations
are better and still overestimate Tc. For comparison, the
Mattis approach21 gives kBTc/J=2.10373, slightly better
than CF but not as good as the BPW result. Neverthe-
less, with the exception of these most open lattices, the
SCCF approximation makes notably good estimates for
Tc.

As expected for a mean-field theory, the magnetiza-
tion near Tc behaves as m ∼ (Tc − T )1/2 just below the
transition. It is interesting to note, however, that the
local neighbor-fields m+ and m− do not go to zero, even
above Tc. Only the sum ∆ becomes zero in the disordered
phase. In Fig. 1 we show this effect for z = 4, which was
obtained by solving Eq. (17) iteratively for ∆. For higher
values of z, similar curves are obtained, but with smaller
differences between m+ and m− for all temperatures.

We can use the nearest neighbor pair correlation func-
tion 〈σiσj〉, to calculate the internal energy U and specific
heat C, from

U = −
1

2
zNJ〈σiσj〉, C =

dU

dT
. (21)

The needed average value is

〈σiσj〉 =
m+eβzm+

− m−e−βzm−

eβzm+ + e−βzm−

, (22)

where we averaged over the two possibilities, σi = +1

with σj = m+ and σi = −1 with σj = m−. Using Eq.
(13) this becomes

〈σiσj〉 = ∆tanh zβ∆ +
1

2
(m+ − m−). (23)

The internal energy and specific heat, for z = 4, are
shown in Fig. 2. For larger values of z, the specific
heat peak becomes weaker. Note that the first term of
(23) vanishes above Tc, while the second vanishes only at
T = 0, which leads to a discontinuity in the slope of the
internal energy at Tc. Thus there is a discontinuity in
the specific heat at Tc, which maintains a nonzero value
above Tc, like the BPW results but unlike the usual MF
results.

In conclusion, this correlated-field approximation, that
includes the correlation of the local neighbor-fields to the
central spin, contains a simple physical picture of local
spin fluctuations near Tc, and is able to give fairly good
predictions of Tc for the Ising model, except for z < 4.
It gives values for Tc quite accurately, because both the
site being considered and it neighbors interact with a
self-consistently determined fluctuating molecular field,
represented by m+ and m−, rather than a single-valued
mean-field. Because of its simplicity and accuracy, in the
future it will be interesting to consider whether such a
picture can be applied with any success to other discrete-
valued lattice models.
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TABLE I. kBTc/J from various approximations and
exact/series27,28 values. Dashes indicate where a theory fails.

lattice z exact/series BPW ORF CF SCCF

honeycomb 3 1.51865... 1.820 - 2.220 -
square 4 2.26918... 2.885 - 3.312 2.595

triangular 6 3.64095... 4.933 - 5.384 4.788
diamond 4 2.7040... 2.885 2.231 3.312 2.595

sc 6 4.5103... 4.933 3.955 5.384 4.788
bcc 8 6.3508... 6.952 5.743 7.416 6.853
fcc 12 9.794... 10.97 8.932 11.44 10.91
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FIG. 1. The mean and nearest neighbor magnetizations
versus temperature from the improved mean-field theory
(SCCF) for z = 4, using ∆ obtained by iterating Eq. (17).
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FIG. 2. The internal energy and specific heat per site, from
the improved mean-field theory (SCCF) for z = 4.
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