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INTRODUCTION

Many quasi-two-dimensional magnetic systems are expected to allow particle-like
vortex excitations that are spin configurations with a net 27 twist about a particular
point or core. Examples are XY or easy-plane quasi-2d magnets such as BaCoAsOy,
and the nearly Heisenberg-like KoCuFy with a weak easy-plane anisotropy.! Vor-
tices are also possible in systems such as monolayer magnetic lipid systems.? Vortices
are created or destroyed in particle-antiparticle pairs, carry a conserved circulation
charge, exert pair interaction forces on each other, and contribute to thermodynam-
ics and spin-correlation functions.? There has been much interest in their role in
a topological transition due to vortex-antivortex unbinding® above a characteristic
temperature Tk7.

The vortex contributions to spin-correlations can be calculated approximately®:®
by assuming a gas of weakly interacting vortices for temperatures above Tk, with a
Boltzmann velocity distribution characterized by an average thermal speed vrms. The
thermal speed was estimated by Huber from a velocity autocorrelation function based
on a vortex equation of motion introduced by Thiele.” However, there are actually
two different types of vortices possible in the easy-plane magnet, known as “in-plane”
and “out-of-plane”, depending on whether the out-of-easy-plane spin component is
zero or nonzero for the stationary vortex.®® The Thiele equation has been found to
be inadequate to describe the in-plane vortices. A related point is that not all of the
dynamic properties of magnetic vortices are fully understood, especially concerning

the concept of vortex momentum.
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For these reasons a new equation of motion for vortices has been proposed.!?
The principal physical effect included in the new equation is that a moving vortex
can possess a mass. The spin profile for a moving vortex depends on the velocity.
For example, the out-of-plane spin components increase with velocity, and this is
responsible for the mass. A momentum can also be associated with the mass, and
these carry consequences for the motion of interacting pairs of vortices.

Vortex dynamics is also determined by a second type of charge known as the
gyrovector. The total gyrovector of the system is conserved for a continuum limit,
but we find that it is not conserved when generalized to a discrete lattice, unlike the
circulation charge. As a result vortex-antivortex annihilation can occur in a lattice
system when it would be prohibited in the continuum system.

The new equation of motion with mass was discussed previously,'? starting from
a definition of momentum. Here we take an alternative approach where momen-
tum need not be defined in order to obtain the dynamic equation, starting from the
Landau-Lifshitz equation for the spin dynamics.!! This will be followed by some dis-
cussion of the vortex momentum and problems with its definition. These results will
be related to predicting motions of interacting pairs of vortices, as well as how to
determine vortex masses from simulations. Simulations show that the gyrovector is
not a conserved quantity for lattice systems. We begin by summarizing some of the
properties of in-plane and out-of-plane vortices in the easy-plane ferromagnet.

2D EASY-PLANE FERROMAGNET AND VORTICES

We consider a Heisenberg model with ferromagnetic exchange J > 0 and easy-
plane anisotropy characterized by 0 < § < 1, with Hamiltonian

H=-J Y (5a:5a — 6535%)- (1)

(n,m)

S, is a classical 3d spin vector at site nin a 2D square lattice, and the sum is over near-
neighbor bonds. The limits 6 = 0 and § = 1 correspond to the isotropic Heisenberg
and XY models, respectively. The individual spin length S is conserved, and the
dynamic variables are the in-plane angle ¢n = tan~1(SY/SZ) and its canonically
conjugate momentum Sy. '

In a continuum limit, the lattice point n goes over into position Z, and §(§:',t)
has dynamics given from Poisson brackets,

ds

— = {§,H} =S xh, (2a)
h= —% = V25 — §(45% + V25%)é.. (2b)



Stationary Vortices

For static configurations, the in-plane angle ¢ satisfies Laplace’s equation:
V .V¢ =0. A vortex centered at position X = (X1,Xz) causes a gradient

gé. x (Z — X)

Vé&) = e

(3)
The circulation charge is ¢ = *integer, for vortices (+) or antivortices (—). While no
source term appears on the RHS of the Laplace equation for ¢, we have

¥ x Vo = 2mq8(Z — X )é.. (4)

This can be expressed in the form of a Gauss Law by rotating through 90°, to make
what is called the stream potential ¥ in fluid mechanics,

V¥ =Vé X és, (5a)

V.V = 27¢8(F — X). (5b)

From these it is clear that g is a conserved charge with only integer values.

The out-of-plane component S* determines the type of vortex. When the equa-
tions (2) are linearized in S*, one finds §* ~ ¢/J, which gives §* = 0 in the static
limit and defines the static in-plane vortex. If the nonlinear terms in S* are kept,
the static out-of-plane vortex with S* # 0 results. Far from the vortex core, the
out-of-plane vortex has asymptotic form®

To  _1z-R
S*—p,[—=e€ i I/r", 6a
7 —X| o
1 [/1-6
=—\—. b

A natural length scale is determined by the vortex radius ry, and p = +1 determines
the sign of S* at the vortex core. Simulations!? and energy estimates® have shown
that only the in-plane vortex is stable for strong anisotropy (6 > 0.28 for square
lattice), while only the out-of-plane vortex is stable for weak anisotropy (6 < 0.28 for
square lattice).

Moving Vortices

When either type of vortex moves, perhaps due to the effect of other vortices, the
out-of-plane spin component aquires a change Si proportional to the vortex velocity

—

V for low speed. Far from the vortex, with vortex position X (t) = V't, we have®

.V x(E-X@®) ,
VR s - X0

(7)

It is these structural changes in the vortex form that account for the generation of
the mass to be discussed below.



THIELE EQUATION

Thiele” derived an equation of motion for a domain wall acted on by an external
force F , that was later applied to vortices by Huber. The Thiele equation follows from
the Landau-Lifshitz equation (2) with the assumption that the vortex spin field does
not depend explicitly on time, but only implicitly due to the velocity via X(@) =V(t),
such that §(Z,t) = S(Z — Vt). The Thiele equation is

F+GxV=0, (8a)
22 (8b)
oX
Gos5? [ 250,85 x35) e = / Pz T4 x VS (8¢)

F is the net force on the vortex due to other vortices or external fields, and the
gyrovector G is a topological invariant for the system as a whole in the continuum
limit. However, since the S* component for a vortex is localized, a gyrovector is
defined also for an individual vortex. For out-of-plane vortices, G = 2wpqSé., and
the equation gives a good description of the dynamics.!® To the contrary, for in-plane
vortices, G = 0, and the equation makes no sense, since F need not be zero.

It is interesting to consider why the equation is invalid for in-plane vortices. The
difficulty comes from the fact that the S* component is zero for the static vortex,
and then changes appreciably (in a relative sense) with velocity. Then the basic
assumption of a fixed vortex shape that simply translates is strongly violated. Thus
it is necessary to modify the derivation of the Thiele equation to include these velocity-

dependent structural changes.'?

GENERALIZED THIELE EQUATION

In addition to implicit time dependence, it is necessary to include an explicit
time dependence of the spin field. The greatest explicit time dependence comes from
a velocity that changes with time, V(t). While the in-plane angle has changes that
are second order in V, §* is changed to first order in V. This is somewhat like the
velocity dependence of the electric and magnetic fields of a moving charge. In this
spirit the spin field’s time dependence is assumed to be carried by the vortex position
X(t) and velocity V(1),

3(z,t) = §(z - X(), V(2)). (9)

Following Thiele, one can contract a spatial gradient 8;5 = 85 /dz;, where i =

1,2, with S x §, and make use of the replacement, 85/0z; = —85/8X;. There results
an equation in force densities,

. (85 dS5\ _ q0HOS _ | . 0H
S—(éx—ixa-)—-—s-—_.———+5—-—’. (10)



But the time derivative of the spin field is equivalent to a combination of gradients
with respect to Z and vortex velocity;?

dz a5 dx; , 8S dv;
—S(Z,t) = — 3 L, 11
FoEN= "5 "® T oV, & ()
Using equation (11) in (10) and integrating over area leads to the generalized Thiele
equation,
o ew b dv;
F+GxV= éiM,‘J‘*:—;, (12)
where F and G are defined in (8) and M is the effective mass tensor with elements,
- (85 8§
e et | o F 22 2
M;; S / d’z S (3::.- X BV_,-) (13)

Although the gyrovector can be evaluated for an arbitrary spin configuration,
the mass tensor depends on a derivative with respect to a collective coordinate, the
vortex velocity, and can be evaluated only once a velocity-dependent vortex solution
is known. For the slowly moving in-plane or out-of-plane vortex, with ¢ and Si
given in (3) and (7), the gradients 0¢/0Z and 85* |9V are parallel, and assuming the
dominant contributions come from large radius, one finds that M is diagonal and can
be replaced by a scalar;

‘ﬂ'qz
M,',J' =M 5.'3' ~ m ln(L/a,,)ﬁgj (14)

L is the system radius and a, is a short distance core cutoff. The mass is found to
be proportional to the vortex creation energy, and diverges in the same logarithmic
sense. However, it is not clear whether contributions from near the core that have
not been included could cancel this divergence.

Use of Canonical Fields ¢, S*

The generalized Thiele equation also can be derived very efficiently starting
from the Hamilton equations for the canonical fields ¢ and S*. The same velocity-
dependent travelling wave ansatz (9) is assumed, together with equation (11) for
the time derivative. Instead of the Landau-Lifshitz equation, we use the canonical
equations of motion for the total time derivatives and equate to expression (11),

dg _6H __, 04  dV; 9

dt  65°  ‘oz; ' dt 9Vy’ (1)
ds*  6H _  0S*  dV;0S°
at 8¢ "‘V*‘ax,-* dt av;’ (158)

Taking (15a) times 8S*/z; and (15b) times —8¢/0z; and summing the two equations
gives again the generalized Thiele equation, in terms of a gyrotensor G;; and mass
tensor,

Fi GV = M.-,%-’l, (16a)
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F,-:f Pz (w 4 0 35‘) - (16b)

o6 Oxz; = 6S5* Ox; oxX;’
04 8S* ¢ 0S*
A— 2 _—
i _/ 2 (ari dz; O; 3:3,-) > (16¢)
- o4 8S*  0¢ 8S*
M;; = —-/ d*z (Bx,- 5V, ~ v, ami). (16d)

These expressions are equivalent to those already given. The gyrovector and this
gyrotensor are related via Gi; = €ij3G.

Multi-Vortex Dynamics

The above derivations can be generalized to multiple-vortex configurations, by
contracting with gradients with respect to the vortex positions rather than with
respect to space position &. There results effective mass and gyrovector terms due to
pairs of vortices as well as those due to individual vortices.!* These additional terms

also have important consequences for dynamics.!®

Discrete Gyrovector

The gyrovector defined in (8c) can be shown to be conserved. But physical spin
systems exist on a lattice. Therefore it is necessary to consider the generalization
of (8c) onto a lattice, and question whether it is still conserved. The lowest order
symmetrical finite difference approximation for G on a square lattice is

G=(25)"2Y 5 (Sata— $.—a) % (Sasb — Sn-b), (17)

where a = aé;, b = bé, are the lattice basis vectors. For other lattices, there will be
a similar sum over triple products of spins in all possible triangular plaquettes. Using
the discrete equations of motion that follow from (1), one can show that generally
dG/dt # 0. This result is seen in vortex simulations. Furthermore, when the total
G # 0, it allows for vortex-antivortex annihilation in the discrete system that would
be prohibited in the continuum limit.

Relation to Guiding Center

The generalized Thiele equation has the same form as that for a charge e in
uniform electric and magnetic fields E and B , with the identifications, F — ¢E ; G-
—eB. When |E| < |B|, it is possible to transform to a frame where the electric field
vanishes,'® moving at relative velocity F=ExB/B*orU=Fx G/G? in vortex
language. This relative velocity can be thought of as the velocity of a “guiding
center” for the vortex, about which the vortex core may make cyclotron oscillations,
in analogy to electrodynamics. The generalized Thiele equation can be put in guiding
center form by writing it with only first order time derivatives. Define guiding center
coordinate fi;

Ry Xy = -"c";—fvz, (18a)
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Ry =X2+ ﬂ—g-vl. (18b)

Then the dynamics for the guiding center is identical to the Thiele equation,

~ = dR
F+G><—Et——0, (19)

and the solution for constant force is U= dR/dt = F x G/G?, as above.

For in-plane vortices, which have G = 0, the transformation to guiding center
coordinate cannot be made, since it is analogous to the case |E| > |B| in electro-
dynamics. Then the equation of motion for the core position must take the form of
Newton’s law,

dv
e
On the other hand, for the out-of-plane vortices, when the mass is small the cyclotron

F=M (20)

motion might not be seen due to discreteness effects. Then the Thiele equation
without mass may be accurate except for describing the discreteness effects. However,
in general, then mass should be included for both types of vortices.

VORTEX MOMENTUM

A Lagrangian for this spin model which leads to (2) is
L:/CF:BSW@'— . (2]‘)

This suggests the following definition for a momentum functional of the spin field,
with §* — 0 at infinity,

P=- / d’z S*Vé. (22)

This type of definition has been used before in discussions of momentum for solitons
in 1D magnets.!” P can be shown directly to be a generator of space translations, by
considering the Poisson bracket with an arbitrary function f(Z). The fundamental
relation is

{(6(@),57(F "} =8(EF -2 "), (23)
so there results
{P, f(2)} = V(@) | (24)
One can also determine the Poisson bracket between the two components of P,
which is found to be nonzero:

8P, 6P, 8Py 6P B =
_ 2 1 2 1 2 7 7 N
{P],Pz}_]dx (5(,6 65"_651 6¢)—/d‘2$ ($¢>< GS) é: =G. (25)

Then P cannot be a canonical momentum because this does not vanish. However,
for a moving in-plane or out-of-plane vortex, to lowest order in velocity, only S7 and
the static in-plane profile contribute to the integral, giving

BT (L/ao)V (26)
=Age Rk Ge Vs
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The result is identical to the lowest order approximation for the effective mass times
the velocity.

This type of momentum has been used for 2D spin dynamics with easy-axis
as well as easy-plane anisotropy. Ivanov and Stephanovich!® considered the time
derivative of a similar momentum expression for the easy-axis case, where we should
replace §% by S*+ S in (22), depending on the boundary condition at infinity. Wysin
and Mertens!® have considered the time derivative for the easy-plane case. Both cases
appear to generate a term dependent on the gyrovector, but one needs to be careful in
performing the time derivatives. If we assume that the spin field has a translational
dependence as well as some internal time-dependence, i. e. , §(§:’ =X (t),t), then
we can proceed to differentiate (22), where the time derivative includes a convective

term,

d_290
dt ~ Ot

For a particular component of P, we have

dP; 0S* d
== —/ d*z {( Eral VjajS’) dip+ S* (-a—tasé — Vjajai(b)} . (28)

Now if a vortex is present somewhere, then it is not possible to interchange the

~ V;9;. (27)

order of the space derivatives in its vicinity, because of the Gauss relations (4) and
(5). However, we can rewrite the last term using

0;0;¢ = 0;0;¢ — 651'3(6 % 6’¢) . €. (29)

Then integrating by parts and re-arranging gives

dPi [ o (=057, 9%, o
E.—/dm{( ~ 3“’5*&3'5)

+V; [(2190;5° - 8:570;9) — S™eija(¥ x V) - e} (30)

Ivanov and Stephanovich identify the partial time derivatives with variations of the
energy,
9¢ §H oS+ §H

%= B 4 (31)

With use of the equations of motion, the first term in (30) reduces to a force-like
term, the negative gradient of H with respect to vortex position. The second term is
proportional to the gyrovector, but so is the last term, coming in with the opposite
sign, and these two cancel each other out. Then we would get simply

dP; 0H

& X (32)
However, this is inconsistent with P=MVin (26) and the generalized Thiele equa-
tion (12). It seems that the energy variations in equation (31) must be identified with
the total time derivatives of ¢ and S*. Then the generalized Thiele equation can be

derived directly using the canonical fields ¢ and S5+ as shown above.
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Another Momentum Functional

Papanicolaou and Tomaras'® have also considered how to define magnetic vor-
tex momentum, especially for systems with uniaxial anisotropy. They defined the
following momentum functional

T‘:/ d’z 7 x §,

= V¢ x VS=. (33)

§ represents the gyrovector density. § has only a z component for 2d magnets, but
these definitions may also be used for 3d.

For a slowly moving in-plane vortex, far from the vortex core the gyrodensity
due to the motion is

¢ Vx(F-X)

= 47J6 ig_fp (34)

An out-of-plane vortex also has a similar perturbation §i away from its static gyro-
density §,. The total gyrodensity would be § = g, + g1, where g, is isotropic around
the vortex core, and §; is antisymetric about a line along the velocity. Then for either

type of moving vortex,
T=Xx G+ MV, (35)

where M is given in (14). This momentum depends on the choice of origin of the
system, as well as the velocity. If the time derivative of T is set equa.l to  any external
force acting on the vortex, the generahzed Thiele equation results: F+GxV =MV.

The two components of T have the Poisson bracket, {T1,T2} = G. However, T
is not a generator of translations, we find the following relationship:

{:f,f(f)}:ﬁf—fx(5fov¢+—g-vas) (36)

6¢ 65+
If a vortex is present then the second term need not be zero, but can contribute a
delta function according to Eq. (4).

CONCLUSION

The Thiele equation of motion is applicable if the vortex motion is very smooth,
without structural changes in the vortex profile. But generally these structural
changes occur if the vortex accelerates, and lead to generation of a mass. The presence
of the mass is predicted on the basis of dynamics obtained from the Landau-Lifshitz
equation of motion for the spin dynamics. The mass will be responsible for more
complicated vortex motion, and in particular, for adding cyclotron-like motions for
out-of-plane vortices. We expect that the mass varies as 6~1 as § — 0, but this
needs more careful study. The mass should also relate to a vortex momentum, but
it was not necessary to define vortex momentum to obtain the generalized Thiele
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equation. The discretized version of the gyrovector on a lattice has been found to be
nonconserved, probably due to the large spatial gradients in the spin field near the
vortex core. Some ideas for vortex momentum have been presented, but a complete

description of vortex momentum is not yet complete.
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