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Thermodynamic properties of a spin ice model on a Kagomé lattice are obtained from dynamic
simulations and compared with properties in square lattice spin ice. The model assumes three-
component Heisenberg-like dipoles of an array of planar magnetic islands situated on a Kagomé
lattice. Ising variables are avoided. The island dipoles interact via long-range dipolar interactions
and are restricted in their motion due to local shape anisotropies. We define various order parameters
and obtain them and thermodynamic properties from the dynamics of the system via a Langevin
equation, solved by the Heun algorithm. Generally, a slow cooling from high to low temperature
does not lead to a particular state of order, even for a set of coupling parameters that gives well
thermalized states and dynamics. At very low temperature, however, square ice is more likely to
reach states near the ground state than Kagomé ice, for the same island coupling parameters.
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I. INTRODUCTION: SPIN ICE FRUSTRATION
AND DYNAMICS

Recently, nanostructured arrays of magnetic materials
known as artificial spin ices1–6 have received a lot of at-
tention due to their interesting characteristics. Firstly,
they are intentionally built (with the use of magnetic
nanotechnology) to display geometrical frustration. Sec-
ondly, they may support excitations that behave like
magnetic monopoles3,7–10 and consequently, they are ex-
pected to be used in future technologies (as magnetricity
and magnetronics). Initially these systems were exper-
imentally realized, in general, by permalloy films with
thickness between 20-30 nm and were found in frozen
(athermal states) because the energy barriers that sep-
arate their microstates are much higher than the ther-
mal energy. Such difficulty could be an obstacle for their
manipulation and applications and, therefore, some re-
searchers started finding manners to overcome this prob-
lem and several protocols for adjusting artificial spin ice
systems to undergo thermal fluctuations were success-
fully fashioned11–14. Among them, Morgan et al.6, ob-
served ordered states in the early stage of film deposi-
tion and it opened a path for investigations in systems
with film thickness lower than 3 nm15,16, where the vari-
ation of energy barriers allows superparamagnetic fluc-
tuations at temperatures close to ambient. Then, the
ground states of artificial spin ices were obtained and the
excited states were experimentally identified. Such ex-
perimental advances also allow a more direct connection
with theoretical results about the thermodynamics17–19
of artificial spin ices, mainly to obtain further insights
into fundamental phenomena like geometrical frustration
and phase transitions.

In general, the elongated magnetic islands that form
these artificial systems are well described theoretically

by a resulting magnetic moment (spin) with an Ising be-
havior pointing out along the longest axis of the islands.
Then, in principle, these systems do not present a true
dynamics. The degree of Ising-like behavior, though, de-
pends on the shape and thickness of the islands, because
shape anisotropy strongly constrains the behavior of the
net magnetic moment of each island. Shape anisotropy
for thin islands on a plane substrate already results in
a strong planar anisotropy for their magnetic moments,
that will limit their deviations out of that plane.

As in the case of the thermodynamics cited in the ear-
lier paragraph, we could expect future developments in
materials preparations and a subsequent difference in the
islands’ magnetic behavior, different from that for Ising
spins. Independent of this, the study of the frustration
phenomenon in its diverse versions and possibilities is
also important for its complete physical understanding.
Thus, differently from most previous works, in this pa-
per we theoretically investigate two-dimensional spin ices
in which the spin of individual islands is not Ising-like.
Rather, here the spins are assumed to have an anisotropic
Heisenberg behavior and a coherent rotation. The spins
are then vectors with three components that prefer to
point in the plane of the array, and out along the longest
axes of the nanoislands, due to shape anisotropies in-
cluded in our model. We focus our attention on the or-
der and thermalized dynamics of these artificial materials
with emphasis on two types of geometries: the square and
Kagomé lattices. The dynamics being considered is that
of an array of finite interacting dipoles described by a
spin Hamiltonian. Physically, we concentrate the analy-
sis on the properties of the monopole and higher effective
magnetic charges that can appear at vertices of the island
lattice. The work is organized as follows: in Section II,
we define some useful order parameters for square and
Kagomé systems. In Section III, the thermal ordering
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in spin ices are simulated and the results for square and
Kagomé arrays are presented in Sections IV and V re-
spectively. Finally, the discussions and conclusions are
considered in Section VI.

II. DISTINGUISHING THE ORDER AND
GROUND STATES IN SPIN ICE

A ground state of a spin ice should tend to satisfy
the constraints of the local dipolar interactions, to avoid
the high energy associated when like poles of the islands’
dipoles are near each other. In spin ice on a square lat-
tice, this leads to the “two-in/two-out rule,” where at
any vertex or junction of four islands, two of the dipoles
point inward and two dipoles point outward.1 This gives
a net zero number of +/− poles in a junction. If that
takes place, that junction locally reduces its energy, and
as well, does not contain a magnetic monopole charge,
as in Fig. 1. A similar rule applies for 3D spin ice in a
tetragonal geometry.

The situation is somewhat different in Kagomé ice, be-
cause the islands form junctions of three dipoles. Hence,
considering Ising-like dipoles, there will always be a mag-
netic charge present in each junction, see Fig. 2. If two
dipoles point in (out) and one points out (in), there is
a net negative (positive) monopole at that junction. If
all three point in (out), there is a triply charged negative
(positive) magnetic pole at the junction. In terms of en-
ergetics, monopole charges possess less energy than triple
charges. However, only particular ordered arrangements
of these poles will lead to ground states. We will use the
structure of the ground states to develop some param-
eters to indicate at the very least, the local ordering in
Kagomé spin ice.

It is typical to develop theory based on Ising dipoles
parallel/antiparallel to an island axis. This restriction of
movement is due to the shape anisotropy (demagnetiza-
tion effects) of the high-aspect ratio islands. We avoid
the Ising approach, because the island dipoles can have
a certain freedom to tilt through small angles both out
of the (xy) plane of the islands and within the plane of
the islands. Instead, the islands are assumed to have a
magnetic dipole of nearly fixed magnitude µ, but varying
direction. Thus, the ith island’s dipole will be expressed
by a 3D vector �µi = µµ̂i. This means we just keep track
of the directions of the unit dipoles µ̂i. The tendency for
the dipoles to align with the islands’ long axes is incor-
porated in the model with the use of local anisotropy in-
teractions: a planar anisotropy and a uniaxial anisotropy
along the island axes19,20.

A. Square ice ground states and order

It helps to look to square ice for some guidance about
how to proceed in Kagomé ice. In square ice pairs of
islands belong to primitive cells of a square grid, see
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FIG. 1: Square lattice spin ice in one of the ground states.
Arrows are the island dipoles. Black dots indicate lattice
junctions (no monopoles are present). A and B denote the
two sets of primitive cells. In each cell, a and b denote the
magnetic basis sites. A rotation R of the B cells through 180◦

causes their a and b dipoles to align with those of the A cells.

Figure 1. The primitive cells themselves belong to one
of two sublattices, an A sublattice and a B sublattice.
The points �rk at one corner of each primitive cell act
as monopole charge centers, located on a square lattice
of lattice constant a. The island pairs form an effec-
tive two-atom basis: one is centered at �rk + a

2 x̂ and the
other at �rk + a

2 ŷ. For the magnetic properties, we refer
to them as magnetic positions, denoting these as a-sites
and b-sites. The a-site (b-site) Ising-like dipoles would
only point along ±x̂ (±ŷ), whereas, the Heisenberg-like
dipoles make deviations around these directions. These
directions are the islands’ long axes.

Figure 1 shows one of the two ground states for square
ice, totally satisfying the two-in/two-out rule. The other
ground state would be obtained by inverting all dipoles.
The primitive cell k contains the two unit dipoles, µ̂k,a =
±x̂ and µ̂k,b = ±ŷ. A ground state is

µ̂k,a =

{
+sx̂ k ∈ A

−sx̂ k ∈ B
, µ̂k,b =

{
−sŷ k ∈ A

+sŷ k ∈ B
. (1)

The parameter s = ±1 gives two distinct ground states.
There is a π phase shift for displacements along x or
y through one primitive cell length. This also means
that a translation of the system through ±ax̂ or ±aŷ will
bring it to the opposite ground state. There is no strong
physical distinction of these two states, in terms of their
physical properties. But we can define order parameters
to distinguish the two.

An order parameter can be defined for each magnetic
sublattice. In the ground state, the order is staggered.
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If the dipoles on the B primitive cells are inverted while
the A are left unchanged (i.e., apply an operation R that
is rotation through π only on B), then all A and B prim-
itive cells acquire the same configuration. Let the set
µ̂′

i = Riµ̂i be the configuration after this operation. This
operator R has the definition,

µ̂′
i = Riµ̂i =

{
+µ̂i for A cells
−µ̂i for B cells

(2)

Then we can define order parameters from sums on each
magnetic sublattice:

Za ≡ 1
N

∑
k

µ̂′
k,a · x̂, Zb ≡

1
N

∑
k

µ̂′
k,b · ŷ, (3)

where N is the number of primitive cells. The s = +1
ground state shown in Fig. 1 has Za = +1 while Zb = −1.
It is clear that these are reversed in the other ground
state. Then the two can be combined into a single order
parameter for the whole system,

Z =
1
2

(Za − Zb) . (4)

This takes the values ±1 in the two ground states with
s = ±1, respectively. But by combining two parameters
into one, some information has been forfeited. Further,
this parameter does not contain information about the
deviation of the dipoles sideways from x̂ on the a-sites
and from ŷ on the b-sites.

One can further make vector order parameters, not
the magnetization, but rather, using the set of dipoles
staggered by primitive cell, µ̂′

i. These are defined on the
magnetic sublattices:

�wa =
1
N

∑
k

µ̂′
k,a, �wb =

1
N

∑
k

µ̂′
k,b. (5)

Now consider that while not in the ground state, the
Heisenberg-like dipoles are free to point in any direction
in three dimensions. These vectors each have a compo-
nent along an island axis and a component transverse to
the island axis. The longitudinal parts give back the Za

and Zb parameters (not of unit magnitude):

Za = �wa · x̂, Zb = �wb · ŷ. (6)

It is reasonable also to formulate a net vector order pa-
rameter for the system, from the sum,

�w ≡ 1√
2

(�wa + �wb) . (7)

The factor 1√
2

is for unit normalization, |�w| = 1, in a
ground state. The two ground states then correspond to
�w pointing along −45◦ [unit vector v̂ = 1√

2
(x̂ − ŷ)] and

+135◦ [unit vector along −v̂] from the +x̂-axis.
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FIG. 2: Kagomé lattice spin ice in one of the ground states.
A, B and C denote the three sets of primitive cells. In each
cell, the magnetic basis sites are a, b, c. A rotation R of the
B cells through -120◦ and the C cells through +120◦ causes
their a, b, c sites to align with those of the A cells. The
circled plus and minus signs indicate singly-charged magnetic
monopoles.

In a ground state, the x and y components of �w are
proportional to Za and Zb, however, this is not true in
an excited state, where generally we have

wx = �w · x̂ =
1√
2

(Za + wx
b ) ,

wy = �w · ŷ =
1√
2

(Zb + wy
a) . (8)

The last parts, wx
b , wy

a, are the transverse elements,
which vanish in a ground state. The overall order pa-
rameter Z can be recovered from

1√
2

(wx − wy) = Z +
1
2

(wx
b − wy

a) . (9)

Thus the scalar order can be estimated from a slightly
modified parameter derived from the vector definition,

Z̃ = �w · v̂, v̂ ≡ 1√
2
(x̂ − ŷ). (10)

In a ground state, Z̃ = Z, but otherwise they do not agree
exactly, due to the components contained in �w that are
transverse to the islands’ long axes.

B. Order parameters for Kagomé ice

A similar approach is followed to define order param-
eters for Kagomé ice. The main difference is that the
lattice consists of three types of primitive cells, labeled
as A, B, C, that combine to make a 9-site magnetic unit



4

cell.21 Fig. 2 shows one of the ground states of the dipo-
lar interactions. The B and C cells can be considered
copies of the A cells, but rotated by 120◦ and 240◦, re-
spectively. We consider the A cells as reference cells that
get no rotation.

In a ground state, if the B cells are rotated -120◦
around their centers, their a, b and c dipoles will fall
into the corresponding positions and orientations of the
A cells. A +120◦ rotation of the C cells does the same for
their dipoles. This total operation applied to the whole
lattice can be denoted R, such that the configuration be-
comes

µ̂′
i = Riµ̂i =




+µ̂i for A cells
R(− 2π

3 ) · µ̂i for B cells
R(+ 2π

3 ) · µ̂i for C cells
. (11)

The operator R(± 2π
3 ) does the ±120◦ rotation of an in-

dividual dipole. Then each magnetic sublattice a,b,c, has
a vector order parameter �wa, �wb, �wc, defined as in Eq.
(5). In the Ising model system, these �w must align along
the unit vectors that point outward from the A primitive
cell centers,

v̂a ≡ −
√

3
2 x̂ − 1

2 ŷ, v̂b ≡ +
√

3
2 x̂ − 1

2 ŷ, v̂c ≡ ŷ . (12)

The state in Fig. 2 satisfies �wa = +v̂a, �wb = −v̂b, �wc =
+v̂c, which leads to a positive monopole in each primitive
cell (and negative monopoles at the cell junctions). By
permutations of the signs on v̂a, v̂b, v̂c, it is easy to
see that there are six ground states. In analogy with
square ice, the scalar order parameters on the magnetic
sublattices are

Za = �wa · v̂a, Zb = �wb · v̂b, Zc = �wc · v̂c . (13)

In a ground state, each of these is ±1, but with the sum
Za +Zb +Zc = ±1, which is achieved in only six possible
ways, for the six ground states.

On the other hand, a net vector order parameter is a
sum,

�w =
1
2
(�wa + �wb + �wc) . (14)

The normalization factor 1/2 is useful so that |�w| = 1
in a ground state. Take the state in Fig. 2, which has
(Za, Zb, Zc) = (1,−1, 1). Because the magnetic unit vec-
tors have a net zero sum (v̂a + v̂b + v̂c = 0), one gets for
that state,

�w =
1
2
(v̂a − v̂b + v̂c) = −v̂b . (15)

In the ground states, this vector order parameter has the
possible values, �w = ±v̂a, ± v̂b, ±v̂c. This is somewhat
analogous to a complex order parameter defined in Ref.
21.

An ordered state of the magnetic sublattices might
be specified in an Ising system with Ising variables

σa, σb, σc = ±1, so that µ̂a = σav̂a, µ̂b = σbv̂b, µ̂c =
σcv̂c,. This state is specified by a vector,

Ψ =
1√
3
(σa, σb, σc). (16)

The ground state dipolar arrangements have state vec-
tors,

Ψ1+
gs ≡ 1√

3
(1,−1,−1) ,

Ψ2+
gs ≡ 1√

3
(−1, 1,−1) ,

Ψ3+
gs ≡ 1√

3
(−1,−1, 1) . (17)

There are three others, Ψ1−
gs , Ψ2−

gs , Ψ3−
gs , obtained from

these by reversing the dipoles. Each Ising variable is +1
(−1) for outward (inward) from the cell center. These
vectors clearly are overcomplete and not mutually or-
thogonal. They have overlaps such as 〈Ψ1+

gs |Ψ1+
gs 〉 = 1,

〈Ψ1+
gs |Ψ2+

gs 〉 = −1/3 and 〈Ψ1+
gs |Ψ3+

gs 〉 = −1/3. The state
shown in Fig. 2 is Ψ2−

gs .
In the general case we assume Heisenberg-like

dipoles. On average, the sublattice magnetization vec-
tors �wa, �wb, �wc can point in any direction, then the
Ising variables (σa, σb, σc) of an ordered magnetic state
are replaced by projections (Za, Zb, Zc), giving the state
variable,

Ψ =
1√
3

(Za, Zb, Zc) . (18)

A short calculation shows that this state is a superposi-
tion of the ground states,

Ψ = Z1Ψ1+
gs + Z2Ψ2+

gs + Z3Ψ3+
gs (19)

where the coefficients are combinations,

Z1 = −Zb + Zc

2
, Z2 = −Za + Zc

2
, Z3 = −Za + Zb

2
.

(20)
Therefore, specifying the set (Za, Zb, Zc) gives a sense
of the order in each sublattice, whereas, specifying the
set (Z1, Z2, Z3) gives a sense of the condensation of the
system into the possible ground states. One should be
aware, however, that these Z parameters do not contain
the information about magnetization components that
are transverse to the sublattice unit vectors v̂a, v̂b, v̂c.
A scalar product like �w ·v̂a will approximate Za, however,
the difference is due to those transverse parts, as seen in
the case of square ice, Eq. (8). Note that the state in
Fig. 2 has (Z1, Z2, Z3) = (0,−1, 0), which shows it is the
pure Ψ2−

gs ground state.

C. Monopole charge densities

A characteristic feature of two-dimensional spin ices is
the presence of magnetic monopole structures, that give
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a sense of the dipolar order or disorder in the system. At
every primitive cell of the chosen lattice, there is a junc-
tion (or vertex) where a set of dipoles can point outward
or inward. An imbalance in the net number of outward
minus inward dipoles corresponds to monopole charge.
In square ice, a vertex has four dipoles, while there are
three dipoles at every vertex of Kagomé ice. The coor-
dination number for a vertex is C = 4 in square ice and
C = 3 in Kagomé ice.

For each vertex at some position �rk, one has a set of
outward unit vectors, v̂ik

, ik = 1, 2, ...C that point to-
wards the nearest neighboring islands surrounding that
vertex. One can define a discrete pole charge as has been
used in square ice, counting outward (inward) dipoles
with +1 (−1) half-monopole contributions:

qk =
1
2

C∑
ik=1

[2H(µ̂ik
· v̂ik

) − 1] (21)

where H(x) is the Heaviside step function. Then for
square ice each vertex charge could have the values q =
0,±1,±2, depending on the local state of the four dipoles
at that vertex. Thus, a vertex is either uncharged, singly-
charged, or multiply-charged. In Kagomé ice, however,
it is interesting to note that if one applies this same def-
inition, the poles are fractional. The allowed values in
Kagomé ice are q = ± 1

2 ,± 3
2 , due to the sum over only

three inward or outward dipoles. Even so, it will be con-
venient to refer to the charges q = ± 1

2 as singly-charged
poles and the q = ± 3

2 as multiply-charged poles. In
Kagomé ice the vertex charges are always nonzero, which
makes its thermodynamics rather distinct from square
ice.

The discrete charge definition (21) changes value sud-
denly as one dipole at a vertex moves from pointing in-
ward to outward or vice-versa. Previously19,20 a continu-
ously varying charge-like definition was used, based only
on scalar products,

q∗k =
1
2

C∑
ik=1

µ̂ik
· v̂ik

. (22)

This only sums the projections of the dipoles outward
from vertex k. A positive contribution in one vertex gives
exactly the opposite negative contribution in a neighbor-
ing vertex. Excluding the boundary region of the system,
the algebraic sum of all the q is zero, either by this con-
tinuous version or the discrete version. For square ice, q∗

can take any value from −2 to +2, whereas, in Kagomé
ice the range is from − 3

2 to + 3
2 . Thus, the definition of

continuous charge q∗ parallels the definition of discrete
charge q, although the extreme values like q∗ = ±2 in
square ice and q∗ = ± 3

2 in Kagomé ice fall only at the
very end of the phase space, giving those points limited
statistical weight.

The average magnetic charge density (combination of
monopoles and multipoles) in the system is found by av-
eraging the absolute valued charges over the Nc vertices

in the system,

ρ = 〈|q|〉 =
1

Nc

Nc∑
k=1

|qk|, (23)

with a similar definition for the continuous form, ρ∗ =
〈|q∗|〉. The variation of these densities with temperature
is a measure of entropic effects, but the details in Kagomé
ice are quite different than in square ice.

In the case of studying the discrete charges, we can also
distinguish the singly-charged poles from the multiply-
charged poles, and count their averages separately in
simulations. Thus we define partial densities denoted
as ρ1 and ρ2 for square ice, that correspond respectively
to the separate densities due to only singly and doubly
charged poles. Suppose the variables n1 and n2 repre-
sent the numbers of single and double charges at any
vertex. Then the single and multiple densities are taken
as ρ1 = 〈n1〉 and ρ2 = 2〈n2〉. The total charge density is
then

ρ = ρ1 + ρ2 = 〈n1 + 2n2〉. (24)

Obviously, these relations account for that fact that
doubly-charged poles contribute twice as much charge
as monopoles. In Kagomé ice, we need instead to count
single poles (q = ± 1

2 ) and triple poles (q = ± 3
2 ), which

have numbers n1 and n3 at sites. Then with single pole
density ρ1 = 1

2 〈n1〉 and triple pole density ρ3 = 3
2 〈n3〉,

the total charge density can be obtained as

ρ = ρ1 + ρ3 = 〈1
2n1 + 3

2n3〉. (25)

Again, this accounts for the tripled charge on the
multiply-charged poles in Kagomé ice.

It is also good to note another reason why the factor
of 1

2 is convenient for Kagomé ice as well as for square
ice in the charge definitions (21) and (22). In terms of
the discrete charge definition, a unit of monopole charge
moves into one vertex from another when a single dipole
of that vertex flips from inward to outward. With the
definition (21) including the 1

2 , such a dipole flip always
contributes a change ∆qk = ±1 at a vertex in any lattice.
Thus, the flow of monopolar charge within the system
will be consistently counted in discrete units ∆q = ±1
regardless of the type of lattice.

1. Square ice charge densities.

For square ice, there are no monopoles in either of the
ground states (qk = q∗k = 0 for all k), and ρ = ρ∗ = 0 for
such an ordered state. This can only be expected to be
possible at very low temperature, assuming the system is
able to access such a specific point of phase space. Then,
as the temperature is increased, small angular deviations
of the dipoles away from the ground state directions will
cause the individual q∗k charges to become nonzero, before
there are any significant changes in the discrete charges
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qk. Thus, the continuous charge density ρ∗ initially will
grow above zero more rapidly with temperature than ρ,
see Ref. 19.

At high temperatures, the system is of high entropy
and in a configuration of maximum disorder. Then, the
individual dipoles essentially become free to point in any
direction on a unit sphere (within the model of dipoles of
fixed magnitude). This allows calculation of the limiting
values of discrete and continuous charge density defini-
tions. In the discrete definition, each of the four dipoles
at a vertex is equally likely to point inward or outward.
Of the 16 possible states, there are six with |q| = 0, eight
with |q| = 1, and two with |q| = 2. The average gives the
high-temperature limiting value,

ρ = 〈|q|〉 =
1
16

(6 × 0 + 8 × 1 + 2 × 2) =
3
4
. (26)

At any chosen vertex, the probability of finding a singly-
charged monopole tends towards 〈n1〉 = 8

16 = 1
2 (giving

ρ1 = 1
2 ), while the probability for a doubly-charged pole

tends towards 〈n2〉 = 2
16 = 1

8 (giving ρ2 = 1
4 ).

For the continuous definition, there is a corresponding
averaging, but over outward projection components xi =
µ̂i · v̂i, i = 1, 2, 3, 4, that range uniformly from −1 to +1.
Then the high-temperature limiting value is found from
an average

ρ∗ = 〈|q∗|〉 =

〈
1
2

∣∣∣∣∣
4∑

i=1

xi

∣∣∣∣∣
〉

(27)

=
1
2

∫
dx1

∫
dx2

∫
dx3

∫
dx4 |x1 + x2 + x3 + x4|∫

dx1

∫
dx2

∫
dx3

∫
dx4 1

=
7
15

.

Thus, although the continuous form increases more
rapidly at low temperature, its high-temperature limit is
actually less than that for the discrete definition. There-
fore the discrete and continuous charge definitions carry
different kinds of information about the system and en-
tropy effects.

2. Kagomé ice charge densities.

For Kagomé ice, any of the ground states are ordered
in such a way that every vertex has a single charge:
qk = q∗k = ± 1

2 for all k, and then ρ = ρ∗ = 1
2 at low

enough temperature. Until the temperature increases
sufficiently to change away from the ground state con-
figuration of monopoles, the discrete charge density will
remain at this value. However, just as in square ice, the
continuous version of the charge density will already devi-
ate from the value ρ∗ = 1

2 even at very low temperatures,
once there are angular deviations of the dipoles from their
ground state directions (radially outward/inward from
the vertices).

For high temperature the great entropy of the dipoles
allows them to point equally in all directions. In the
discrete charge definition inward and outward become

equally probable. For the three dipoles at a vertex, of
their 8 possible states, there are six states with |q| = 1

2

(single monopoles) and two states with |q| = 3
2 (triple

or multiple poles). Then the high-temperature limiting
density is the average,

ρ = 〈|q|〉 =
1
8

(
6 × 1

2 + 2 × 3
2

)
=

3
4
. (28)

Note that with these fractional charges being used, the
high-entropy charge density limit is the same as in square
lattice ice. In this limit, every vertex has a probability
of 〈n1〉 = 6

8 = 3
4 for singly-charged poles (giving ρ1 = 3

8 )
and a probability of 〈n3〉 = 2

8 = 1
4 for multiply-charged

poles (also giving ρ3 = 3
8 ).

For the continuous charge definition at high-
temperature, one now has an average over the outward
projections of only three dipoles, each ranging from −1 to
+1. Thus the limiting value of continuous charge density
becomes

ρ∗ = 〈|q∗|〉 =

〈
1
2

∣∣∣∣∣
3∑

i=1

xi

∣∣∣∣∣
〉

(29)

=
1
2

∫
dx1

∫
dx2

∫
dx3 |x1 + x2 + x3|∫

dx1

∫
dx2

∫
dx3 1

=
13
32

.

This is only slightly less than the limiting value in square
ice. This and the other high-temperature limits are useful
as checks on simulation results.

D. Other correlations and measures

For the purpose of analyzing geometric order in a spin
ice, beyond the counting of monopole charge, we can con-
sider some short range correlations and various probabil-
ity distributions. What follows here is some discussion of
other quantifiable local measures that give certain infor-
mation about the geometric states.

1. Near neighbor correlations

Generally, an ice system does not easily fall globally
into one of its ground states, due to the enormous geo-
metrical frustration. In a quench from higher tempera-
ture, one can expect (at most) to have different regions
close to the different ground states, with some connec-
tion at the boundary between them, similar to domains
connected by domain walls in magnets. This suggests
looking at a more local order parameter, i.e., the nearest
neighbor dipole correlations, 〈µ̂i · µ̂j〉, where i and j refer
to any two nearest neighbor dipoles.

These correlations do not need to be within individual
primitive cells. The near neighbor correlations include
intra-cell and inter-cell contributions. We can look at
how the a,b,c magnetic sublattices are correlated with
respect to each other at the nearest neighbor distance.
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Consider first the correlations in Kagomé ice. In one
of the Kagomé ground states, if i is on the a-sublattice
with µ̂i = µ̂a = Zav̂a, then near neighbor site j must be
on either the b or c-sublattice, with a similar expression.
The correlation of this near neighbor pair (in a ground
state) will be

〈µ̂a · µ̂b〉 = ZaZb v̂a · v̂b = −1
2
ZaZb. (30)

The factor of − 1
2 is due to the 120◦ angle between v̂a and

v̂b. Obviously there is a similar result for pairs on a and c
sublattices and b and c sublattices. These pair combina-
tions then take values ± 1

2 in a ground state, depending
on the particular values of Za, Zb, Zc. One can further
see that some linear combinations of these pair products
take values of 0 or 1 in the ground states. For instance,
the sum

µ̂a · µ̂b + µ̂a · µ̂c = −1
2
Za(Zb + Zc) (31)

takes the value 0 in the Ψ2−
gs ground state shown in Fig.

2, with (Za, Zb, Zc) = (1,−1, 1), and also in ground state
Ψ2+

gs , but it is equal to +1 in all the other ground states.
The Z parameters were defined as system averages, but

generally we are concerned with local variations. When
the system is not in a ground state, we can still define
quantities from the local correlations; the above discus-
sion only suggests the limiting behavior. In a short-hand
notation, denote the sublattice-dependent correlations of
nearest neighbors as

Cab = 〈µ̂a · µ̂b〉nn,

Cac = 〈µ̂a · µ̂c〉nn,

Cbc = 〈µ̂b · µ̂c〉nn. (32)

The averages are over any near-neighbor pairs on the
indicated sublattices. In any ground state of Kagomé
ice, two of these are +1 and the third is −1, or, two are
−1 and the other is +1. From these basic correlations,
we can then define combinations which give a sense of
local proximity to the ground states,

C1 = 〈µ̂a · (µ̂b + µ̂c)〉 = Cab + Cac,

C2 = 〈µ̂b · (µ̂a + µ̂c)〉 = Cab + Cbc,

C3 = 〈µ̂c · (µ̂a + µ̂b)〉 = Cac + Cbc. (33)

Unfortunately these last correlations do not distinguish
between the pairs of ground states that are equivalent by
a global inversion. For instance, C1 = 0, C2 = +1, C3 = 0
in both of the states, Ψ2+

gs and Ψ2−
gs . Clearly C2 is defined

in such a way that it acquires the value of |Z2| in the
limit of a ground state, and similarly for C1 and C3. It is
important to note, however, that any of C1, C2, C3 could,
in principle, range from zero to 2 in magnitude.

For square ice, only Cab is defined, and it will be zero
in a ground state, and it will deviate away from zero at
finite temperatures. Instead, it may be better to consider

a different correlation, defined so that it tends to unity
in a ground state. It is convenient to define an operation
L that aligns all the dipoles of square ice in a ground
state. The operation that does this is a +90◦ rotation
of the b-sites, after the 180◦ rotations of a and b sites in
the B primitive cells (operation R previously defined, Eq.
2). This operation should be applied to the system before
doing the correlations. When applied to the ground state
in Fig. 1, all dipoles will align with the direction of the
a-sites in the A primitive cells. The operation can be
expressed using the cell-staggered µ̂′ dipoles [Eq. 2] by

µ̂
′′
i = Liµ̂i =

{
µ̂′

i for a sites
R(+π

2 ) · µ̂′
i for b sites

(34)

The +90◦ rotation of an individual dipole is denoted
R(+π

2 ). In a short-hand notation, the near-neighbor cor-
relation we have calculated for square ice is

Nab = 〈µ̂′′
a · µ̂′′

b 〉nn, (35)

where the average is taken only over near neighbor pairs
on opposite sublattices. As stated, this average is unity
in one of the ground states, and less than unity as the
systems moves away from a ground state.

2. Probability distributions for ice order

The parameters Za, Zb, Zc were defined as averages
over the whole system, of components of the dipoles along
the sublattice unit vectors v̂a, v̂b, v̂c. Of course, these av-
erages can be considered as derived from distributions of
some local variables, za, zb, zc, with local definitions,

za = µ̂′
k,a · v̂a, zb = µ̂′

k,b · v̂b, zc = µ̂′
k,c · v̂c, (36)

all obtained from the dipoles of a cell k. These compo-
nents range from −1 to +1. Due to thermal fluctuations
the values will vary from cell to cell, and also over time.
Therefore, in simulations of the dynamics they can be pe-
riodically grouped into bins from which their probability
distributions can be estimated. For the simulations pre-
sented in this work we partitioned the range−1 ≤ z ≤ +1
into 201 bins. In C-language coding, an array p[201] for
one of these distributions can be updated by an algorithm
such as

p[100 ∗ (z + 1)] + = 1; (37)

and afterwards normalized to unit total area. By run-
ning a simulation and accumulating data, this allowed
for the calculation of probabilities pa(za), pb(zb), pc(zc)
corresponding to each sublattice’s order. These can be
considered the raw probability distributions for the lo-
cal order. In a ground state, these distributions become
highly skewed towards the appropriate extreme values
za → ±1, zc → ±1, zc → ±1.
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FIG. 3: The specific heat and internal energy per site for
square lattice spin ice with artificial model parameters. Ev-
idence of a possible phase transition appears as the peak in
specific heat near kBT/ε = 0.22 .

In square lattice ice, a derived probability distribution
can be found for the net local order parameter

z =
1
2
(za − zb). (38)

The probability p(z) is obtained indirectly from pa(za)
and pb(zb) by a relation,

p(z) =
∫

dza pa(za)
∫

dzb pb(zb) δ[z− 1
2 (za + zb)]. (39)

This was implemented by coding an equivalent C-
language algorithm for the probability arrays.

In Kagomé lattice ice, a similar approach can be used
to find derived probability distributions that measure
proximity to the ground states. For example, general-
izing the coefficients in (20) to local definitions,

z1 = −zb + zc

2
, z2 = −za + zc

2
, z3 = −za + zb

2
,

(40)
then the probability distribution of z1 is found from

p1(z1) =
∫

dzb pb(zb)
∫

dzc pc(zc) δ[z1 + 1
2 (zb + zc)].

(41)
There are similar ways to get p2(z2) and p3(z3). These
three distributions will now give a graphic view of the
extent of condensation of the system to regions of phase
space locally near the respective ground states.

III. SIMULATIONS OF THERMAL ORDERING
IN SPIN ICES

In this work we use study the thermal equilibrium dy-
namics of an array of dipoles making up the spin ice. To
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FIG. 4: For square lattice spin ice, the behavior of the per-site
magnetic susceptibility components with temperature.

give realistic dynamics, the torques that tend to align
the dipoles along island axes are modeled by including
appropriate uniaxial magnetic anisotropies in the spin
model. For this two-dimensional (2D) array of very thin
nanoislands, uniaxial energy parameter K1 determines
the strength of alignment along the island axes. An-
other energy parameter K3 is used to make the z-axis
perpendicular to the plane of the islands a hard axis.
The dipoles themselves are of three components, and al-
though free to point in any direction, restricted by these
local torques that are used to model the geometrical
anisotropies of the islands as in Ref. 20 Including also
a long-range dipolar interaction, the Hamiltonian of the
ice system is

H = −µ0

4π

µ2

a3

∑
i>j

[3(µ̂i · r̂ij)(µ̂j · r̂ij) − µ̂i · µ̂j ]
(rij/a)3

(42)

+
∑

i

{
K1[1 − (µ̂i · ûi)2] + K3(µ̂i · ẑ)2

}

The unit vectors r̂ij point from site j to site i, and µ0

is the magnetic permeability of free space. The dipoles
themselves have assumed fixed magnitude µ while be-
ing able to rotate to different directions. The relative
strength of dipolar interactions (first term) depends on
the lattice constant for the ice array, a, equal to the dis-
tance between any nearest neighbor pair of dipoles. That
dipolar energy parameter is

D =
µ0

4π

µ2

a3
. (43)

The unit vectors ûi are the fixed island anisotropy axes.
Each is equivalent to one of the choices of v̂a, v̂b or v̂c,
depending on the magnetic sublattice of that site.

The relative sizes of the different physical effects can be
indicated by their dimensionless energy constants, scaled
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FIG. 5: The temperature dependence of monopole charge
densities for the 16 × 16 square lattice spin ice artificial
model. The discrete total density ρ is the sum of single
and double pole charge densities: ρ = ρ1 + ρ2. The contin-
uous definition for ρ∗ is more a measure of the deviations of
the dipoles away from a ground state, where ρ = ρ∗ = 0.
Similar results were obtained for a 32 × 32 system. Part
(a) shows the low-temperature dependence and the strong
changes near kBT/ε ≈ 0.22 . Part (b) exhibits the expected
high-temperature asymptotic values ρ1 = 1

2
, ρ2 = 1

4
ex-

plained in the text.

in units of the basic energy scale,

ε ≡ µ0µMs, (44)

where Ms is the saturation magnetization of the island
material. Then the dimensionless energy parameters that
define the problem are

d =
D

ε
=

µ

4πa3Ms
, (45)

k1 =
K1

ε
, k3 =

K3

ε
. (46)
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FIG. 6: The raw probability distribution of a-sublattice order
za, Eq. (36), for square spin ice in (a) a 16×16 system and (b)
a 32 × 32 system. Probabilities are scaled by their maximum
values; curve labels indicate dimensionless temperature. The
distribution on the sublattice clearly displays randomness at
high temperature but strong tendency of alignment as the
temperature is lowered. Similar behavior takes place for zb.

From this, it is apparent that dipolar effects are directly
determined by the volume fraction of the system occupied
by magnetic material, since µ = MsVisland is proportional
to each island’s volume, Visland. When the parameter d
is very small, dipolar effects can be ignored. However,
the presence of adequately strong k1 will lead to freez-
ing of the dynamics; this would be the case of Ising-like
anisotropy that limits dipolar rotation.

Starting from an appropriate initial state, the dynam-
ics of this system was solved according to a Langevin
equation derived from the Landau-Lifshitz-Gilbert equa-
tion for the dynamics. The undamped zero-temperature
dynamic equation can be written in dimensionless quan-
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FIG. 7: Examples of the derived probability distribution of
the local order parameter z, Eq. (38), scaled by maximum
values, for square lattice spin ice, in (a) a 16 × 16 system
and (b) a 32×32 system. Curve labels indicate dimensionless
temperature. The distribution changes from wide at high T
(with 〈z〉 ≈ 0) to very skewed at low T (with 〈z〉 → ±1).

tities as

dµ̂i

dτ
= µ̂i × �hi, τ = γµ0Ms t. (47)

where γ is the electron gyromagnetic ratio and �hi =
�Bi/µ0Ms is the dimensionless effective magnetic field
that acts on the dipole at site i. The local induction
�Bi is derived from the given Hamiltonian. The Langevin
equation includes damping and stochastic torques into
these equation, whose strength is related to the desired
temperature. The Langevin equation was solved by a
2nd order Heun algorithm. The details of this procedure
have been presented in Ref. 19.

As far as the choice of parameters, we consider a model
system with parameters selected so that the physical ef-
fects of frustration do not dominate excessively over ther-

mal effects. In Ref. 19, values for D, K1 and K3 were
considered as appropriate for the particles in experiments
like those of Wang et al..1 However, in those studies, it is
not easy to access the low-temperature regime and most
of the thermodynamically interesting features would oc-
cur well above room temperature (the Ising-like proper-
ties are too overwhelming for smooth time dynamics).
The difficulty is that the energy scale ε tends to be much
larger than thermal energy even at typical room tempera-
ture, unless the islands are extremely small. In addition,
for very small islands, the dipolar effects become very
weak as well, and the K1 Ising-like anisotropy is domi-
nant.

Instead, we suppose an artificial choice of parameters
so that the system is not too strongly Ising-like. This will
ensure a thermalized dynamics for room temperature and
somewhat below room temperature. We do this to avoid
a situation where the uniaxial anisotropy is so strong that
it prevents motion of the dipoles. The intention is to see
the realistic spin dynamics of the dipoles. Although it
may be difficult to prepare an ice array with this choice,
we choose model parameters D = K1 = 0.1ε, K3 = 0.5ε,
similar to Model C in Ref. 19, but with stronger easy-
plane interaction. These are parameters for an artificial
model that is able to display thermalized dynamics. Al-
though these are artificial values, our intention is to in-
vestigate the consequences of an artificial spin ice that
would be less strongly Ising-like than the typically pre-
pared spin-ices. In order to discuss results, the temper-
ature is scaled with the same energy unit ε, so that we
quote dimensionless temperatures,

T = kBT/ε, (48)

where kB is Boltzmann’s constant.

IV. RESULTS FOR SQUARE LATTICE ICE

For square ice the dynamics was tested on systems of
sizes 16 × 16 and 32 × 32, with open boundaries. These
simulations represent the dynamics in a small piece of
a finite spin ice. For square ice the calculation of the
dipolar interactions is accelerated by use of the FFT ap-
proach. The damping parameter is set to α = 0.1 for
the Langevin dynamics. To run the dynamics, the basic
time step for the second-order Heun algorithm is set to
∆τ = 0.001, but data for analyzing dynamics is sampled
every 1000 Heun steps, i.e., ∆τsamp = 1000∆τ . The first
400 (200) samples are thrown out to equilibrate the sys-
tem for the chosen temperature, and then averages are
calculated from at least the subsequent 4000 (2000) time
samples for the 16 × 16 (32 × 32) system. The simula-
tion was allowed to larger times, if necessary, until the
relative error in total system magnetization became less
than 0.1%. This final time corresponds to many times
the natural period of the dominant dipolar oscillations.
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Less samples were used for the larger system as a prac-
tical matter, due to the considerably longer computa-
tion time. In a typical run over a set of temperatures,
the highest temperature is calculated first, and the fi-
nal state obtained there becomes the initial state for the
next lower temperature. Temperature increments of size
∆T = −0.1 were used for T > 1 and of size ∆T = −0.01
for T < 1. Some typical final states are shown in Sec.
VI.

Results for the temperature dependence of specific heat
and energy per dipole are given in Fig. 3. As is well
known in this type of ice model, a strong peak in the
specific heat near kBT ≈ 0.22ε, indicative of a possible
phase transition. It is expected that the low-temperature
phase is well-ordered and bears at least a resemblance to
one of the ground states, when viewed at a local level.
A very sharp peak in specific heat also appears in Monte
Carlo simulations17 for an Ising model of square spin ice,
that increase logarithmically with system size.

Although not as dramatic as the peak in specific heat,
there is a broad peak in the in-plane magnetic suscep-
tibility versus temperature, see Figure 4. The position
depends somewhat on system size, but appears to be
near kBT/ε ≈ 0.27. As can be expected, the in-plane
magnetic fluctuations and susceptibility are much greater
than those out of the easy plane. However, both χxx and
χzz tend towards nonzero values in the limit of zero tem-
perature.

A further indication of the microscopic state can be
viewed in the temperature dependence of the various
monopole charge densities, see Fig. 5. For high tem-
peratures, there is strong disorder, and the charge densi-
ties obtained tend to the asymptotic values in Sec. II C 1,
specifically, ρ1 → 0.5 for single poles and ρ2 → 0.25 for
double poles. One can see, however, that the approach to
this high-disorder limit is very slow with increasing tem-
perature. At the low temperature range, in contrast, the
density of single poles surges upward near kBT ≈ 0.2ε,
and double poles start to appear at a slightly higher tem-
perature. The highest slope dρ1/dT takes place close to
kBT ≈ 0.22ε, the same as the location of the peak in
specific heat. This shows that generation of pole density
is responsible for the strong thermodynamic changes.

The degree of geometric ordering of the dipoles can
also be seen in the probability distributions for local or-
der parameters za, zb, and the derived z, see Eq. (38).
At higher temperature, Fig. 6 shows how there is a great
deal of randomness in the distribution of za, as can be
expected. In these plots, the probability densities rela-
tive to their maximum values are displayed, which shows
the details better when comparing different temperatures
on the same graph. The data in Fig. 6 and correspond-
ing data for p(zb) (not shown) lead to the results in Fig.
7 for the net local order parameter distribution, p(z).
The distribution p(za) is broad with a nearly symmet-
ric appearance plus noticeable fluctuations at high tem-
perature. The somewhat parabolic form centered on
za = 0 can be explained by a distribution approximated
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FIG. 9: Inter-sublattice nearest neighbor correlations [Eq.
(35)] for the square lattice spin ice model.

as p(za) ∝ exp{K1z
2
a/kBT }, considering that the uni-

axial energy would be the dominant interaction for the
high-temperature disordered phase. This gives a more
uniform distribution as the temperature increases, but
yet reasonably explains the curvature of the function.
For lower temperatures the distribution transforms to a
skewed form that concentrates towards one of the end
points, za → ±1. The same behavior holds for the dis-
tribution on the other sublattice, p(zb). The resulting
derived distribution for p(z) similarly becomes skewed
towards one of the end points for low temperature, see
Fig. 7, as the system moves close to one of the particular
ground states.

For the overall system order, the averaged parameter Z
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to low temperature.

displays the behavior with temperature shown in Fig. 8.
Z displays a drastic drop to zero for temperatures kBT >
0.25ε. At low temperature, it tends linearly towards ±1;
these two limiting values clearly have equal likelihood
and reflect the projection into one of the ground states.

The nearest neighbor correlations in square ice, as rep-
resented by Nab(T ), take the behavior shown in Fig. 9. In
a certain sense the shape of the curve mimics the behav-
ior of Z(T ). There is a linear approach towards Nab = 1
in the low temperature region, showing the approach into
a ground state. Note that this correlation function takes
the value Nab = 1 in both of the ground states. The
function begins to deviate from linear behavior already
by kBT ≈ 0.2ε. Nab does not go dramatically to zero,
but rather, exhibits a very long decay towards zero start-
ing at temperatures around kBT ≈ 0.25ε. This indicates
the generally disordered states far from the ground state
configuration that dominate the thermodynamics at high
temperature.

V. RESULTS FOR KAGOMÉ LATTICE ICE

For spin ice on a Kagomé lattice, the dynamics was also
tested on systems of sizes 16× 16 and 32× 32 with open
boundaries. We used the same energy parameters, d =
k1 = 0.1 and k3 = 0.5, that is, similar to Model C in Ref.
19. The parameters for running the dynamics (time step,
sampling rate, total samples, etc.) were set to the same
values as those for the square ice simulations. However,
due to the more complex lattice structure, the dipolar
interactions were taken into account by a numerical sum
over the whole system, rather than the accelerated FFT
approach. This means the execution is slower. As for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
k

B
T / ε

0

10

20

30

40

χ

16x16
32x32

Kagomé ice
d=k

1
=0.1, k

3
=0.5

χ
xx

10 × χ
zz

FIG. 11: The magnetic susceptibility components for the
Kagomé lattice spin ice model, as obtained from fluctuations
of the magnetization. With the in-plane component dominat-
ing, the out-of-plane susceptibility has been scaled up by a
factor of 10.

square ice, most simulations were carried out by starting
at the highest temperature and using the final state of
one temperature as the initial state of the next lower
temperature. Some typical final states are shown in Sec.
VI.

Results for the specific heat and internal energy per
dipole are displayed in Fig. 10. For Kagomé ice the tran-
sition to a more ordered state occurs near the tempera-
ture kBT/ε ≈ 0.07, about one third of the transition tem-
perature in square ice with the same interaction param-
eters. There can be two reasons for this. First, a dipole
in the Kagomé system has only three nearest neighbors,
compared to four for square ice. This reduces the ef-
fective strength of dipolar interactions and their ability
to bring the system into an ordered state. Second, the
Kagomé system has a much stronger geometric frustra-
tion that prevents it from condensing easily into one of
its ground states. Of course, with six ground states to
choose from, and these related to each other by fairly sim-
ple rotational symmetries, it is nearly impossible to move
into one of them over the whole extent of the system.
Therefore, the low-temperature phase obtained in these
simulations of cooling the system from higher tempera-
tures leads to strong frozen-in disorder. This is confirmed
by the other measures we have calculated, as discussed
below.

The temperature dependence of magnetic susceptibil-
ity components is shown in Fig. 11. The in-plane com-
ponent χxx shows a strong peak at approximately the
same temperature where the peak in specific heat occurs.
There may be a finite size effect, as the peak is stronger
in the larger system. The out-of-plane component χzz

shows only a very broad plateau, while being consider-
ably weaker than χxx. This difference in magnitudes is
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FIG. 12: Monopole charge densities in 16×16 Kagomé lattice
spin ice as functions of temperature. Similar results were
obtained for a 32 × 32 system. Total discrete pole density is
the sum of single poles (q = ± 1

2
) and triple poles (q = ± 3

2
).

Part (a) shows the low-temperature dependence and sudden
changes near kBT/ε ≈ 0.07 . Part (b) shows the behavior
going towards the high-temperature asymptotic values ρ1 =
ρ3 = 3

8
discussed in the text.

due to the large value of planar anisotropy (k3 = 0.5)
relative to the uniaxial anisotropy (k1 = 0.1), that limits
the size of z-components of the dipoles.

An indication of the behavior of the nearest neighbor
correlations in Kagomé ice is shown in Fig. 13, where
C1(T ) as defined in Eq. (33) is plotted. The correla-
tion C1(T ) gives a measure of local projection onto the
Ψ1±

gs ground states, but only if taken in conjunction with
C2(T ) and C3(T ). That is, if all primitive cells of the
system go to the state Ψ1+

gs or Ψ1−
gs , then the values

C1 = 1, C2 = 0, C3 = 0 result. In this simulation,
however, all three measures, C1(T ), C2(T ), and C3(T )
take the temperature dependence seen in Fig. 13. Sig-
nificantly, none of the three moves toward the value 1.0
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FIG. 13: Averaged near neighbor correlations C1(T ) for
Kagomé lattice spin ice, as defined in Eq. (33). The results
for the other correlations C2(T ) and C3(T ) are essentially the
same. If the system condensed into either the Ψ1+

gs or Ψ1−
gs

ground states, one would obtain C1 = 1, C2 = C3 = 0.

as T → 0. Rather, they move towards a value close to
1.38 at zero temperature. This indicates that rather than
becoming oriented with cos−1(− 1

2 ) = 120◦ angular devi-
ations as in a ground state, the neighboring dipoles tend
to have a different average relative orientation. That is,
they may be considered to have an average near neighbor
deviation closer to cos−1(− 1.38

2 ) ≈ 134◦. That would be
an extra misalignment of neighbors (towards being more
anti-aligned), at the expense of extra uniaxial anisotropy
energy (due to K1 energy not being minimized). Also
note, all the correlations Cab(T ), Cbc(T ) and Cac(T ) be-
have the same as C1(T ), but with half the amplitude.

Further indications of the local dipolar order can
be seen in the probability distributions for local order
parameters on magnetic sublattices, za, zb, zc and the
derived quantities for proximity to the ground states,
z1, z2, z3, see Eq. (40). Consider the probability distribu-
tions at different temperatures found for pa(za), shown
in Fig. 14. The probability densities are shown relative
to their maximum values. At high temperature the wide
parabolic form resembles the distribution of za as found
in square ice, Fig. 6. Recall that this parabolic form is
mostly due to a Boltzmann factor like exp{K1z

2
a/kBT },

due to the competition of the uniaxial energy with the
temperature. As the temperature is lowered, however,
there is not a collapse of the distribution to one side or
the other, as appeared in square ice. Instead, the limiting
states za = −1 and za = +1 remain nearly equally prob-
able, even at very low temperature. The distribution of
za (and also zb and zc, not shown) remains nearly sym-
metric. The system does not move into a ground state,
even in a local sense. This clearly is a manifestation of
the geometric frustration.

The distribution of z1 is shown in Fig. 15, again for a
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FIG. 14: The raw probability distribution of a-sublattice or-
der za, Eq. (36), for Kagomé spin ice in (a) a 16 × 16 system
and (b) a 32×32 system. The probabilities are scaled by max-
imum values to bring out the individual details. Labels on
curves give the dimensionless temperature. The distribution
changes from wide at high temperature (curvature controlled
by the uniaxial anisotropy K1 relative to thermal energy) to
being split into two limiting ranges as the temperature is low-
ered. Very similar distributions hold for zb and zc on the
other sublattices.

set of temperatures. The quantities z1, z2, z3 give mea-
sures of the local proximity of the dipoles to a ground
state configuration. The quantity z1 for an individual
dipole would take the value z1 = +1, for instance, to-
gether with z2 = z3 = 0, if a dipole were oriented as in
the ground state Ψ1+

gs . Of course, the randomness in the
system leads to a wide distribution of z1, and similarly, of
z2 and z3 for projections into the other ground states. At
high temperatures, the distribution of z1 shown in Fig. 15
is close to triangular. A perfect triangle would result from
Eq. 41 if the distributions of zb and zc were perfectly uni-
form from −1 to +1. Because there is a slight curvature
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FIG. 15: Examples of the derived probability distribution
of the local order parameter z1, see Eq. (40) and Eq. (41),
scaled by maximum values, for Kagomé lattice spin ice, in
(a) a 16 × 16 system and (b) a 32 × 32 system. Note that it
is derived from distributions of sublattice variables zb and zc.
Different curves are labeled by the dimensionless temperature.
The distribution changes from wide at high T (a triangular
shape results from uniform pb(zb) and pc(zc) in extreme high-
T limit) to being split into three branches at low T ( z1 near
0,±1). There is no relaxation into a pure ground state.

in pa(za), and similarly in pb(zb) and pc(zc), the distribu-
tion for z1 at high temperature becomes a slightly curved
triangular shape. This distribution peaks at z1 = 0 and
goes to zero weight at z1 → ±1. The form indicates that
the system is far from a ground state. For lower temper-
atures, the distribution of z1 acquires a strong narrow
peak around z1 = 0 and peaks about half as strong at
z1 = ±1. Note that the corresponding curves for p2(z2)
and p3(z3) are essentially the same as that for p1(z1).
The system does not condense into a particular ground
state, which would have been indicated by having only
one peak in each distribution. The low-temperature dis-
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FIG. 16: System order parameters for ground state pro-
jections, for 32 × 32 Kagomé lattice spin ice, as defined
in Eq. (20). At high temperatures there is no order and
Z1 = Z2 = Z3 = 0. At lower temperatures only a very slight
global ordering of the system is taking place. If the system
condensed into the Ψ1+

gs ground state, for instance, one would
obtain limiting values Z1 = 1, Z2 = Z3 = 0.

tribution is indicative that the dipoles are about equally
likely to be in any of the six possible ground states.

The order parameters Z1, Z2, Z3 measure the tendency
of the global system to be ordered as one of the ground
states, see the definition Eq. (20). Their behavior with
temperature is indicated in Fig. 16, for the 32×32 system.
For high temperatures, there is no particular ordering
close to any ground state, and all three parameters are
zero. If the system were to move into the Ψ1+

gs ground
state, for instance, the parameters take on the values
Z1 = 1, Z2 = Z3 = 0. But as the temperature is lowered,
there are only very slight deviations in these parameters
away from zero, hardly significant relative to the error
bars. This is totally consistent with the above results for
the distributions of the local order parameters z1, z2, z3.
Overall, the geometrical frustration significantly prevents
movement of the system into any region of phase space
near one of the ground states, when bringing the temper-
ature from higher to lower values.

VI. DISCUSSION AND CONCLUSIONS

These studies consider the spin ice islands as dipoles
of fixed magnitude that change directions in response to
local uniaxial anisotropy (K1), a planar anisotropy (K3),
and the long range dipolar interaction (D). The thermo-
dynamic properties within this approximation have been
investigated by studying the Langevin dynamics of the
system.

An overview of dipolar configurations in 16×16 square
ice is shown in Fig. 17, for dimensionless temperatures

kT=0.50   E=-37.505   n1=93   nm=3

512 Spins qm=99, np=96, sgl=93, multi=3 State 53/102

kT=0.20    E=-216.696    n1=30    nm=1

512 Spins qm=32, np=31, sgl=30, multi=1 State 83/102

kT=0.01    E=-341.754    n1=0    nm=0

512 Spins qm=0, np=0, sgl=0, multi=0 State 102/102

FIG. 17: Dipole configurations in 16× 16 square ice, for tem-
peratures (a) T = 0.50, (b) T = 0.20, (c) T = 0.01 . Blue
(red) indicates + (−) µz components. Small circles indicate
monopole charges, larger circles are double charges.
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kT=0.30    E=21.343    n1=100    nm=20

212 Spins qm=80, np=120, sgl=100, multi=20 State 73/102

kT=0.10    E=-15.733    n1=118    nm=2

212 Spins qm=62, np=120, sgl=118, multi=2 State 93/102

kT=0.01    E=-40.101    n1=120    nm=0

212 Spins qm=60, np=120, sgl=120, multi=0 State 102/102

FIG. 18: Dipole configurations in 16 × 16 Kagomé ice, for
temperatures (a) T = 0.30, (b) T = 0.10, (c) T = 0.01. Blue
(red) indicates + (−) µz components. Small circles indicate
single charges q = ± 1

2
, larger circles are triple charges q = ± 3

2
.

T = 0.50 (above the possible phase transition), T =
0.20 (just below the transition) and T = 0.01 (nearly in
the ground state). Note that at T = 0.01, the dipoles
alternate direction along any row or column, as expected
in one of the ground states. At the higher temperatures,
circled plus and minus signs indicate discrete monopole
charges. The larger circles are the double charges.

For Kagomé ice, similar plots are shown in Fig. 18
for T = 0.30 (well above the possible phase transition),
T = 0.10 (barely above the transition) and T = 0.01
(very low temperature). Smaller circled plus or minus
signs are single charges (q = ± 1

2 ) and larger circles are
triple charges (q = ± 3

2 ). At T = 0.01, the system is
totally filled with single charges, however, in a ground
state they would alternate in sign between every bond of
the lattice.

For square ice, at very high temperature, the
charge densities for singly-charged and doubly-charged
monopoles found in simulations go toward the expected
asymptotic values, ρ1 → 1

2 , ρ2 → 1
4 , and total density

ρ → 3
4 . Cooling the system from higher towards lower

temperature results in the system approaching one of the
ground states, by a random choice between the two. The
evidence for this comes from different measured param-
eters, including the monopole charge densities ρ1 and
ρ2, the order parameter Z, the near neighbor correlation
Nab, and the probability distribution of local order pa-
rameters za, zb and z. The order parameter approaches
Z = ±1, the correlations tend to the value Nab = 1, and
the probability distribution for z becomes asymmetric
with a peak near either z = −1 or z = +1. The system
smoothly moves towards one or the other ground state as
T → 0 without any strong frustration. Essentially a sim-
ilar effect is found in experiments of annealed artificial
square spin ice by Zhang et al.14, where a typical system
breaks up into domains corresponding to the two ground
states, with domain sizes increasing with the strength of
the dipolar interactions.

For Kagomé ice, at very high temperature, the charge
densities in simulations go to their expected asymptotic
values, ρ1 → 3

8 for single charges, and ρ3 → 3
8 for triple

charges, with total density ρ → 3
4 . The total asymptotic

density is the same as in square ice. As functions of in-
creasing temperature, triple charges are generated at the
expense of single charges. Conversely, as the tempera-
ture is lowered, the Kagomé system does not move easily
to one of its six ground states, not even in any limited
(local) sense. We have characterized this frustrated dy-
namics by various measures, including the near neighbor
correlations between magnetic sublattices Cab, Cbc, Cac,
the correlations related to ground state order, C1, C2, C3,
the order parameters on sublattices Za, Zb, Zc and their
counterparts Z1, Z2, Z3, and also the probability distri-
butions for local order parameters za, zb, zc and z1, z2, z3.
Surprisingly, the zero temperature limit for the correla-
tions is C1 = C2 = C3 → 1.38, with Cab, Cbc and Cac

going to half this value. These do not present the val-
ues expected of a ground state. Similarly, the probability
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distributions for z1, z2, z3 have three peaks in the limit
of low temperature, and none of the order parameters
Z1, Z2, Z3 become anywhere close to ±1, showing that
the system remains far from a ground state. This is in
stark contrast to the result Z → ±1 at low temperature
found for square ice, Fig. 8. With the set of six inde-
pendent ground states and rotational symmetry of the
Kagomé system, such freedom in phase space makes it
nearly impossible to relax directly to one of the ground
states over any large system.

Experiments on Kagomé ice by Zhang et al.14 have ver-
ified the appearance of a magnetic charge crystallization
(state of ordered monopole charges), similar to the sim-
ulations here. This is a state like that in Fig. 18c, where
even for low temperature, the monopole magnetic charges
are somewhat ordered, however, the underlying spin dis-
order topologically forces a certain degree of charge dis-
order, which is observed. Montaigne et al.22 have noted

the difficulty to reach the spin ice II state of charge order
with spin disorder. Our simulations confirm this diffi-
culty, and indeed, once the temperature is low enough,
the magnetic charge arrangement can become frozen into
a state whose underlying spins are far from the six ground
states, even on a local length scale. Based on our re-
sults here, it may be the case that the spin-ice II state
is difficult to achieve, exactly due to the extra spin order
degrees of freedom (i.e., six ground states) compared to
the degrees of freedom for charge order (two states due
to the bipartite hexagonal lattice for the charges).
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2 G. Möller and R. Moessner, Phys. Rev. Lett. 96, 237202
(2006).

3 L.A. Mól, R.L. Silva, R.C. Silva, A.R. Pereira, W.A.
Moura-Melo, and B.V. Costa, J. Appl. Phys. 106, 063913
(2009).

4 S. Ladak, D.E. Read, G.K. Perkins, L.F. Cohen, and W.R.
Branford, Nat. Phys. 6, 359 (2010).

5 E. Mengotti, L.J. Heyderman, A.F. Rodriguez, F. Nolting,
R.V. Hugli, and H.B. Braun, Nat. Phys. 7, 68 (2011).

6 J.P. Morgan, A. Stein, S. Langridge, and C. Marrows, Na-
ture Phys. 7, 75 (2011).

7 L.A.S. Mól, W.A. Moura-Melo, and A.R. Pereira, Phys.
Rev. B 82, 054434 (2010).
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