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The uniform states of a model for one-dimensional chains of thin magnetic islands on a nonmag-
netic substrate coupled via dipolar interactions are described here. Magnetic islands oriented with
their long axes perpendicular to the chain direction are assumed, whose shape anisotropy imposes a
preference for the dipoles to point perpendicular to the chain. The competition between anisotropy
and dipolar interactions leads to three types of uniform states of distinctly different symmetries,
including metastable transverse or remanent states, transverse antiferromagnetic states, and lon-
gitudinal states where all dipoles align with the chain direction. The stability limits and normal
modes of oscillation are found for all three types of states, even including infinite range dipole in-
teractions. The normal mode frequencies are shown to be determined from the eigenvalues of the
stability problem.
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I. ARRAYS OF MAGNETIC ISLANDS

Artificial spin lattices can be fabricated from thin elon-
gated magnetic islands arranged on a nonmagnetic sub-
strate, such as in one-dimensional (1D) artificial spin
chains [1–3] and two-dimensional (2D) artificial spin ice
systems[4]. The competition of strong shape anisotropy
with dipolar interactions in artificial spin ice with two-
state Ising-like [5, 6] dipoles leads to a ground state that
follows an ice rule [7–9], with antiferromagnetic order in
square artificial spin ice. There are also metastable ex-
cited remanent states of nonzero average magnetic mo-
ment, that result from the application of an applied mag-
netic field which is slowly turned off. The different low
energy ground and remanent states possess distinctive
modes of oscillation relative to those states [10–13], that
can serve as signatures [14, 15] of those states.

In particular for 1D artificial spin systems, Östman et
al. [2] fabricated and analyzed chains of mesoscopic mag-
netic islands with strong shape anisotropy (due to a high
aspect ratio), which causes the effective spins to behave
as Ising-like. Nguyen et al. [1] considered how slight
changes from 1D to quasi-2D lattice structure can affect
the lowest states of artificial Ising spins, especially due
to the geometric dependence of the dipole interactions.
Cisternas et al. [3] considered a model for a chain of a
few coupled XY magnetic dipoles with rotational inertia
(magnetic charges on dumbbells with one angular coor-
dinate) and the stability of its dynamic solutions. Al-
ternatively, we consider a model for a chain of artificial
spins with easy-plane shape anisotropy and weak uni-
axial shape anisotropy within the easy plane, such that
their behavior is not Ising-like, but rather, more closely
described by three-component Heisenberg-like [16, 17]
dipoles. This model applies to a set of thin and some-
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FIG. 1: The three uniform states of a chain of elongated
magnetic islands separated by lattice constant a, with long
axes perpendicular to the chain direction.

what elongated magnetic islands fabricated on a nonmag-
netic substrate. The possible stable and metastable uni-
form states are analyzed for varying uniaxial anisotropy
strength K1 of the individual islands, relative to the ef-
fective strength of nearest neighbor dipole interactions,
D. For fixed island shapes and center-to-center separa-
tions a, the energy constants K1, D and an easy-plane
anisotropy strength K3 are determined by the thickness
and aspect ratio of the islands [18]. However, K1 and D
might be modified post-fabrication by pressure or elastic
strain [19], or other yet to be found methods.

The chain is taken along the x-direction, with elon-
gated magnetic islands whose long axes are arranged per-
pendicular (along y) to the chain, see Fig. 1. This is in-
spired by the geometry of a row of islands in artificial
square lattice spin ice, however, the physics is different
due to the one-dimensionality and the geometrical depen-
dence of the dipolar interactions. The most interesting
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effects take place for relatively weak uniaxial anisotropy
K1 relative to D, that would correspond to slightly elon-
gated islands, as shape anisotropy is the result of unequal
demagnetization effects along the short and long axes of
the islands. The Heisenberg-like island dipoles are as-
sumed to be of fixed magnitude and able to point in any
direction, but have energetic preferences for staying in
the plane of the substrate, and for aligning with the is-
lands’ long axes.
With long axes perpendicular to the chain, the islands’

dipole moments will tend to point perpendicular to the
chain direction to minimize the shape anisotropy energy.
Then nearest neighbor dipolar interactions will impose a
transverse alternating or antiferromagnetic (AFM) state
(neighboring dipoles along ±ŷ) for simultaneously mini-
mizing the dipolar energy. This AFM y-alternating state,
depicted in Fig. 1, is reminiscent of a row in a ground
state of square lattice artificial spin ice.
Other possible uniform states are depicted in Fig. 1.

If a uniform magnetic field is applied perpendicular to
the chain, and then turned off, it can leave the system in
a corresponding metastable remanent or y-parallel state,
where the dipoles either all point along +ŷ or all along
−ŷ, with ferromagnetic order transverse to the chain.
A uniform magnetic field applied parallel to the chain,
and then turned off, could leave all the dipoles uni-
formly aligned with the chain direction, in an x-parallel
state, with ferromagnetic order longitudinally along the
chain, but only if dipolar interactions dominate over the
shape anisotropy (D larger than K1). Nonuniform ex-
cited states, such as single dipole reversals from any of
the uniform states, are not considered here.
The calculations here determine the static structure,

the conditions for stability, and the linearized normal
modes of oscillation for all three uniform states. The
stability analysis gives eigenvalues that are shown to con-
nect directly to the dynamic mode frequencies. The de-
scription here is initially developed for a nearest neigh-
bor model, and then extended to include infinite range
dipolar interactions for an infinite chain. The analysis
is based on classical undamped spin dynamics, treating
each island as a single macro-magnetic moment in the
macrospin approximation used previously by Wysin et
al.[20, 21] and by Iacocca et al.[10]. While the macrospin
assumption is certainly an approximation for a real-life
magnetic island structure, the calculations should give
some reasonable representation of what could happen in
this type of engineered magnetic array, especially for ade-
quately spaced islands where the neighbors’ dipolar fields
are quasi-uniform within an island [22].

II. THE MAGNETIC ISLAND MODEL

The dipoles are initially assumed to interact via near-
est neighbor dipole interactions, together with uniaxial
anisotropy (along ŷ, parameter K1 > 0) perpendicular to
the chain and easy-plane anisotropy (xy-plane, parame-

ter K3 > 0) as expected for thin islands of soft magnetic
material on a substrate. The 1D chain has N dipoles
µSn, where Sn are three-component dimensionless unit
spin vectors separated by lattice constant a. The nearest
neighbor dipolar interaction constant is

D =
µ0µ

2

4π a3
. (1)

The Hamiltonian for the chain is

H =
N∑

n=1

{D [Sn · Sn+1 − 3(Sn · x̂)(Sn+1 · x̂)]

−K1 (S
y
n)

2 +K3 (S
z
n)

2
}
. (2)

The dipolar interactions make neighboring dipole prefer
to be perpendicular to the chain direction and antipar-
allel to each other. The system can be analyzed as a
two-sublattice problem. This is most relevant for the y-
alternating states. Therefore, we introduce A and B sub-
lattices, for the odd and even sites, respectively. Let the
spins now be labelled as Sn → An, and Sn+1 → Bn+1,
for n = 1, 3, 5, ...N . A two-spin cell becomes the basic
unit in the Hamiltonian.

A. The uniform low energy states

Initially, the static low-energy states are to be found.
Those have uniform aligned spins on each sublattice. Let
sublattice spin vectors A and B define the state. A pair
of neighboring sites has two bonds and anisotropy terms
for both sites. The two-site Hamiltonian HAB is twice
the energy per site u:

HAB = 2u =2D [A ·B− 3(A · x̂)(B · x̂)]
−K1

(
A2

y +B2
y

)
+K3

(
A2

z +B2
z

)
. (3)

It is convenient to express the spins using out-
of-plane and azimuthal angles (θ, φ) as in S =
(cos θ cosφ, cos θ sinφ, sin θ), which gives

HAB =2D [sin θA sin θB

+cos θA cos θB(−2 cosφA cosφB + sinφA sinφB)]

−K1

(
cos2θA sin2φA + cos2θB sin2φB

)
+K3

(
sin2θA + sin2θB

)
(4)

Minimization of HAB with respect to the four angles
leads to the possible states. The islands are thin along
the z-direction, which causes strong easy-plane (K3)
anisotropy so that static solutions are planar, having
θA = θB = 0. Deviations of θA and θB away from
zero are assumed in the stability analysis (Sec. II B) and
are present in the dynamic solutions (Sec. III). There
remains,

∂HAB

∂φA
=2 {D(2 sinφA cosφB + cosφA sinφB)

−K1 sinφA cosφA} = 0, (5)
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together with the same relation with A and B inter-
changed. These equations have three physically dis-
tinct uniform-state solutions: (1) x-parallel states, with
φA = φB = 0 or φA = φB = π; (2) y-parallel states,
with φA = φB = ±π

2 ; and (3) y-alternating states,
with φA = −φB = ±π

2 . All are doubly degenerate.
The x-parallel states have large anisotropy energy, while
reducing their dipolar energy, while the y-alternating
states tend to have low anisotropy energy and low dipo-
lar energy. The y-parallel states are intermediate; their
anisotropy energy is low but their dipolar energy is high.
An indication of the stabilities of these states is ob-

tained from the resulting energies per AB pair. Consider
planar states with θA = θB = 0. For aligned sublattices
(φA = φB), the two-site energy HAB(φA, φB) becomes

HAB(φA, φA) = −4D+ 2(3D −K1) sin
2φA. (6)

This suggests that an x-parallel state (say, φA = φB = 0)
will be destabilized when K1 > 3D, because any small
deviation in φA will lower the energy. At the same time,
it suggests that a y-parallel state (say, φA = φB = π

2 ) will
be destabilized when K1 < 3D. A similar analysis can
be applied to states with antialigned sublattices (φA =
−φB), where the two-site energy is

HAB(φA,−φA) = −4D+ 2(D −K1) sin
2φA. (7)

Considering small deviations around φA = 0, this shows
the x-parallel states to be stable for K1 < D, but unsta-
ble for K1 > D. Considering instead deviations around a
state with φA = π

2 indicates that the y-alternating states
will be unstable for K1 < D but stable for K1 > D.
The per-site energies u(φA, φB) = 1

2HAB and stability
requirements are summarized as follows:

x-parallel: u(0, 0) = −2D, K1 < D,

y-parallel: u
(
π
2 ,

π
2

)
= −K1 +D, K1 > 3D,

y-alternating: u
(
π
2 ,−π

2

)
= −K1 −D, K1 > D. (8)

These estimates from the nearest neighbor model are
plotted as functions of K1 for fixed D in Fig. 2. The
y-parallel states become lower than x-parallel when they
appear at K1 > 3D, and the y-alternating states are
lower than both x-parallel and y-parallel when they ap-
pear at K1 > D. The y-parallel states apparently
are metastable, falling between the other two states for
K1 > 3D. Starting from an alternating state, the system
might arrive at a y-parallel state through the application
of an external magnetic field along y, which is then re-
moved, making it a remanent-like state. Such a state is
expected to be locally stable against small perturbations
even though lower energy states exist below it.

B. Planar state energetic stability?

The states found above must have a requirement on
the easy-plane anisotropy (K3) needed to maintain lo-
cal energetic stability (against weak perturbations). It is
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FIG. 2: The static per-site energy densities u of the three
planar metastable states, versus scaled uniaxial anisotropy.
The x-parallel state is stable only for K1 < D, y-alternating
only for K1 > D, and y-parallel only for K1 > 3D. Double
(single) lines indicate local stability (instability) against weak
perturbations. Dynamic stability is shown to require K3 >
−D for all three states.

important to consider small in-plane (φA, φB) and out-of-
plane (θA, θB) deviations of the dipoles around each state
to get a view of their local energetic stability. Let the in-
plane angles become φA → φ̄A +φA and φB → φ̄B +φB ,
and the out-of-plane are θA, θB, where the overbar in-
dicates the original state, and the other angles are the
deviations. In linear stability analysis, HAB is expanded
to quadratic order in the deviations. The energies of in-
plane and out-of-plane deviations separate, with

HAB = H̄ +Hφ +Hθ, (9)

where H̄ is the unperturbed state energy and Hφ and Hθ

are the deviation energies.

1. Stability of x-parallel states

In the x-parallel state with φ̄A = φ̄B = 0 and H̄ =
−4D, the two-site deviation energies are

Hφ = (2D −K1)
(
φ2A + φ2B

)
+ 2DφAφB,

Hθ = (2D +K3)
(
θ2A + θ2B

)
+ 2DθAθB. (10)

These can be placed into matrix form, defining deviation
vectors,

ψθ ≡
(
θA
θB

)
, ψφ ≡

(
φA
φB

)
. (11)

Then the deviation energies can be written as Hφ =

ψ†
φMφψφ and Hθ = ψ†

θMθψθ, where there is a symmetric
matrix for each part. The out-of-plane matrix is

Mθ =

(
Mθ,0 Mθ,1

Mθ,1 Mθ,0

)
=

(
2D +K3 D

D 2D +K3

)
(12)
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Any instability of the x-parallel state will be exhibited as
excitation of an eigenvector ofMθ with a negative energy
eigenvalue. Considering the eigenvalue problem written
as Mθψθ = σθψθ, the eigenvalues σθ are obtained by

(Mθ,0−σθ)
2−M2

θ,1 = 0 =⇒ σ±
θ =Mθ,0±Mθ,1. (13)

There are symmetric and antisymmetric eigenvectors and
their eigenvalues,

ψ±
θ = 1√

2
(1,±1), σ+

θ = 3D+K3, σ−
θ = D+K3. (14)

Both eigenvalues are real and positive, provided K3 >
−D. If a deviation state is expressed as a linear combi-
nation, ψθ = c+θ ψ

+
θ + c−θ ψ

−
θ , then the energy can only go

upwards if any such deviation occurs:

Hθ =
∣∣c+θ ∣∣2 σ+

θ +
∣∣c−θ ∣∣2 σ−

θ . (15)

The x-parallel state is absolutely stable with respect to
out-of-plane fluctuations for any K3 > −D. Even when
K3 = 0, dipolar interactions alone provide a sufficient
easy-plane anisotropy to guarantee planar stability
For in-plane deviations, the matrix is

Mφ =

(
Mφ,0 Mφ,1

Mφ,1 Mφ,0

)
=

(
2D −K1 D

D 2D −K1

)
.

(16)
As the matrix has the same symmetric form as Mθ, it
has the same symmetric and antisymmetric eigenvectors,
but with different eigenvalues,

ψ±
φ = 1√

2
(1,±1), σ+

φ = 3D−K1, σ−
φ = D−K1. (17)

Both eigenvalues remain positive as long as K1 < D,
which confirms the stability requirement for in-plane de-
viations found earlier for the x-parallel state. The in-
plane instability for K1 > D is antisymmetric, with out-
of-phase sublattice deviations (φA = −φB).

2. Stability of y-parallel (remanent) states

For the y-parallel states (φ̄A = φ̄B = ±π
2 ) with un-

perturbed energy H̄ = 2(D−K1), the deviation energies

Hθ = ψ†
θMθψθ and Hφ = ψ†

φMφψφ are determined again
by symmetric matrices of the same form as encountered
for x-parallel states, see Eqs. (12) and (16), but now the
diagonal and off-diagonal elements for the out-of-plane
deviations are

Mθ,0 = −D +K1 +K3, Mθ,1 = D. (18)

The associated eigenvalues σ±
θ =Mθ,0 ±Mθ,1 are

σ+
θ = K1 +K3, σ−

θ = −2D +K1 +K3. (19)

Both eigenvalues stay positive and maintain stability if

K1 +K3 > 2D. (20)

For in-plane deviations, the matrix elements are

Mφ,0 = −D +K1, Mφ,1 = −2D. (21)

The eigenvalues for symmetric or antisymmetric eigen-
vectors are

σ+
φ = −3D+K1, σ−

φ = D +K1. (22)

σ−
φ is always positive as long asK1 is positive, but σ

+
φ will

only stay positive and insure stability ifK1 > 3D. This is
more restrictive than the out-of-plane energy eigenvalues.
Then y-parallel states are energetically stable only for
K1 > 3D and any K3 > −D, although they are local
minima or meta-stable states.

3. Stability of y-alternating (AFM-ordered) states

For the y-alternating state with φ̄A = π
2 and φ̄B = −π

2

and unperturbed energy H̄ = −2(D + K1), the same
form of matrices again applies to the deviation energies.
The diagonal and off-diagonal matrix elements for out-
of-plane deviations are

Mθ,0 = D +K1 +K3, Mθ,1 = D, (23)

which gives the eigenvalues,

σ+
θ = 2D +K1 +K3, σ−

θ = K1 +K3. (24)

These are always positive so there is no instability with
respect to out-of-plane motions. For in-plane deviations,
the corresponding matrix elements are

Mφ,0 = D +K1, Mφ,1 = 2D, (25)

which gives the eigenvalues that determine stability,

σ+
φ = 3D +K1, σ−

φ = −D +K1. (26)

Here σ+
φ is always positive, but σ−

φ > 0 requires K1 > D
for stability against in-plane fluctuations. One also sees
K3 > −D is the limiting condition for planar stability.
Therefore this energetic stability analysis confirms and

expands upon the results of Eq. (8). At K1 < D, x-
parallel states are the only stable ones. With increasing
K1, the y-alternating states become stable at K1 > D,
exactly at the point where the x-parallel states become
destabilized. Even more interesting is that the y-parallel
states become stable only for K1 > 3D, when their en-
ergy falls below the already unstable x-parallel states,
but above the y-alternating states, see Fig. 2, where lo-
cal stability (instability) is indicated by double (single)
lines. For K1 > 3D, both y-parallel and y-alternating
states are linearly stable against small perturbations. For
planar stability, K3 > −D is required for all three uni-
form states. Thus the original assumption of easy-plane
anisotropy (K3 > 0) can be relaxed, as the dipolar inter-
actions themselves produce a weak easy-plane anisotropy.
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III. NORMAL MODE OSCILLATIONS AROUND
THE STATES

Now the linearized dynamics of the full chain is solved
(beyond the two-site Hamiltonian). It is shown that the
dynamic oscillation mode frequencies are directly con-
nected to the energy eigenvalues above. Any site has two
nearest neighbors that exert torques on it (in the nearest
neighbor approximation). The magnetic dipole vectors
are �µn = µSn, of magnitude µ with dimensionless spin
vectors Sn, and supposing a gyromagnetic ratio γ, they
follow undamped dynamics from Hamiltonian (2), using
dot to indicate time derivative [23],

1

γ
�̇µn = �µn ×

(
− ∂H

∂�µn

)
. (27)

A simplified way to write this is

Ṡn = Sn × Fn, (28)

where the Hamiltonian becomes H = −∑
n Sn · Fn and

the effective magnetic field on a site is Fn = −∂H/∂Sn,

Fn = κ1S
y
nŷ − κ3S

z
nẑ + δ1

∑
k=n±1

[3(Sk · x̂)x̂− Sk]. (29)

The coupling parameters are

κ1 ≡ 2γK1

µ , κ3 ≡ 2γK3

µ , δ1 ≡ γD
µ . (30)

The effective field components are

F x
n = 2δ1

(
Sx
n−1 + Sx

n+1

)
,

F y
n =− δ1

(
Sy
n−1 + Sy

n+1

)
+ κ1S

y
n,

F z
n =− δ1

(
Sz
n−1 + Sz

n+1

)− κ3S
z
n. (31)

The oscillations take place relative to one of the three
metastable states, whose unperturbed spin components
are S̄n =

(
S̄x
n, S̄

y
n, 0

)
, so that

Sn = (S̄x
n + sxn, S̄

y
n + syn, s

z
n), (32)

where sn(t) = (sxn, s
y
n, s

z
n) are the small-amplitude time-

dependent deviations. These can also be expressed in
terms of in-plane and out-of-plane angular deviations.
The equations of motion (28) are linearized in sn(t),
which leads to wave equations for the normal modes for
each type of metastable state.

A. Dynamics in the x-parallel states

In an x-parallel state, S̄x
n = 1 and S̄y

n = 0 hold uni-
formly at all sites. After linearization, the equations of
motion imply sxn = 0 and fixed spin length. The in-plane
and out-of-plane components satisfy

ṡyn =+ δ1
(
4szn + szn−1 + szn+1

)
+ κ3s

z
n,

ṡzn =− δ1
(
4syn + syn−1 + syn+1

)
+ κ1s

y
n. (33)
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FIG. 3: The mode frequencies for a x-parallel state in the
nearest neighbor model, with K3 = 0, and indicated values of
K1 < D. The modes produce instability (ω → 0) at qa = π
as K1 → D.

These are solved by traveling waves of the form syn(t) =
sy exp[i(qna − ωt)] and similar for the z-component,
where sy is an amplitude, q is the wave vector, and ω
is the frequency. The resulting dispersion relation is

ω

4δ1
=

√(
1 + 1

2 cos qa− K1

2D

) (
1 + 1

2 cos qa+
K3

2D

)
. (34)

Examples are plotted in Fig. 3, showing the maximum
frequency at q = 0, and a gap at qa = π that depends on
the anisotropy. That gap goes to zero when instability
occurs. At the limit qa = π, both factors in the square
root in (34) remain positive and imply real frequencies
(and stability) of x–parallel states as long as

K1 < D and K3 > −D. (35)

To the contrary, an imaginary frequency signals insta-
bility if K1 > D or K3 < −D. The latter condition
means that even when K3 = 0 as used in Fig. 3 (i.e., no
easy-plane anisotropy), the dipolar interactions work to
stabilize a planar state of the dipoles. This holds for all
three uniform states, see below.
These conditions on the anisotropy parameters verify

the earlier energetic stability analysis of x-parallel states.
In addition, the point where instability first appears cor-
responds to qa = π for K1 = D, with an excitation that
is out-of-phase on neighboring sites. It agrees with the
finding that the energy eigenvalue σ−

φ = D − K1 asso-

ciated with the antisymmetric eigenvector ψ−
φ becomes

negative for K1 > D, see Eq. (14).

B. Dynamics in the y-parallel states

In a y-parallel state, S̄x
n = 0 and S̄y

n = 1 hold uni-
formly at all sites. Now the deviation syn is zero when
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FIG. 4: The mode frequencies for a y-parallel state in the
nearest neighbor model with K3 = 0, and indicated uniaxial
anisotropies K1. The states require K1 > 3D for real fre-
quencies and stability. The modes produce instability with
K1 < 3D, leading to imaginary ω near qa = 0.

the equations are linearized, and there remains oscillat-
ing in-plane and out-of-plane time-dependent deviations
that follow

ṡxn =+ δ1
(
2szn − szn−1 − szn+1

)− κ13s
z
n,

ṡzn =− 2δ1
(
sxn + sxn−1 + sxn+1

)
+ κ1s

x
n, (36)

where the combined anisotropy constant is κ13 ≡ κ1+κ3.
Traveling waves solve this system. Defining K13 ≡ K1 +
K3, the dispersion relation is

ω

2δ1
=

√(
1 + 2 cos qa− K1

D

) (
1− cos qa− K13

D

)
. (37)

The typical behavior of ω(q) is plotted in Fig. 4 for K3 =
0 and various values of K1. The frequency must remain
real for stability. This requires both factors inside the
square root to be negative, such that their product is
positive. That leads to the conditions for stability of y-
parallel states,

K1 +K3 > 2D and K1 > 3D. (38)

These imply the separated stability requirements,

K1 > 3D and K3 > −D. (39)

The dipolar interactions by themselves already insure
planar stability and easy-plane anisotropy is not essen-
tial.
The value of K1 − 3D controls the size of the gap at

q = 0. On the other hand, once K1 < 3D the uniaxial
anisotropy is too weak to stabilize the y-parallel states.
This is the same stability limit as found in the energy
eigenvalue analysis. Also, the instability takes place now
at qa = 0, where the second factor in the square root of
the dispersion relation changes from negative to positive
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FIG. 5: The mode frequencies for a y-alternating state in the
nearest neighbor model, with K3 = 0, and K1 > D needed for
real frequencies and stability. The modes produce instability
(imaginary ω) for example with K1 = 0.90D near qa = π.

for K1 < 3D. This is reflected in the energy eigenvalue
σ+
φ = −3D + K1 becoming negative for K1 < 3D, and

leading to in-phase in-plane deviations of the dipoles (i.e.,
ψ+
φ ) as the excitation driving the instability. Once y-

parallel becomes unstable, the configuration should tend
towards one of the stable y-alternating states.

C. Dynamics in the y-alternating states

Finally consider the y-alternating state with S̄x
n =

S̄x
n+1 = 0 and S̄y

n = +1, S̄y
n+1 = −1, for n = 1, 3, 5...

It is better to denote the spin deviations by sublattices,
and let sxn → axn and szn → azn on the A-sublattice (odd
sites n) and sxn+1 → bxn+1 with szn+1 → bzn+1 on the
B-sublattice (even sites n + 1). Any deviations in y-
components are zero when the system is linearized. The
dynamic equations on the A-sites are

ȧxn =− δ1
(
2azn + bzn−1 + bzn+1

)− κ13a
z
n,

ȧzn =+ 2δ1
(
axn − bxn−1 − bxn+1

)
+ κ1a

x
n. (40)

With the B-sites in an opposite unperturbed direction,
their time derivative equations have reversed signs,

ḃxn =+ δ1
(
2bzn + azn−1 + azn+1

)
+ κ13b

z
n,

ḃzn =− 2δ1
(
bxn − axn−1 − axn+1

)− κ1b
x
n. (41)

These equations are solved by traveling waves such as
axn(t) = ax exp [i(qna− ωt)] and similar for the other
components, however, it is necessary to form linear com-
binations of the fields on the two sublattices.
Consider the linear combination that is antisymmetric

in-plane but symmetric out-of-plane, defined by

gn = (gxn, g
z
n) ≡ (axn − bxn, a

z
n + bzn). (42)



7

This produces a system in only this one field,

ġxn =− δ1
(
2gzn + gzn−1 + gzn+1

)− κ13g
z
n,

ġzn =+ 2δ1
(
gxn + gxn−1 + gxn+1

)
+ κ1g

x
n. (43)

The resulting dispersion relation for the “g-modes” is

ωg

2δ1
=

√(
1 + 2 cos qa+ K1

D

) (
1 + cos qa+ K13

D

)
. (44)

This is plotted in Fig. 5 for K3 = 0 and various values of
K1. Now the frequency remains real provided both fac-
tors inside the square root remain positive. At the value
cos qa = −1, this leads to the conditions for stability,

K1 +K3 > 0 and K1 > D. (45)

These imply K3 > −D; dipolar interactions by them-
selves can provide planar stability. The condition K1 >
D holds as long as the in-plane energy eigenvalue σ−

φ =
−D + K1 remains positive. Otherwise, when K1 < D,
the modes of y-alternating states will be destabilized by
an excitation at qa = π. Due to the construction of the
g-field, that excitation will contain in-plane components
that are in-phase on the two sublattices, while the out-of-
plane components will be out-of-phase. The destabiliza-
tion will tend to drive the system into one of the (stable)
x-parallel states. The size of the nonzero gap at qa = π
is determined by K1 −D.
Another linear combination that is symmetric in-plane

but antisymmetric out-of-plane can be defined by

hn = (hxn, h
z
n) ≡ (axn + bxn, a

z
n − bzn). (46)

This dynamics of this field is

ḣxn =− δ1
(
2hzn + hzn−1 + hzn+1

)− κ13h
z
n,

ḣzn =+ 2δ1
(
hxn − hxn−1 − hxn+1

)
+ κ1h

x
n. (47)

The “h-modes” here have the dispersion relation

ωh

2δ1
=

√(
1− cos qa+ K13

D

) (
1− 2 cos qa+ K1

D

)
. (48)

One can see that ωh(q) = ωg(q + π
a ). Therefore this

set of solutions is already contained in the g-modes, and
leads to the same condition, K1 > D, for stability of the
y-alternating states.

IV. CONNECTING THE DYNAMIC
FREQUENCIES TO THE ENERGY

EIGENVALUES

In classical mechanics, an out-of-plane spin component
Sz = sin θ is the momentum conjugate to the in-plane
spin angle φ for a site. In the two-sublattice model, the
Hamilton equations of motion are obtained from the en-
ergy HAB by

µ

γ

d

dt
φ =

∂HAB

∂ sin θ
,

µ

γ

d

dt
sin θ = −∂HAB

∂φ
. (49)

The energy HAB = 2u assumes two uniform sublattices,
and gives dynamics of a central A or central B site, with
two AB bonds contributing to the energy. The Hamil-
tonian is like that for a set of coupled oscillators, where
squared θ’s are kinetic energies and squared φ’s are spring
energies. Considering small amplitude oscillations, sin θ
can be replaced by θ for each sublattice. Using states

ψ†
φ ≡ (φA, φB) and ψ†

θ ≡ (θA, θB), the linearized matrix
expressions for HAB = 2u are of quadratic form,

HAB ≈ H̄+ψ†
φMφψφ + ψ†

θMθψθ (50)

= H̄+Mφ,0

(
φ2A + φ2B

)
+ 2Mφ,1 φAφB

+Mθ,0

(
θ2A + θ2B

)
+ 2Mθ,1 θAθB.

The matrix elements appearing here depend on the orig-
inal state (x-parallel, etc., found earlier in II B). The
equations of motion [23] are especially simple in matrix
notation,

ψ̇φ = 2 γ
µMθψθ, ψ̇θ = −2 γ

µMφψφ. (51)

When combined they give separated eigenvalue problems,

ψ̈φ = −ω2ψφ = −
(
2 γ
µ

)2

MθMφψφ,

ψ̈θ = −ω2ψθ = −
(
2 γ
µ

)2

MφMθψθ. (52)

These are identical eigenvalue problems, due to the sym-
metric structure of the matrices, and they determine the
eigenfrequencies. We already know that the eigenvectors
for both matrices are ψ± = 1√

2
(1,±1) and hence also for

their products. That means the φ and θ oscillations have
the same frequencies, determined by the eigenvalues σ of
the Mθ and Mφ matrices,

ω± = 2
γ

µ

√
σ±
θ σ

±
φ . (53)

This necessarily requires that the θ and φ components are
either both in the ψ+ eigenstate or both in the ψ− eigen-
state. It shows how the energy eigenvalues from HAB

connect to the dynamics, and that the state is unstable
if the product σθσφ becomes negative. When ω+ goes to
zero, the instability first appears at qa = 0 (symmetrized
sublattices), but if ω− goes to zero, the instability is at
qa = π (antisymmetrized sublattices).

A. Using the full chain Hamiltonian, nearest
neighbor model

The full N -site chain linearized dynamics comes from
Hamiltonian (2) approximated quadratically in devia-
tions (θn, φn) around one of the stable states. Thus
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putting φn → φ̄n + φn, the Hamiltonian

H =

N∑
n=1

[
D {sin θn sin θn+1 + cos θn cos θn+1 ×
[−2 cos(φ̄n + φn) cos(φ̄n+1 + φn+1)

+ sin(φ̄n + φn) sin(φ̄n+1 + φn+1)
]}

−K1 cos
2θn sin

2(φ̄n + φn) +K3 sin
2θn

]
(54)

is to be expanded. The deviations are vectors of the in-
plane and out-of-plane deviation angles,

ψ†
φ = (φ1, φ2, φ3, ...φN ), ψ†

θ = (θ1, θ2, θ3, ...θN ). (55)

The system Hamiltonian has static state energy H̄ plus
quadratic contributions of deviations involving 0th and

1st neighbors, H ≈ H̄ + ψ†
φMφψφ + ψ†

θMθψθ, or

H ≈ H̄ +
∑
n

[
Mφ,0φ

2
n + 2Mφ,1φnφn+1

+Mθ,0θ
2
n + 2Mθ,1θnθn+1

]
(56)

where the matrices are of tridiagonal form,

Mφ =




Mφ,0 Mφ,1 0 0 ...
Mφ,1 Mφ,0 Mφ,1 0 ...
0 Mφ,1 Mφ,0 Mφ,1 ...
0 0 Mφ,1 Mφ,0 ...
0 0 0 Mφ,1 ...
... ... ... ... ...



. (57)

The diagonal (Mφ,0) and nearest neighbor (Mφ,1) matrix
elements depend on the unperturbed state, see follow-
ing subsections. The linearized equations of motion from
(56) are

µ
γ φ̇n = + ∂H

∂θn
= +2Mθ,0θn + 2Mθ,1(θn−1 + θn+1),

µ
γ θ̇n = − ∂H

∂φn
= −2Mφ,0φn − 2Mφ,1(φn−1 + φn+1).

(58)

These are very compact in matrix notation,

ψ̇φ = 2 γ
µMθψθ, ψ̇θ = −2 γ

µMφψφ. (59)

Each matrix operator has eigenvalues, λ
(m)
φ , λ

(m)
θ , with

Mφψ
(m)
φ = λ

(m)
φ ψ

(m)
φ , Mθψ

(m)
θ = λ

(m)
θ ψ

(m)
θ , (60)

where (m) labels a simultaneous eigenvector of both Mφ

and Mθ. Then the mode eigenfrequencies are

ω(m) = 2
γ

µ

√
λ
(m)
φ λ

(m)
θ . (61)

Due to the symmetric form of the matrices for this 1D
problem, the dynamic mode eigenvalues ω(m) then are
determined from the general energy eigenvalues for devi-
ations around the stable states.

B. The eigenvalues for traveling wave solutions

Consider traveling wave solutions and the eigenvalues
of theM -matrices. With allowed wave vectors on a chain,
q = 2πm/Na, and a parameter r ≡ eiqa, an assumed
solution is

φn = φ rn, θn = θ rn, (62)

where φ and θ without subscripts are wave amplitudes at
some origin n = 0. From (58), one row of the Mφ matrix
acting on ψφ in the eigenvalue problem (60) is

λφ φr
n =

[
Mφ,0 +Mφ,1(r

−1 + r+1)
]
φrn. (63)

The eigenvalues of Mφ and Mθ easily result,

λφ(q) =Mφ,0 + 2Mφ,1 cos qa,

λθ(q) =Mθ,0 + 2Mθ,1 cos qa. (64)

These eigenvalues then can be applied in expression (61)
and the dynamic mode frequencies are determined in the
nearest neighbor model, for each of the stable states, pro-
vided that Mφ and Mθ have been determined. The wave
vector q plays the role of the mode index m.

1. Modes around x-parallel states

For the x-parallel state with φ̄n = 0, the expansion of
(54) leads to H̄ = −2ND and matrix elements,

Mφ,0 = 2D −K1, Mφ,1 = 1
2D,

Mθ,0 = 2D +K3, Mθ,1 =
1
2D. (65)

Then the q-dependent eigenvalues are

λφ(q) = D(2 + cos qa)−K1,

λθ(q) = D(2 + cos qa) +K3. (66)

Using (61), the resulting mode frequencies are

ω(q)

4δ1
=

√
(1 + 1

2 cos qa− K1

2D )(1 + 1
2 cos qa+

K3

2D ), (67)

which are the same as the earlier result (34) obtained
from undamped dynamics.

2. Modes around y-parallel states

In a y-parallel state with φ̄n = π
2 , the expansion of the

Hamiltonian (54) leads to H̄ = N(D − K1), while the
matrix elements are

Mφ,0 = −D +K1, Mφ,1 = −D,
Mθ,0 = −D +K1 +K3, Mθ,1 =

1
2D. (68)
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That means the q-dependent eigenvalues are

λφ(q) = −D(1 + 2 cos qa) +K1,

λθ(q) = D(−1 + cos qa) +K1 +K3. (69)

The y-parallel states require K1 > 3D for stability, so
both of these eigenvalues are positive for any allowed q.
Applying (61), the dynamic mode frequencies are

ω(q)

2δ1
=

√(−1− 2 cos qa+ K1

D

) (−1 + cos qa+ K13

D

)
.

(70)
This agrees with the earlier result (37), although here it
has been written such that both factors inside the square
root are positive when y-parallel is stable.

3. Modes around y-alternating states

For a y-alternating state with φ̄n = (−1)n π
2 , the ex-

pansion of the Hamiltonian (54) gives H̄ = −N(D+K1),
and the matrix elements are

Mφ,0 = D +K1, Mφ,1 = D,

Mθ,0 = D +K1 +K3, Mθ,1 =
1
2D. (71)

The resulting q-dependent eigenvalues are

λφ(q) = D(1 + 2 cos qa) +K1,

λθ(q) = D(1 + cos qa) +K1 +K3. (72)

Both of these eigenvalues are positive for any q as long as
K1 > D, which is the previously found stability require-
ment. The dynamic mode frequencies become

ω(q)

2δ1
=

√(
1 + 2 cos qa+ K1

D

) (
1 + cos qa+ K13

D

)
. (73)

That agrees with the earlier result (44) for the g-modes
of a y-alternating state.

V. INCLUDING LONG-RANGE DIPOLE
INTERACTIONS

Long-range dipole interactions (LRD) can be included
easily in the energy analysis. The dipolar interaction
strength in (2) is D at the nearest neighbor distance a.
This energy factor behaves as 1/r3. So for 2nd near-
est neighbors, the strength will be D/23; for 3rd nearest
neighbors it is D/33, and so on. Along a 1D chain, the
sum of all neighbors’ energies to any distance can be con-
structed.
Only the first neighbor dipole terms were used in Eq.

(54), as indicated in the subscripts n+1. For the contri-
bution of pairs of kth neighbors (at separation distance

ka), the dipolar part of the Hamiltonian is

Hk = D
k3

N∑
n=1

{sin θn sin θn+k + cos θn cos θn+k ×
[−2 cos(φ̄n + φn) cos(φ̄n+k + φn+k)

+ sin(φ̄n + φn) sin(φ̄n+k + φn+k)
]}
. (74)

For kth neighbors, the zeroth, linear and quadratic terms
in angular deviations are obtained by expanding (74),
which is most tractable when done separately for each
meta-state.

A. LRD in x-parallel states

For x-parallel states (φ̄n = 0), expansion of (74) up to
quadratic deviation terms for k ≥ 1 gives

Hk ≈ D
k3

N∑
n=1

(−2 + 2φ2n + φnφn+k + 2θ2n + θnθn+k

)
.

(75)

The first term modifies the unperturbed x-parallel state
energy by an amount H̄k = − 2

k3ND, and the others are
quadratic interactions. This implies shifts to the diago-

nal matrix elements [denoted ∆M
(k)
φ,0 ] and new elements

(Mφ,k) for k
th neighbor couplings,

∆M
(k)
φ,0 = 2D

k3 , Mφ,k = D
2k3 ,

∆M
(k)
θ,0 = 2D

k3 , Mθ,k = D
2k3 . (76)

For example, keeping only 0th, 1st and 2nd nearest neigh-
bors, a row of the eigenvalue problem, Mφψφ = λφψφ,
is

Mφ,0φn +Mφ,1(φn−1 + φn+1) (77)

+Mφ,2(φn−2 + φn+2) = λφφn,

With the x-parallel matrix elements, this becomes

(
2D + 1

4D −K1

)
φn + 1

2D(φn−1 + φn+1) (78)

+ 1
16D(φn−2 + φn+2) = λφφn.

Using the traveling wave solution (62) with φn ∝ rn, the
eigenvalue by including up to 2nd neighbors is

λφ = −K1 +D (2 + cos qa) + 1
8D (2 + cos 2qa) . (79)

The first two terms come from the nearest neighbor
model, see (66). The last term shows the effect of 2nd

neighbor interactions. It contains a shift by 1
4D, as well

a dependence on the doubled wave vector.
Third neighbors will have factors of D

33 and cos 3qa,
and so on for farther neighbors. Assuming a chain of



10

0 0.2 0.4 0.6 0.8 1
qa/π

0

1

2

3

4

5

6

7
ω
/δ

1
K

1 =0.15DK
1 =0.90DK

1 =1.5025D

(x-parallel state, LRD)

near
instability

FIG. 6: Mode frequencies for x-parallel states, including all
long range dipole interactions, with K3 = 0. The modes
produce instability (ω acquires an imaginary part) near qa =
π as K1 → 1.502571 D. The states have a greater range of
stability than in the nearest neighbor model.

infinite length, the eigenvalue is a sum over increasingly
distant neighbor interactions,

λφ =
∞∑
k=1

[
∆M

(k)
φ,0 + 2Mφ,k cos kqa

]
. (80)

For x-parallel states this gives

λφ(q) = −K1 +D
∞∑
k=1

1

k3
(2 + cos kqa)

= −K1 +D [2ζ(3) + Cl3(qa)] . (81)

This is written using the Riemann zeta function, whose
needed value is ζ(3) ≈ 1.20205, combined with a Clausen
function of order 3.
For the out-of-plane eigenvalue, the same procedure

applies, but with −K1 replaced by +K3 (see Eq. 65),

λθ(q) = K3 +D

∞∑
k=1

1

k3
(2 + cos kqa)

= K3 +D [2ζ(3) + Cl3(qa)] . (82)

According to (61), they give the eigenfrequencies,

ω(q)

4δ1
=

√[−K1
2D

+ ζ(3) + 1
2
Cl3(qa)

] [
K3
2D

+ ζ(3) + 1
2
Cl3(qa)

]
.

(83)

This is a simple modification of the frequencies in the
nearest neighbor model, Eq. (67), but where Cl3(qa) re-
places cos qa, and ζ(3) has replaced a factor of 1. Some
typical dispersion relations are shown in Fig. 6.
Stability of the x-parallel state requires both eigen-

values to remain positive for any q. The most negative
value of the Clausen function occurs at qa = π, where
2ζ(3) + Cl3(π) = 1.502571... That means λθ is always

positive, but λφ remains positive and the state is stable
only as long as

K1/D < 1.502571. (84)

That is a 50% increase compared to the nearest neighbor
model.

B. LRD in y-parallel states

The same procedure can be applied to longer range
dipolar interactions for y-parallel states, such as the one
with all φ̄n = π

2 . Consider neighbors at separation dis-
tance ka. From expansion of (74), the dipolar energy of
kth-neighbor pairs to quadratic order in deviations is

Hk ≈ D
k3

N∑
n=1

(
1− φ2n − 2φnφn+k − θ2n + θnθn+k

)
. (85)

The first term modifies the unperturbed y-parallel state
energy by the amount H̄k = 1

k3ND. The other parts
determine the changes to diagonal matrix elements, and
new elements for kth neighbors,

∆M
(k)
φ,0 = − D

k3 , Mφ,k = − D
k3 ,

∆M
(k)
θ,0 = − D

k3 , Mθ,k = + D
2k3 . (86)

As a specific example, when keeping up to 2nd neighbor
dipole interactions, the in-plane eigenequation becomes

(−D +K1 − 1
8D

)
φn −D(φn−1 + φn+1) (87)

− 1
8D(φn−2 + φn+2) = λφφn.

The 3rd neighbors will be similar but with a factor of 1
27 ,

and so on, so that the result including arbitrarily distant
dipole terms is

λφ(q) = K1 −D

∞∑
k=1

1
k3 (1 + 2 coskqa)

= K1 −D [ζ(3) + 2Cl3(qa)] . (88)

The same procedure applies to the out-of-plane system,
but with K1 replaced by K13 and using Mθ,1 = 1

2D in-
stead of Mφ,1 = −D, see Eq. (68). The eigenvalues are

λθ(q) = K1 +K3 +D

∞∑
k=1

1
k3 (−1 + cos kqa)

= K13 +D [−ζ(3) + Cl3(qa)] . (89)

This gives the mode dispersion relation,

ω(q)

2δ1
=

√[
K1
D

− ζ(3)− 2Cl3(qa)][
K13
D

− ζ(3) + Cl3(qa)
]
.

(90)

The dispersion relation is shown in Fig. 7 for a few val-
ues of anisotropy. For stability, both factors within the
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FIG. 7: Mode frequencies for y-parallel states, including all
long range dipole interactions, with K3 = 0. The modes
produce instability (ω has an imaginary part) near qa = 0
as K1 → 3.60617 D from above. For example, y-parallel is
unstable for K1/D = 3, as indicated by the presence of an
imaginary frequency.

square root must be positive. When q = 0, one has
Cl3(0) = ζ(3), which shows that stability requires

K1/D > 3ζ(3) ≈ 3.606, (91)

which is a 20% increase over the stability limit on K1 in
the nearest neighbor model.

C. LRD in y-alternating states

The analysis of y-alternating states, such as the one
with φ̄n = (−1)n π

2 , is different from that for the parallel

states, because 2nd, 4th, etc. neighbor spins are aligned,
while 1st, 3rd, etc. neighbor spins are antialigned.
In a y-alternating state, the in-plane factors in the

dipolar energy Hk [Eq. (74)] for kth neighbor pairs are

sin(φ̄n + φn) sin(φ̄n+k + φn+k) ≈ (−1)k
(
1− 1

2
φ2
n − 1

2
φ2
n+k

)
,

− 2 cos(φ̄n + φn) cos(φ̄n+k + φn+k) ≈ (−1)k (−2φnφn+k) .
(92)

The overall sign on these factors alternates with the sep-
aration, because a pair of dipoles perpendicular to the
chain will lower their energy by being antiparallel. Then
the dipolar energy (74) is approximated as

Hk ≈ D
k3

N∑
n=1

[
θnθn+k +

(
1− 1

2
θ2n − 1

2
θ2n+k

)
(93)

×(−1)k
(
1− 1

2
φ2
n − 1

2
φ2
n+k − 2φnφn+k

)]

≈ D
k3

N∑
n=1

[
θnθn+k + (−1)k

(
1− φ2

n − 2φnφn+k − θ2n
)]

.

From that, the contribution to the energy of the y-

alternating state is H̄k = (−1)k

k3 ND. The shifts in diag-

onal matrix elements and the elements for kth neighbors
are

∆M
(k)
φ,0 = − (−1)kD

k3 , Mφ,k = − (−1)kD
k3 ,

∆M
(k)
θ,0 = − (−1)kD

k3 , Mθ,k = D
2k3 . (94)

Then the sum in (80) gives the in-plane eigenvalues,

λφ(q) = K1 −D

∞∑
k=1

(−1)k

k3 (1 + 2 cos kqa) (95)

This alternating series is obtained from a Clausen func-
tion, at a shifted argument, viz.

Cl3(qa+ π) =

∞∑
k=1

1
k3 cos[k(qa+ π)] (96)

=
∞∑
k=1

1
k3 cos kπ cos kqa =

∞∑
k=1

(−1)k

k3 cos kqa.

With the particular value, Cl3(π) =
∑∞

n=1
(−1)n

n3 ≈
−0.90154..., the eigenvalues are

λφ(q) = K1 −D [Cl3(π) + 2Cl3(qa+ π)] . (97)

For the out-of-plane eigenvalues, a sum like that in (80)
with the corresponding matrix elements gives

λθ(q) = K13 −D

∞∑
k=1

1
k3

(
(−1)k + cos kqa

)

= K13 +D [−Cl3(π) + Cl3(qa)] . (98)

Then the mode dispersion relation is

ω(q)

2δ1
=

[
K1
D

− Cl3(π)− 2Cl3(qa+ π)
]1/2

× [
K13
D

−Cl3(π) + Cl3(qa)
]1/2

. (99)

Note how the factor Cl3(π) for the y-alternating states
replaces Cl3(0) = ζ(3) that appears for y-parallel states,
and there is the shifted argument of the Clausen func-
tion from the in-plane eigenvalue. Example dispersion
relations are shown in Fig. 8. Regarding stability, λθ is
always positive, so instability occurs when λφ becomes
negative. Thus, the requirement on K1 for stable y-
alternating states is

K1

D > [Cl3(π) + 2Cl3(qa+ π)] |qa→π ≈ 1.502571...
(100)

This is the same anisotropy strength above which the
x-parallel state goes unstable.

D. State energies with all dipole interactions

It is important also to get the per-site energy, u =
H/N , including all long range dipole interactions. That
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FIG. 9: The static per-site energies of the three types of
states, when all long-range dipole interactions are included.
The x-parallel states are now stable only for K1 < 1.50257D,
y-alternating for K1 > 1.50257D, and y-parallel for K1 >
3.606D. Double (single) lines indicate local stability (insta-
bility) against weak perturbations.

involves combining the H̄k contributions and anisotropy
contributions. For x-parallel states, the sum is,

u =

∞∑
k=1

−2D

k3
= −2Dζ(3) ≈ −2.404D. (101)

That is −0.404D lower than that from the nearest neigh-
bor model. Along with the wider range ofK1 that insures
stability, this shows that long range dipole interactions
help to stabilize the x-parallel states.

For y-parallel states, the per-site energy is

u = −K1 +

∞∑
k=1

D

k3

= −K1 +Dζ(3) ≈ −K1 + 1.202D. (102)

That is 0.202D higher than found for the nearest neigh-
bor model. Viewed together with the modified stability
requirement, this indicates that long range dipole inter-
actions slightly reduce the stability of y-parallel states.
For y-alternating states, the energy per site becomes

u = −K1 +
∞∑
k=1

(−1)kD

k3

= −K1 +DCl3(π) ≈ −K1 − 0.9015D. (103)

That is 0.0985D higher than found in the nearest neigh-
bor model, because 2nd neighbor dipoles are antialigned
and have high dipolar energy.
The energies of all three states are summarized graphi-

cally in Fig. 9. This analysis indicates that y-parallel and
y-alternating states are both locally stable in the regime
where K1/D > 3ζ(3), even though y-alternating states
have lower energy.

VI. DISCUSSION & CONCLUSIONS

An array of elongated magnetic islands arranged as
in Fig. 1 has been shown to have three uniform states,
whose linear stability depends on the uniaxial anisotropy
strength K1 relative to the nearest neighbor dipolar in-
teraction strength D. The conclusions are reached both
by looking at the behavior of the states’ energy-related
eigenvalues λφ and λθ, and the related frequencies of the
linearized oscillations about the states.
Including infinite range dipole interactions, the states’

linear stability regimes, shown in Fig. 9 with double lines,
are summarized as follows. At very weak anisotropy
(K1 < 1.50257D), the x-parallel states will be the only
stable states, where the dipoles minimize their dipolar en-
ergy with little cost in anisotropy energy. For an interme-
diate range of anisotropy (1.50257D < K1 < 3.606D),
the AFM-ordered y-alternating states have the lowest en-
ergy and become the only stable states. Both the dipo-
lar and anisotropy energies are minimized. For strong
anisotropy (3.606D < K1), the y-alternating states still
have the lowest energy and are stable. The remanent FM-
ordered y-parallel states are locally stable against small
perturbations (they have only positive λφ and λθ eigen-
values), although they are higher in energy than the y-
alternating states by 2.103D. They would be metastable
with respect to strong perturbations. In the y-parallel
remanent states, the anisotropy energy is minimized and
dominates greatly over the non-optimal dipolar energy.
The remanent states could be produced experimentally

by application of a magnetic field transverse to the chain,
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which is slowly turned off. The y-alternating states could
be obtained from a remanent state either by application
of a field along the chain (x) direction, which is then
reduced to zero, or, by a field opposite to the original di-
rection of magnetization. Other switching between states
might be implemented with the help of AC and rotating
demagnetization protocols as used in square and rectan-
gular lattice artificial magnetic ice [24–26] to reach its
various states.
This type of system might be the basis for new de-

tectors or devices, and allows for various ways to con-

trol the design. Although a static island array will have
fixed values of K1 and D, one can imagine these might
be modulated, for example, by applying pressure [19] to
an elastic substrate or other modified new materials. If
the system is designed near one of the critical anisotropy
points (K1 ≈ 1.50257D or K1 ≈ 3.606D), it might be
possible to induced a strain in the medium that shifts the
stability point between two of the states. Alternatively,
application of magnetic fields may be sufficient to control
switching between the y-alternating and y-parallel states.
These effects invite further investigation.
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