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The Faraday rotation in metallic nanoparticles is considered based on a quantum model for the
dielectric function ε(ω) in the presence of a DC magnetic field B. We focus on effects in ε(ω) due
to interband transitions (IBTs), which are important in the blue and ultraviolet for noble metals
used in plasmonics. The dielectric function is found using the perturbation of the electron density
matrix due to the optical field of incident electromagnetic radiation. The calculation is applied to
transitions between two bands (d and p, for example) separated by a gap, as one finds in gold at
the L-point of the Fermi surface. The result of the DC magnetic field is a shift in the effective
optical frequency causing IBTs by ±µBB/~, where opposite signs are associated with left/right
circular polarizations. Faraday rotation for a dilute solution of 17 nm diameter gold nanoparticles
is measured and compared with both the IBT theory and a simpler Drude model for the bound
electron response. Effects of the plasmon resonance mode on Faraday rotation in nanoparticles are
also discussed.
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I. INTRODUCTION: FARADAY ROTATION
ENHANCEMENT AND PLASMON MODES

There is great interest to design new materials with
enhanced Faraday rotation1 (FR); these media2,3,4,5 are
good candidates for applications like field detectors,
phase modulators and optical isolators. Nanoparticles
(NPs) of radius a much less than the wavelengths λ of
the electromagnetic (EM) radiation are particularly in-
teresting possibilities,6 because one hopes to be able to
tune their fundamental physical properties that deter-
mine the dielectric permittivity ε(ω), which influences
the FR signal. Further, metallic NPs or NPs with metal-
lic shell coatings have a surface plasmonic mode7 where
the electron response is greatly enhanced, which leads
to increased FR response.8 In magnetic core NPs with
metallic shell coatings the surface plasmonic mode in-
teracts with a transition in the magnetic core, which is
another process that leads to enhanced FR.9 Faraday
rotation and circular dichroism in NP aggregates of var-
ious geometries10 offers promise for control of magneto-
optical effects. Backscattering of light in disordered me-
dia may lead to enhanced Faraday rotation effects.11

It is simplest to use a classical Drude term to rep-
resent approximately the dielectric response of bound
electrons,8 or even ignore the bound electron dynamic
response,12 however, these approaches do not describe
the dielectric properties well at higher frequencies. Hui
and Stroud13 have considered the FR response of a dilute
suspension of small particles, with a Drude approxima-
tion for NP dielectric function. It is the goal here to com-
pare a classical phenomenological Drude approach with
a quantum model appropriate for noble metals such as
gold,14,15 where interband transitions (IBTs) take place
from d to sp bands at the L-point.16 We consider a case
where the NPs are sufficiently small, so that the primary

effect of the DC magnetic field that produces Faraday
rotation is a Zeeman splitting of the band states, rather
than an entire series of Landau levels.17

The surface plasmon frequency ωsp in a NP in the
Rayleigh limit (a� λ) is considerably less than the bulk
plasmon frequency ωp for the same metal. This is due
partly to a geometrical effect, but the more significant
reason is that interband transitions taking place above
a gap energy greatly modify the dielectric function in
the region of the plasmon resonance. For gold, the bulk
plasmon, well into the ultraviolet at 138 nm, is moved
to around 520–532 nm for the surface plasmons of NPs.8

But to get the correct description, the interband tran-
sitions must be taken into account for describing ε(ω).
Here, we include IBTs for the bound electron contribu-
tion to ε(ω), in the presence of a DC magnetic field, so
that the Faraday rotation properties can be described.

Faraday rotation is a magneto-optical phenomenon1

that measures the fundamental electronic, optical and
magnetic response of a dielectric medium. It is similar
to optical rotation18 except that FR requires an applied
magnetic field. The Faraday rotation is the change in
the polarization of an EM wave as it propagates through
some medium parallel to the axis of a quasi-static mag-
netic field. The interaction between the DC field and the
charges in the medium leads to different speeds of propa-
gation and different wave vectors kR and kL for the right
and left circular polarization components of EM waves,
leading to the net rotation of initially linearly polarized
waves.

The basic parameter to describe the degree of FR is
the Verdet factor, υ, which is the rotation angle of the
polarization per unit propagation length z per applied
magnetic field B:

υ =
ϕ

Bz
. (1)
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We consider a composite medium of gold NPs in water.
At small volume fraction of gold, fs � 1, the Verdet
factor is linear in the volume fraction. Generally, the
rotation ϕ is also linear in magnetic field at low enough
fields (although materials of other symmetry19 can ex-
hibit quadratic dependence on B). Then υ does not de-
pend on B, and we consider only this regime. For dilute
composites, the Verdet factor per volume fraction is a
better quantity for consideration, defined as

Υ ≡ υ

fs
=

ϕ

Bzfs
. (2)

The Faraday rotation results from the phase difference
of the polarizations,

ϕ = 1
2Re {kR − kL} z , (3)

where the respective wave vectors for propagation of the
two circular polarizations are determined by relative di-
electric functions εR and εL,

kR,L =
ω

c

√
µεR,L . (4)

with µ being the relative magnetic permeability of the
medium and c being the speed of light in vacuum. The
theoretical description of the FR signal in some metallic
or metallic-shell NPs, as a result, requires an accurate
description of the dielectric function ε(ω) for the metal,
including the presence of the DC magnetic field. Espe-
cially, it is important to have a reliable description of
ε(ω) at shorter wavelengths, into the ultraviolet, below
the plasmon frequency for the NPs. Indeed, in order for
the theory to correctly predict the plasmon frequency
ωsp, requires knowing ε(ω) all the way into the ultravio-
let. Thus, the goal here is to get an accurate theory for
ε(ω) with the DC magnetic field present, that includes
interband transitions for the bound electrons as well as
the usual plasmon response of the free electron gas.

Below we begin by describing the NP synthesis and
a description of the experimental measurement of the
Faraday rotation. Then we will continue by summarizing
the basic relations among the dielectric functions ε(ω),
εL(ω), and εR(ω) and the FR response. (All ε are under-
stood to be relative dielectric functions, leading to index
of refraction, n =

√
µε.) Next, a simple classical model

for ε(ω) using bound electrons and based on the Drude
model is described briefly, for comparison with the quan-
tum calculation for the IBTs. In that model the effect
of IBTs is approximated by the response function of a
set of bound electrons, with some binding frequency ω0.
Part of the motivation for the quantum calculation of the
IBTs is to determine the validity of this simpler classical
model.

For the quantum effects of IBTs, we adopt the ap-
proach used by Boswarva et al.

20 and also by Adler21

of finding the perturbations of the electron density ma-
trix that are caused by only the electric field of the EM

waves. The optical magnetic field is ignored. However,
the DC magnetic field enters because it shifts the band
states. This is a simple Zeeman shift; for nanometer-
sized systems there is no sense to Landau levels that
were used by Boswarva et al., and also in theory devel-
oped by Halpern et al.,22 due to the geometric confine-
ment (the NP radii are smaller than the Landau radius

r0 =
√

2~

eB , for applied magnetic induction B). Follow-

ing through the calculation, there is a contribution to
ε(ω) that requires summing over IBTs with a range of
energies. Those integrals are evaluated in two different
models: A three-dimensional (3D) band model and a 1D
band model. The results are presented both with the
presence of a phenomenological electron damping con-
stant γ and in a limit that this damping goes to zero.
The results are also compared with earlier calculations
of the IBT contribution by Inouye et al.

14 and by Scaf-
fardi and Tocho,15 that did not include the DC magnetic
field.

The net ε(ω) includes contributions from both the
bound (IBTs) and free (electron gas) electrons. We ap-
ply the results to calculate the scaled Verdet factor Υ for
a dilute solution of solid metallic NPs, using the parame-
ters for gold in water. The effects of the dilution are con-
sidered most simply by the Maxwell-Garnett theory,23,24

assuming that the NPs do not aggregate. We find that
even with the quantum IBTs included for bound elec-
trons, the experimentally measured FR signal is about
10× stronger than that predicted by the theory.

We will conclude with comments on the applicability
of the results for other systems with plasmonic enhance-
ments of dielectric responses.

II. SYNTHESIS OF GOLD NPS AND FARADAY
ROTATION MEASUREMENTS

The large gold nanoparticles are prepared from the re-
duction of HAuCl4 solution by sodium citrate solution as
described by Turkevich et al.25 Briefly, 5 mg of HAuCl4
and 50 mg of sodium citrate are dissolved in 95 ml and 5
ml of doubly distilled water, respectively. The HAuCl4
solution is heated to about 70◦ C and the sodium citrate
solution is added, vigorously stirring the solution for 50
minutes. The color of the solution gradually changes
from faint pink to wine red. The resulting large gold
nanoparticles have size 17 ± 3 nm. Assuming 100% re-
duction of the gold into NPs, the upper limit of volume
fraction of gold in the solution is fs = 1.50 × 10−6. By
analyzing the extinction coefficient of the solution by the
techniques in Ref. 26, the actual volume fraction is esti-
mated to be fs = 1.23 × 10−6.

The Faraday rotation spectrum of NPs in water solu-
tion was measured with the help of a home built pulsed
magnet. The magnet consists of a helical coil machined
from a copper beryllium block and electroplated with
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silver. The pulsed current to the coil is provided via
a simple RLC circuit. The capacitor bank of 77.3 µF
from Maxwell Laboratories is charged by a power sup-
ply/charger of Lumina Power, Inc. The power supply
uses 100-240 V AC-50/60 Hz input and output of 10 kV
at 500 J/s in continuous operation. The charge from the
capacitor bank is discharged into the coil via a high volt-
age trigger spark gap. The current is monitored in the
circuit via a Rogowski coil, which measures the current
derivative.

The Faraday rotation of the nanoparticle solutions is
measured in a plastic cell placed in the coil. A flash
light source is triggered along with the pulsed magnet
that allows the synchronization of the magnet with the
optical measurement. The duration of the light pulse
is 1.4 µs, while the duration of the magnetic pulse is
∼ 50 µs, which allows that during the optical measure-
ment the magnetic field is relatively constant. In front
of the flash light source a polarizer is placed to produce
polarized light for the Faraday measurement. The po-
larized light passes through the sample containing the
nanoparticle solutions. The light leaving the optical cell
passes through another polarizer that is set to 45 degree
with respect the first polarizer. The light then enters a
fiber optic spectrometer, which is also synchronized with
the pulsed magnet and the light source. The Faraday ro-
tation is calculated from the intensity change in the spec-
trum before and after the magnetic pulse. The magnetic
field and the Faraday rotation setup are calibrated with
water placed into the optical cell. The measurements are
taken at 4.2 tesla magnetic fields.

III. THEORY: DIELECTRIC POLARIZATION,
CURRENTS, ε(ω) AND FARADAY ROTATION

We consider EM radiation at frequency ω with the
electric field E(t) ∼ e−iωt, incident on a material particle
(an individual NP) much smaller then the wavelength
(the Rayleigh limit). Then the field E is taken as uniform
inside the sample. The dielectric properties are based on
the averaged dipole moment of the electrons of charge e,
d = er. For n = N/V electrons per unit volume, the
electric polarization can be expressed as

P = n〈d〉 = χ̃ · ε0E , (5)

where ε0 is the permittivity of vacuum and χ̃ is the sus-
ceptibility tensor that is to be found. The dielectric func-
tion considered as a tensor ε̃ is defined via the electric
displacement D = ε0ε̃ · E or

D = ε0E + P , (6)

from which the usual definition results,

ε̃ = 1 + χ̃ . (7)

It is useful to realize another way to get to ε̃, via aver-
aging of the microscopic currents, i.e., those caused by
the optical fields. The dielectric medium under study
has current density J, which combines with the vacuum
displacement current. In this view the Ampere/Maxwell
Law is

∇× H = J + ε0
∂E

∂t
. (8)

All the effects of the medium are contained in J. This
must be equivalent to the alternative viewpoint that the
currents are represented instead by a dielectric function,

∇× H =
∂D

∂t
. (9)

Considered at the frequency of the EM radiation with
time derivatives ∂/∂t→ −iω, these alternate views give

J = −iωε0 (ε̃− 1) · E = −iωχ̃ · ε0E . (10)

Thus, an averaging of the microscopic currents will also
lead to the susceptibility and dielectric tensors.

We assume that the DC magnetic field B is along the
ẑ-direction, the same as the propagation direction of the
EM waves, with wave vector k = kẑ. Then the elec-
tric field in the waves has only xy components; only the
transverse part of the dielectric tensor is needed. In this
situation it has the following symmetry27

ε̃ =

[

εxx εxy

−εxy εxx

]

=

[

εxx iExy

−iExy εxx

]

. (11)

The off-diagonal elements are determined by the DC
magnetic field; they vanish when B = 0. The vari-
able Exy = −iεxy is convenient later; it is real in the
absence of electron damping. The EM waves that prop-
agate without any change in polarization are those with
polarization vectors that are eigenvectors of ε̃. These
eigenstates are the usual states of right and left circu-
lar polarization. Thus, solving the eigenvector problem,
ε̃ · ûi = εiûi, i = 1, 2, with eigenvalues εi and eigen-
vectors ûi, one finds the right circular polarization state
(negative helicity) with Ey = −iEx:

εR = εxx + Exy , ûR = 1√
2
(x̂− iŷ) , (12)

and the left circular polarization state (positive helicity)
with Ey = +iEx:

εL = εxx − Exy , ûL = 1√
2
(x̂ + iŷ) . (13)

Each mode has a different wave vector for propagation,
according to expression (4). Then starting from a lin-
early polarized wave at position z = 0, its right and
left circular components get out of phase by the time it
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travels to position z, leading to the rotation of the polar-
ization through the angle ϕ given in expression (3). One
might also mention, that in general, the dielectric tensor
elements are complex, then there is also a change in el-
lipticity X of the polarization, given from the imaginary
part,

X = 1
2 Im (kR − kL) z . (14)

The two effects of Faraday rotation and change in ellip-
ticity (tanX = ratio of minor to major axis of the ellipse
swept out by the electric vector) can be combined into
one complex parameter,28

ψ = ϕ+ iX = 1
2 (kR − kL) z . (15)

Usually these effects are extremely small and close to
linear in B. Then there is only a tiny difference in kR

and kL, which gives to a very good approximation, the
complex relation,

ψ = ϕ+ iX ≈ ω

2c

√

µ

εxx
Exy z . (16)

This emphasizes how the components of ε̃ are needed to
describe the changes in the optical polarization.

From the experimental perspective, the measurement
of the absorption (or, attenuation) coefficient α is at least
one technique that sets a relative scale for the FR. It is
given from

α = 2 Im {keff} = 2
ω

c
Im {√µεeff} . (17)

This could use either εR or εL or their average for the
effective dielectric function εeff of the medium, as this
expression does not involve their difference, which is ex-
tremely small. Thus, measurements of α serve to set
some unknown fitting parameters, when needed.

IV. CLASSICAL PHENOMENOLOGICAL
MODEL FOR ε(ω) (DRUDE MODEL)

In this section the electron motion is assumed to be
classical. An electron of bare mass mo and charge e =
−1.602× 10−19 C has some trajectory r(t) = (x(t), y(t))
in response to all forces acting on it, and the averaging
of its induced electric dipole moment d = er lead to the
dielectric function.

To include the effect of the constant B on ε̃ it is as-
sumed that there are two primary contributions to the
dielectric response. The first is the contribution of free
electrons with number density n, and some damping pa-
rameter γp, that leads to the usual plasmon response
with a plasma frequency ω2

p = ne2/mε0. The second is a
contribution due to bound electrons, with some binding
frequency ω0 and another damping parameter γ0. The

contribution of bound electrons is essential to describe
ε(ω) correctly15 in NPs.

Any electron, whether free or bound, is acted on as
well by the electric force from the optical field, and the
Lorentz force from the DC magnetic field. The force due
to the optical magnetic field can be ignored in lowest or-
der. In this Drude approximation the equation of motion
of a bound electron is29

mor̈ = eE + eṙ× B −moω
2
0r−moγ0ṙ . (18)

Under the assumption of e−iωt time dependence of the
optical field E, which is the source field, this is

[

mo(ω
2
0 − ω2 − iωγ0) − iωeB×

]

r = eE . (19)

In terms of the components this is a matrix relation,

[

ω2
0 − ω2 − iωγ0 +iωωB

−iωωB ω2
0 − ω2 − iωγ0

] [

x
y

]

=
e

mo

[

Ex

Ey

]

,

(20)
where the cyclotron frequency with B along ẑ is

ωB =
eB

mo
. (21)

The matrix Ω̃2 on the LHS of (20) has the same kind
of symmetry as that of ε̃ in (11), because the diagonal
elements are equal and the imaginary off-diagonal ele-
ments differ only in sign. This means Ω̃2 has the same
eigenvectors, which are the right and left circular polar-
ization states. Based on its structure, the eigenvalues
Ω2

R and Ω2
L of Ω̃2 are easy to read out. For right circular

polarization,

Ω2
R = ω2

0 − ω2 − iωγ0 + ωωB . (22)

For left circular polarization, the last term (from the
off-diagonal element) has the opposite sign,

Ω2
L = ω2

0 − ω2 − iωγ0 − ωωB . (23)

The effect of the DC magnetic field appears only in the
last factor. These two eigenvalues can be combined into
a single convenient expression in terms of the helicity
ν = −1 for right circular polarization and ν = +1 for
left circular polarization:

Ω2
ν = ω2

0 − ω2 − iωγ0 − νωωB . (24)

The helicity is the projection of the photon intrinsic an-

gular momentum ~L on the direction of propagation (k
or ẑ). In this expression it multiplies the magnetic field
component along the same axis. Any physical differences
for right and left circular polarizations will become inter-
changed if the direction of the magnetic field is reversed.

In terms of a vector ~ν = ~L/~, the last factor in these
eigenvalues could be written most generally as ω~ν · ~ωB.
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If the electric field contains only one of the circular
polarizations, i.e., E = Eν ûν , the response r also will be
proportional to the same eigenvector. Then the solution
for the electron position is very simple,

r =
eEν

moΩ2
ν

ûν . (25)

The factor e/mΩ2
ν gives the size of the response for this

polarization. Here we see the fundamental physical dif-
ference between the polarizations. One of the polariza-
tions causes a larger circular motion of the electrons than
the other polarization. Which one actually is larger de-
pends on the relation between ω0 and ω. This difference
leads to a corresponding difference in the dielectric ef-
fects.

Based on this position response, it is then easy to find
the effective dielectric functions for the two circular po-
larizations, using d = er. The susceptibility due to these
electrons is χ = n〈d〉/ε0E. The result can be summa-
rized in a single formula,

χν(ω) =
ne2

moε0 Ω2
ν

, (26)

where ν = −1/ + 1 refers to R/L polarizations, respec-
tively. This applies to separately, the contribution from
the bound electrons, or, the contribution of the free elec-
trons, using appropriate parameters in each case.

Look at this another way. An arbitrary electric field
can be expressed either as E = Exx̂ + Ey ŷ or as E =
ERûR + ELûL, where

ER = 1√
2

(Ex + iEy) , Ex = 1√
2

(ER + EL) , (27)

EL = 1√
2

(Ex − iEy) , Ey = −i√
2

(ER − EL) . (28)

One can combine the right and left solutions and get the
general solution for any electric field, in diagonal form:

r =
eER

moΩ2
R

ûR +
eEL

moΩ2
L

ûL . (29)

Alternatively, this can be written in Cartesian compo-
nents,

x =
1√
2

e

mo

[

ER

Ω2
R

+
EL

Ω2
L

]

, (30)

y =
1√
2

ie

mo

[

ER

Ω2
R

− EL

Ω2
L

]

. (31)

Simplifying, or inverting the matrix equation (20), leads
to the general electron motion,

[

x
y

]

=
e/mo

Ω2
RΩ2

L

[

ω2
0 − ω2 − iωγ0 −iωωB

+iωωB ω2
0 − ω2 − iωγ0

] [

Ex

Ey

]

.

(32)

Multiplied by e, the relation shows the polarizability ma-
trix of the electron. This expression leads to the suscep-
tibility tensor,

χ̃ =
ne2/moε0

Ω2
LΩ2

R

[

ω2
0 − ω2 − iωγ0 −iωωB

+iωωB ω2
0 − ω2 + iωγ0

]

.

(33)
One can see this is consistent with (26), because its eigen-
values are χR = χxx − iχxy and χL = χxx + iχxy, which
agrees exactly with (26).

A. Combination of free and bound electron
responses

Now to use this to describe a metal such as gold, we
assume first there is some density of free electrons n,
with a bulk plasma frequency ω2

p = ne2/moε0, a damp-
ing γp and a zero binding frequency. In addition, there
is some other density n0 of bound electrons, leading to
an effective weight g2

0 = n0e
2/moε0, with an associated

damping γ0 and binding frequency ω0. The net dielec-
tric function is the sum of the two contributions to χ̃.
In terms of the polarization states ν = ±1, the dielectric
function is taken as

εν(ω) = 1−
ω2

p

ω2 + iωγp + νωωB
− g2

0

ω2 − ω2
0 + iωγ0 + νωωB

.

(34)
The first two terms are the usual ones for describing a
free electron gas. The last term uses the single resonance
to approximate the effects of bound electrons. Both in-
clude the DC magnetic field implicitly in the cyclotron
frequency, ωB. The ease with which the magnetic field
is included in the bound electron response is the main
advantage of this model.

One can produce the Cartesian elements of ε̃, for in-
stance, using (12) and (13), by the combinations of these
eigenvalues:

εxx = εyy = 1
2 (εR + εL) , (35)

εxy = −εyx = iExy = i
2 (εR − εL) . (36)

B. Maxwell-Garnett averaging for dilute solutions

The medium of interest here is actually a dilute so-
lution of NPs at a volume fraction fs � 1 in a host
liquid, which we take as water, with its host dielectric
constant εh = 1.777. The NPs are considered the scat-
terers with dielectric function εs For comparison with
experiment, the effective dielectric function εeff of the
solution is required. The theory for calculating the ef-
fective dielectric function depends somewhat on the as-
sumption of how the particles are dispersed in the liq-
uid. In the simplest approximation, they are assumed
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to be randomly dispersed and not sticking to each other.
In the Maxwell-Garnett (MG) theory,23,24 one finds the
volume-averaged electric field and the volume-averaged
polarization response to that field, from which εeff is de-
termined. The MG theory is known to apply well even
in the presence of multiple-scattering.30 These volume
averages are

Eav = fsEs + (1 − fs)Eh , (37)

Pav = fsPs + (1 − fs)Ph , (38)

where s and h refer to the values in the scatterer and
the host, respectively. For spherical scatterers exposed
to asymptotic field Eh in the host, the Clausius-Mosotti
equation gives the internal fields,

Es =
3εh

εs + 2εh
Eh , Ps = (εs − 1) ε0Es . (39)

Then with polarization Ph = (εh − 1)ε0Eh in the host,
one finds the average

εeff = 1 +
Pav

ε0Eav
= εh

1 + 2βf

1 − βf
, (40)

which involves the scaled volume fraction (fs is the frac-
tion of volume occupied by NPs in the solution),

βf = fs
εs − εh
εs + 2εh

. (41)

This MG averaging procedure for composite systems is
usually summarized by the equivalent relation,

εeff − εh
εeff + 2εh

= fs
εs − εh
εs + 2εh

. (42)

Expression (40) can be applied separately to the left and
right circular polarization states, then leading to an ef-
fective dielectric function for each, that will then give
the Faraday rotation (3) for a dilute solution.

C. Classical model parameters for gold
nanoparticles

Based on the work in Ref. 8, the parameters needed
for this classical model were found by fitting it to the ab-
sorption measured experimentally with B = 0, for a di-
lute solution of 17 nm diameter gold NPs in water. That
fitting is based on using the effective dielectric function
εeff from the MG theory, to give the absorption in the
solution, according to expression (17).

For this classical Drude model, based on the elec-
tron number density, and using effective mass equal to
the bare electron mass, the bulk plasma frequency is
ωp = 1.37 × 1016 rad/s, which corresponds to λp =
2πc/ωp = 138.5 nm. The damping of the free electrons in
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FIG. 1: (Color online) Fitting of the absorption of 17 nm
diameter gold particles in water solution, according to the
Drude model for the bound electrons. Parameters indicated
are used to get a good fit to the absorption peak near 522
nm. The fitted volume fraction of gold is fs = 3.36 × 10−6.
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FIG. 2: (Color online) The bound electron contribution to
the permittivity, from the second term of Eq. (34), according
to the Drude model for the bound electrons, using the param-
eters of Figure 1. The real part of ε(ω) becomes negative for
frequencies above ω0 (wavelength 504 nm), which is a defect
of this model.

NPs can have an intrinsic term and a surface scattering
term. Thus a size-dependent damping factor is included,
according to the combination of these processes,31

γp =
1

τ
+
vF

d
, (43)

where τ ≈ 9.1 fs is the intrinsic scattering time, vF =
1.40×106 m/s is the Fermi velocity, and d is the thickness
of the gold. This thickness could be the diameter for
solid spherical particles, or, the thickness of a shell for
core/shell particles. We discuss data for gold particles of
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FIG. 3: (Color online) Faraday rotation for 17 nm diame-
ter gold NPs, from experiment, and according to the Drude
model for the bound electrons, using the Drude fitting pa-
rameters of Figure 1. The experimental results have been
scaled by 1/100 to allow them to be plotted together with
the Drude theory. The theory result was obtained with the
MG effective medium approach. Faraday rotation angle ϕ
and ellipticity angle X have been scaled by B, z, fs, to give
Ψ = Υ + iZ.

average diameter 17 nm; the prediction for their effective
damping is then γp = 1.92× 1014 rad/s, or, a time scale
τp = γ−1

p = 5.20 fs.

The Drude theory was fitted to experimental data for
absorption through a 1 cm path of water solution of
gold particles with average diameter of 17 nm. The
fitting parameters were chosen to get a good descrip-
tion of the absorption peak present near 522 nm, at-
tributed to surface plasmon response. A good descrip-
tion can be obtained while also allowing the volume frac-
tion and free electron parameters ωp and γp to vary,
see Figure 1. The contribution from the bound elec-
trons can be represented approximately using the am-
plitude parameter g0 = 3.70 × 1015 rad/s, the binding
frequency ω0 = 3.73 × 1015 rad/s (wavelength 504 nm),
and damping frequency γ0 = 6.08 × 1015 rad/s, which
corresponds to a damping time of τ0 = 1/γ0 ≈ 1.64 fs.
To get this good fit to the peak, the free electrons are
at the same time represented using plasma frequency
ωp = 1.40 × 1016 rad/s, equivalent to λp = 134.1 nm,
and a damping γp = 1.118 × 1014 rad/s, correspond-
ing to the damping time τp = 8.94 fs. These are slightly
different than the accepted bulk values, however, we con-
sider them here only as a model that fits accurately the
absorption peak.

From these fitted dielectric parameters, the theoretical
Faraday rotation response can be obtained. Results for
the Faraday rotation and ellipticity for 17 nm gold NPs
in solution are shown in Fig. 3. The complex rotation
angle ψ is found from Eq. 15, together with applying the

Maxwell-Garnett procedure for the composite medium,
Eq. 40, for the effective dielectric function of the com-
posite solution. We have scaled the rotation angle ϕ and
ellipticity X by the product of path length z, magnetic
field B and gold volume fraction fs, to remove the lin-
ear dependence on these quantities. Thus we define the
complex rotation angle scaled by volume fraction,

Ψ ≡ Υ + iZ = ψ/fs . (44)

Then, Υ ≡ ϕ/(Bzfs) is the Verdet factor per unit vol-
ume fraction, and Z ≡ X/(Bzfs) is a corresponding
ellipticity factor per unit volume fraction. Then the re-
sults for Υ and Z do not depend on B, z, or fs in the
linear regime. The experimental data for Υ are also dis-
played in Fig. 3, scaled down by a factor of 1/100 in
order to be shown together with the theory.

One sees that the model predicts a negative peak in
the Faraday rotation near 525 nm, apparently associ-
ated with the plasmon resonance (see 28 for the dis-
tinction between positive and negative rotation angles).
The experimental data have a similar negative peak in
the same region, although its magnitude is significantly
larger than this theory predicts. The theory has a wider
positive peak around 580 nm and a long tail at longer
wavelengths, but this positive peak is rather weak in
the experimental data. For the ellipticity, the main fea-
ture predicted is a positive peak around 540 nm, slightly
above the plasmon wavelength, together with its associ-
ated negative peak and long tail at shorter wavelengths.
Unfortunately, the model exhibits an artifact at shorter
wavelengths: both ϕ and X tend to increase greatly at
short wavelengths in an unphysical behavior. This is due
to the fact that classical Drude model cannot correctly
describe the bound electron response at higher frequen-
cies.

This model is an approximate way to include the ef-
fect of B on classical bound electrons, however, it should
be replaced by the more complete calculation using the
quantum interband transitions presented later. It gives
a reasonable fit to the absorption curve from 900 nm
down to 400 nm, however, below that wavelength it pre-
dicts much more absorption than actually takes place.
Also, this Drude description of the bound electrons can-
not accurately describe the response in the wavelengths
350 – 500 nm. This model does not require any back-
ground (i.e., high-frequency) dielectric function ε∞ ∼ 10,
as has been applied in other studies to mimic the effect
of bound electrons.31 Even so, the fit to the absorption
peak due to the SP mode is very good, while the corre-
sponding negative FR peak due to the SP mode of 17
nm gold particles is about 100 times stronger than the
theory predicts.
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V. QUANTUM DESCRIPTION OF ε(ω) VIA
PERTURBATION OF THE DENSITY MATRIX

In this Section we consider the quantum calculation
of the effects due to bound electrons, which is taken into
account by finding contributions to ε(ω) due to interband
transitions, in the presence of the DC magnetic field.
The electrons are considered non-interacting.

The single-electron Hamiltonian is taken as

Ĥ =
1

2mo

[

p̂− eÂ(r̂, t)
]2

+ eφ̂(r̂, t) + Û(r̂) , (45)

where the charge is e, φ̂ and Â are the scalar and vec-
tor potentials of the EM fields, and Û is the periodic
potential of the lattice. The canonical momentum oper-

ator for the electron is p̂ = −i~~∇. The more physical
momentum is the kinetic momentum operator,

~π = p̂ − eÂ , (46)

because it is the square of this operator that deter-
mines the energy. We take the scalar potential as zero
(Coulomb gauge). The vector potential Â includes a

term for the DC magnetic field, Â0 and a term for the
AC optical field Â1. The optical field is treated as a
classical non-quantized field, that oscillates as e−iωt.

The electron bands, unperturbed by optical fields,
come from the solution of a Hamiltonian with the ki-
netic energy, the lattice periodic potential, and the DC
magnetic field,

Ĥ0 =
1

2mo

(

p̂− eÂ0

)2

+ U(r) . (47)

At weak enough DC magnetic field, the quadratic term
in Â0 can be dropped, and the effect of the cross term
with p̂ is the orbital Zeeman splitting,

Ĥ0 =
p̂2

2mo
+ U(r) − ~µ · B . (48)

The magnetic dipole moment due to the orbital angular
momentum is

~µ =
e

2mo

~L . (49)

As the electron charge is negative, ~µ points opposite to
~L. The component of ~µ along the magnetic field is mµB,
where µB = e~/2mo is the (negative) Bohr magneton,
and m = ml is the magnetic quantum number. The
Zeeman splitting is an energy shift ∆E = −mµBB =
− 1

2m~ωB, where both µB and ωB can be negative, due
to the negative electron charge. The states of this Hamil-
tonian are some electron band states, including any Zee-
man shifts,

Ĥ0|klm〉 = Eklm|klm〉 . (50)

The band states, labeled by wave vector k and angular
indexes l,m, have wave functions

ψklm(r) = 〈r|klm〉 =
1√
V
eik·ruklm(r) . (51)

These can be considered the original states of an unper-
turbed problem. The optical field is the perturbation
on these states, whose effect is studied using the density
matrix approach.

Because we consider states in NPs, the DC magnetic
field only produces Zeeman shifts, rather than Landau
levels. Due to the geometrical confinement, there is no
sense to Landau levels that would have extended wave
functions much larger than the size of the particles. For
instance, at a small applied field strength B = 0.1 tesla,
the length scale of the Landau levels is the Landau ra-

dius, r0 =
√

2~

eB = 115 nm. This is much larger than the

radius of the nanoparticles under consideration, typically
from 5 – 10 nm. The Landau wave functions do not fit
into the NPs at this field strength, giving a non-bulk sit-
uation. The degeneracy of Landau levels is on the order
of (R/r0)

2, where R is the system radius. At B = 0.1
tesla, the degeneracy is about (8.5/115)2 ≈ 0.0055, how-
ever, this fractional value is not meaningful. For the
larger magnetic field B = 4.2 T, the Landau radius is
reduced to r0 = 17.7 nm. This is still somewhat larger
that the NP radius of 8.5 nm, and the degeneracy is
about (8.5/17.7)2 ≈ 0.23, still significantly less than 1,
so the theory should be applicable.

These considerations show that the Landau levels are
the incorrect solutions in a confined geometry. When one
looks more carefully at how to arrive at the quantum so-
lution, the radial wave functions should go to zero at the
boundary of the NP (for bound electrons). For spheri-
cal particles, that radial dependence would be described
by spherical Bessel functions, jl(kr), with discrete al-
lowed k, and angular dependence described by spherical
harmonics for a chosen angular momentum, l,m. We
consider a quasi-bulk approximation, where the discrete
k are assumed to be close enough together to be reason-
ably described by electron bands.

A. The density operator ρ̂

Statistically, the band states are populated according
to a Fermi-Dirac distribution for the given temperature,
when the system is in equilibrium. The density operator
ρ̂ is a way to introduce this population into the QM
problem and provide for mixed states. Of course, once
the optical field is turned on, a new equilibrium can be
established and the density operator can change. Its
basic definition for an equilibrium situation, in terms of
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the state probabilities wi is

ρ̂0 =
∑

i

wi|ψi〉〈ψi| . (52)

For the equilibrium distribution, the weights are taken
as proportional to the Fermi-Dirac occupation numbers,

wi =
1

N
f0(Ei), f0(Ei) =

1

eβ(Ei−EF ) + 1
, (53)

where β is the inverse temperature and EF is the Fermi
level. This is a density matrix normalized to one for N
electrons in the system. The time derivative of a general
ρ̂ follows from the quantum Liouville equation:

∂ρ̂

∂t
=

1

i~
[Ĥ, ρ̂] . (54)

To apply this, we consider the leading perturbation
term in the Hamiltonian, which is the electric force from
the optical field (Â1). The optical magnetic force is ig-
nored. Then the perturbation is described by the Hamil-
tonian

Ĥ1 = − e

mo
Â1 ·

(

p̂ − eÂ0

)

. (55)

Now the total density operator is assumed to be a sum
of the equilibrium operator plus some change caused by
the perturbation:

ρ̂ = ρ̂0 + ρ̂1 . (56)

As the total Hamiltonian also is a sum of unper-
turbed and perturbation parts, we can use the fact
that [Ĥ0, ρ̂0] = 0, and ignore the small nonlinear term

[Ĥ1, ρ̂1] ≈ 0, then the equation of motion for the pertur-
bation is

i~
∂ρ̂1

∂t
≈ [Ĥ0, ρ̂1] + [Ĥ1, ρ̂0] . (57)

Now assume expansions of Ĥ1 and of ρ̂1 in the unper-
turbed basis states,

Ĥ1 =
∑

if

|f〉〈f |Ĥ1|i〉〈i|, ρ̂1 =
∑

if

cfi|f〉〈i|. (58)

The constants cfi = 〈f |ρ̂1|i〉 are just the matrix elements
of ρ̂1, in the H0 basis states. After evaluation of the
commutators, and assuming e−iωt time dependence for
ρ̂1, the constants cfi are found, and the change in the
density operator is found to be

ρ̂1 =
∑

if

(wi − wf )|f〉〈f |Ĥ1|i〉〈i|
~(ω + iγ) + (Ei − Ef )

. (59)

A small imaginary part γ has been added to the fre-
quency to effect the turning on of the perturbation. This

constant can be considered a phenomenological damping
constant, or, it can be let to go to zero if the results with-
out damping are of interest. This expression has been
used in various problems by Adler21 and in the thesis
of M. Prange.32 Ei and Ef are energies of two states of
the unperturbed Hamiltonian. One can think that the
expression involves transitions between pairs of states.
Obviously the oscillatory time behavior of the perturba-
tion Hamiltonian must be reflected in a similar behavior
in this part of the density matrix. Thus, we are inter-
ested only in the response in the density matrix at the
same frequency as the perturbation.

B. Thermal and volume averages

To find the dielectric function, statistical averages of
the polarization or the current density are necessary.
This can be done by first defining a local quantum op-
erator, ρ̂e(r) for the one-electron charge density,

ρ̂e(r) = e|r〉〈r| , (60)

and another, ĵ(r), for the one-electron current density,

ĵ(r) =
e

2
{|r〉〈r|v̂ + v̂|r〉〈r|} . (61)

The current density operator is defined in terms of the
electron velocity,

v̂ =
~π

mo
=

1

mo

(

p̂− eÂ
)

. (62)

The statistically averaged values of these operators are
found from the trace with the density operator,

ρe(r) = 〈ρ̂e(r)〉 = Tr {ρ̂ρ̂e(r)} , (63)

j(r) = 〈ĵ(r)〉 = Tr
{

ρ̂ĵ(r)
}

. (64)

In a pure state |ψ〉, with density operator ρ̂ = |ψ〉〈ψ|,
these produce the usual expressions for the quantum
charge and current densities at point r,

ρe(r) = e|ψ(r)|2 , (65)

j(r) = Re {ψ∗(r)ev̂ψ(r)} . (66)

We can also define the local polarization operator using
the electron position,

d̂(r) = er̂|r〉〈r| , (67)

which is statistically averaged by the same procedure,

d(r) = Tr
{

ρ̂d̂(r)
}

. (68)

At some point in the calculation the volume averages
are desired, to describe ε(ω) for the whole sample. These
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are obtained from the usual definition, say, for the charge
density (the overbar indicates volume average) due to N
electrons in a volume V ,

ρe =
N

V

∫

d3r ρe(r) =
Ne

V

∑

i

wi

∫

d3r |ψi(r)|2 . (69)

The individual electron states ψi are unit normalized and
the probabilities sum to one. This recovers an obvious
result,

ρ = Nρe =
N

V
Tr {ρ̂e} = ne . (70)

For the current density and the electric polarization,
there are similar expressions,

J = N j =
N

V

∫

d3r j(r) = Tr {ρ̂nev̂} , (71)

P = Nd =
N

V

∫

d3rd(r) = Tr {ρ̂ner̂} . (72)

For the most part, we use the averaging of the operator,

P̂ = ner̂ , (73)

to determine the volume-averaged polarization response.

C. Averaged electric polarization response

The perturbation oscillates at frequency ω and there-
fore we get the response in the electric polarization P

that oscillates at the same frequency, using only the
change ρ̂1 in the density matrix,

P = Tr
{

ρ̂1P̂
}

= ne
∑

if

〈f |ρ̂1|i〉〈i|r̂|f〉 . (74)

This requires matrix elements of the position operator
in the unperturbed basis states. Those can be obtained

from the equation of motion in the unperturbed system,

i~ ˙̂r = i~v̂ = [r̂, Ĥ0] . (75)

Then the needed matrix elements can be expressed using
the velocity,

〈i|r̂|f〉 =
i~

(Ef − Ei)
〈i|v̂|f〉 . (76)

The optical electric field is E = −(∂Â1/∂t) = i(ω +

iγ)Â1, including the turning on of the perturbation. The
perturbation can be expressed now as

Ĥ1 = −eÂ1 · v̂ =
−e

i(ω + iγ)
E · v̂ , (77)

The operator v̂ need include only the DC vector poten-
tial, Â0. Then the matrix elements of both ρ̂ and Ĥ1

come from the velocity. The result for the averaged elec-
tric polarization is expressed as

P =
ne2~

(ω + iγ)

∑

if

(wi − wf )〈i|v̂ |f〉〈f |E · v̂ |i〉
[~(ω + iγ) + Ei − Ef ] (Ei − Ef )

.

(78)
As E is assumed to oscillate at frequency ω, this is indeed
the response oscillating at that same frequency. The
damping γ is necessary so that an appropriate limit gives
the classical damped responses found earlier.

With the transition frequencies given by

~ωif = Ei − Ef , (79)

the susceptibility components that result from (78) are

χab =
ne2

ε0~(ω + iγ)

∑

if

(wi − wf )〈i|v̂a|f〉〈f |v̂b|i〉
ωif (ω + iγ + ωif )

. (80)

We apply this to find only the effects from interband
transitions. The free electron response in (34) is still
applied for the quantum model.

The result can be symmetrized by labeling some states as occupied states (o) and the rest as unoccupied (u). All
terms correspond to transitions from occupied to unoccupied states. In this way the expression becomes

χab =
ne2

ε0~(ω + iγ)

o
∑

i

u
∑

f

wi − wf

ωif

{ 〈i|v̂a|f〉〈f |v̂b|i〉
ω + iγ + ωif

+
〈i|v̂b|f〉〈f |v̂a|i〉
ω + iγ − ωif

}

(81)

D. Application to band models

To apply this result, we need to use the energy levels
appropriate for the bands under consideration. The dis-

cussion is restricted to a parabolic two-band model, with
the bands separated by some gap energy Eg. There are
effective masses m∗

h and m∗
e for the occupied (lower) and

unoccupied (higher) bands, respectively. Each band is
affected by the Zeeman shift in the same direction; there
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are not Landau level shifts. One can measure energies
from the top of the lower band. Then the energies Ei for
the occupied band (Eh, valence band) and the energies
Ef for the unoccupied band (Ee, conduction band) are
assumed to be

Ei = Eh = −~
2k2

i

2m∗
h

− 1
2mi~ωB , (82)

Ef = Ee = Eg +
~

2k2
f

2m∗
e

− 1
2mf~ωB , (83)

(84)

These Zeeman shifts apply to positive charges; they are
reversed in sign for negative charges, taking ωB < 0.
The azimuthal quantum numbers are mi and mf . They
are restricted by the orbital angular momentum num-
bers for each band, li and lf , respectively. Assuming
vertical transitions that conserve linear momentum ~k

(negligible photon momentum), the transition energies
are

~ωif = −Eg − ~
2k2

2m∗ − 1
2 (mi −mf )~ωB , (85)

where the reduced mass m∗ is defined by

1

m∗ =
1

m∗
e

+
1

m∗
h

. (86)

We write the transition frequencies in the following man-
ner:

ωif = −ωg − s2 + 1
2∆mωB , (87)

where the gap frequency ωg, scaled wave vector s, and
change in azimuthal quantum number ∆m are

ωg ≡ Eg

~
, s ≡

√

~

2m∗ k, ∆m ≡ mf −mi. (88)

Only momentum-conserving transitions between two
selected bands at some wave vector k are considered.
The matrix elements needed are approximated in a form

〈k′l′m′|v̂x|klm〉 =
~kx

mo
M(k)δk′,kδl′,l±1δm′,m±1 . (89)

The last Kronecker deltas reflect the electric dipole se-
lection rules, ∆l = ±1, ∆m = ±1. The dimensionless
matrix element M(k) is assumed to be some constant
for the transitions of interest.

These velocity matrix elements are proportional to
corresponding position matrix elements, see (76), or even
the matrix elements of the ~π operator. We only need the
components of operators along x and y. But the angu-
lar part of these matrix elements is due to the electric
dipole selection rules. That angular part has the follow-
ing symmetries, from matrix elements between spherical
harmonics,

〈l′m′|v̂y|lm〉 = −i∆m 〈l′m′|v̂x|lm〉, ∆m = ±1 . (90)

This directly affects the susceptibility for each circular
polarization. From (80) we have the diagonal part as

χxx ∼
∑

fi

gfi |〈f |v̂x|i〉|2 , (91)

but the off-diagonal part as

χxy ∼
∑

fi

(−i∆m) gfi |〈f |v̂x|i〉|2 . (92)

It is clear that χ̃ and ε̃ have the same symmetry. Then
the susceptibilities for the right and left circular polar-
izations vary like

χR = χxx − iχxy ∼
∑

fi

(1 − ∆m) gfi |〈f |v̂x|i〉|2 ,(93)

χL = χxx + iχxy ∼
∑

fi

(1 + ∆m) gfi |〈f |v̂x|i〉|2 .(94)

In these expressions, only ∆m = −1 (∆m = +1) con-
tributes to χR (χL). Each factor is a Kronecker delta,
i.e., (1 ± ∆m) = 2δmf=mi±1. The following expressions
result for integration in the band model expressed us-
ing the transitions between occupied (lower band) and
unoccupied (higher band) states:

χR =
2ne2

ε0~(ω + iγ)

o
∑

i

u
∑

f

wi − wf

ωif
|〈f |v̂x|i〉|2

{

δmf=mi−1

ω + iγ + ωif
+

δmf =mi+1

ω + iγ − ωif

}

, (95)

χL =
2ne2

ε0~(ω + iγ)

o
∑

i

u
∑

f

wi − wf

ωif
|〈f |v̂x|i〉|2

{

δmf=mi+1

ω + iγ + ωif
+

δmf=mi−1

ω + iγ − ωif

}

. (96)
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The only difference between these is the swapping of the
Kronecker deltas. Then the two cases can be written
in terms of a single expression, replacing the ±1 in the
Kronecker deltas with the helicity index:

χν =
2ne2

ε0~(ω + iγ)

o
∑

i

u
∑

f

wi − wf

ωif
|〈f |v̂x|i〉|2

×
{

δmf=mi+ν

ω + iγ + ωif
+

δmf=mi−ν

ω + iγ − ωif

}

. (97)

To proceed further, it is necessary to evaluate the sums.
This can be facilitated by converting them to integrals
over the allowed transitions, which depends slightly on
the dimensionality of the bands under consideration.

E. Interband transitions between
three-dimensional bands

The band structure of interest could be effectively
isotropic and three-dimensional, say, for the case of some
semiconductors near the Γ point (k = 0). Therefore it
is interesting to consider the IBT contribution for this
model, before doing a similar analysis of the reduced
one-dimensional band model for metals.

Converting from a sum to an integral with
∑

k
→

V
(2π)3

∫

dk, using the assumed form for the matrix ele-

ments, and then changing to s =
√

~/2m∗ k as the vari-
able of integration, the interband susceptibility can be
written

χν = QTν(ω) , (98)

where Q contains all the constant normalization factors,
and the interband transition integral Tν(ω) contains all
of the frequency and temperature dependence:

Q =
2ne2|M |2~

m2
oε0

V

(2π)3
4π

3

(

2m∗

~

)5/2

, (99)

Tν =
1

ω + iγ

∑

mi

∑

mf

∫ sF

0

ds
wi − wf

ωif
s4

×
{

δmf=mi+ν

ω + iγ + ωif
+

δmf=mi−ν

ω + iγ − ωif

}

, (100)

To arrive at this,
∫

dΩ k2
x = 4π

3 k
2 was used for the an-

gular part of the integration. The upper limit is a Fermi
wave vector sF =

√

~/2m∗ kF needed to sum over all the
states of the occupied initial band. We can let wi = 1 for
the lower band, but keep the the temperature-dependent
occupation probability wf > 0 for the upper band. In
this way, any thermal effects due to an initial population
in the final band will be included.

The first integral in (100) uses ∆m = +ν and the
second uses ∆m = −ν. These choices enter in the ex-
pression for ωif (∆m). In terms of the scaled wave vector

s or a related excitation variable x = ωg + s2, one has

ωif (+ν) = −ωg − s2 + ν
ωB

2
= −x+ ζν , (101)

ωif (−ν) = −ωg − s2 − ν
ωB

2
= −x− ζν . (102)

The variable x is the excitation energy above the lower
band, and ζν = 1

2νωB is the polarization-dependent Zee-
man splitting. Then the denominators in (100) in the
two terms are (ω + iγ + ζν − x) and (ω + iγ + ζν + x),
respectively. This suggests introducing notation for a
Zeeman-shifted complex optical frequency, for the two
circular polarizations:

ων ≡ ω + iγ + ζν = ω + iγ + 1
2νωB . (103)

Thus, most of the polarization-dependent effects will be
carried by this shifted frequency.

To include the Fermi occupation factor wi − wf , the
sum over mi in (100) can be done first, holding mf fixed.
Then both terms will have the same occupation factor,
taken to be 1−wf . The first term in (100) uses onlymi =
mf − ν, the second uses only mi = mf + ν, assuming
those states exist in the lower band. The final state
energy, however, depends on the effective massm∗

e in the
upper band, whereas the transition energy depends on
the reduced mass m∗. If these are nearly the same, i.e.,
m∗

e ≈ m∗
h ≈ m∗, then the final state energy measured

relative to the top of the lower band can be taken as

Ef ≈ ~
(

ωg + s2 − 1
2mfωB

)

= ~
(

x− 1
2mfωB

)

. (104)

This will lead to an occupation factor wi − wf for each
term determined from the Fermi energy EF ,

gmf
(x) ≈ 1 − F (Ef − EF ) = 1 − F (x;mf ). (105)

Inouye et al.14 and also Scaffardi and Tocho15 have
discussed bound electron response in a 1D band model
without B, applying an expression which is an integral
over the excitation variable x. We can transform the
integral Iν into an integration over x to compare with
those results. In the simplest case, when the lower band
has a higher angular momentum li than the upper band
value, lf , then both states mi = mf ± ν are available for
all the allowed mf . In this case, Eq. (100) becomes

Tν =
ω2ν

ω + iγ

∑

mf

∫ xF

ωg

dx
gmf

(x)x (x− ωg)
3/2

(x2 − 1
4ω

2
B)(x2 − ω2

ν)
. (106)

The function gmf
= wi −wf includes the magnetic field

effects on the final state occupation probabilities, which
are slightly different for eachmf level. The upper limit is
determined by the scaled wave vector at the Fermi level,
xF = ωg+s2F . Although this is the a 3D band model, the
similarity to the corrected expression from Scaffardi and
Tocho15 is clear. When reduced to one dimension (use
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√
x− ωg in place of (x− ωg)

3/2, together with a different
constant factor Q out front), it recovers the expression
from Ref. 15 for ωB → 0.

The main effect of the DC magnetic field is to shift the
optical frequency oppositely for the two circular polar-
izations. The second important effect is the modification
of the mf occupations with B. There appears another
effect due to the factor x2 − 1

4ω
2
B in the denominator,

however, that is relatively small, quadratic in the field,
and not dependent on the polarization. The dependence
on 2ν in the numerator is interesting.

In the limit where the initial states are fully occupied
and the final states are fully unoccupied (all wf = 0),
these integrals can be carried out analytically, see Ap-
pendix A. In the further approximation where the upper
limit of integration is set to sF → ∞, the result for this
complex integral is:

Tν =
π(li + lf)

2(ω + iγ)2

{

i(ων − ωg)
3/2 + (ων + ωg)

3/2

−(ωg − ζν)3/2 − (ωg + ζν)3/2
}

. (107)

The lower and upper band angular momenta combine to
give the multiplicity of transitions, gm = li + lf . This
result corresponds to the situation of intrinsic semicon-
ductor particles where the Fermi level is near or below
the middle of the gap. This limit takes out any tempera-
ture dependence. However, that should be a small effect
only from the rounding of the occupation of levels near
the Fermi energy. Assuming that the gap frequency ωg

is large compared to the Zeeman splitting ωB, tempera-
ture effects on the FR could be small. Furthermore, the
limit of zero damping is simple to read out from this ex-
pression. However, generally, we can calculate all results
more precisely using the full theory result in equation
(106).

F. A 1D band model

The band structure in real materials can be very com-
plicated. The isotropic 3D model just discussed is an
idealization for real solids. In the band structure of
gold16 in the L direction at the Fermi surface, the im-
portant IBTs occur from the d valence band to the sp-
conduction band, where the two bands are separated by
a gap of Eg ≈ 2 eV. Because this happens along a partic-
ular direction, a 1D band model is useful. Inouye et al.
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used a 1D band model to get the absorption contribution
in gold due to the interband transitions for bound elec-
trons. They were able to fit the absorption very well for
photon energies above 2 eV up into the ultraviolet, well
above the small particle plasmon resonance frequency.
Without interband transitions taken into account, it is
impossible to get such an accurate description.

The main difference from the 3D problem, is that the
integration may start out in 3D, but needs to be reduced
to an effective integration along only the active direction
of the band, which is taken as the kx-axis. The details
of how this is done are not so important. One way is to
convert the sum in (97) into integration in a box along
Cartesian axes, using that to define an effective Fermi
wave vector (slightly different from the standard defini-
tion) by

N =
2V

(2π)
3

∫ kF

−kF

∫ kF

−kF

∫ kF

−kF

dkx dky dkz =
2V k3

F

π3
.

(108)
Then an effective Fermi wave vector is defined here as
kF = π(n/2)1/3, which differs from the usual expression
kF = (3π2n)1/3 by the factor (π/6)1/3 ≈ 0.8, of no real
importance. Now in the sum over wave vectors in (97),
the transverse (inactive) coordinates y, z are integrated
out, leaving only the integration over the band coordi-
nate:

∑

ki

→ 2V

(2π)3
(2kF )2

∫ kF

−kF

dkx =
V k2

F

π3

∫ kF

−kF

dkx . (109)

Normalized this way, this final integration will correctly
give a dimensionless result for χν . The conversion from
sum to integration is carried out by including the factor
V k2

F /π
3 rather than the more usual factor V/(2π)3 used

for 3D. Then for 1D, the interband susceptibility can also
be written χν = QTν(ω), the latter being an integration

over s =
√

~/2m∗ kx, and containing the frequency and
temperature dependence,

Q =
2ne2|M |2~

m2
oε0

2V k2
F

π3

(

2m̃

~

)3/2

, (110)

Tν =
1

ω + iγ

∑

mi

∑

mf

∫ sF

0

ds
wi − wf

ωif
s2

×
{

δmf=mi+ν

ω + iγ + ωif
+

δmf=mi−ν

ω + iγ − ωif

}

. (111)

This is very similar to the expression (100) for 3D. The
only difference is the factor s2 for 1D in place of s4 in
3D.

The expression for Tν can be written with the excita-
tion variable x = ωg + s2; In the most general case, both
states mi = mf ± ν do not exist for all choices of mf ,
and the two terms in the integrand cannot be combined
in a simple form. One must then evaluate (111) by

Tν =
−1

ω + iγ

∑

mf

∫ xF

ωg

dx gmf
(x)

√
x− ωg

x− ζν
×

×1

2

∑

mi

{

δmi=mf−ν

ων − x
+
δmi=mf+ν

ων + x

}

. (112)
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When the angular momentum lf of the upper band is
less than that of the lower band, li, both the choices
mi = mf ± ν always exist for any mf , and this can be
written instead as

Tν =
ω2ν

ω + iγ

∑

mf

∫ xF

ωg

dx
gmf

(x)x
√
x− ωg

(x2 − 1
4ω

2
B)(x2 − ω2

ν)
. (113)

As mentioned earlier, the only change from the 3D ex-
pression is that the power is now 1

2 instead of 3
2 in the

numerator. That is a complex integrand. If the real and
imaginary parts are needed, it can be written in terms
of real quantities, better for comparison with the B = 0
equations:

Tν =
ω2ν

ω + iγ

∑

mf

∫ xF

ωg

dx gmf
(x)

x
√
x− ωg

x2 − 1
4ω

2
B

×
(

x2 + γ2 − ω2
F

)

+ 2iγωF

(x2 + γ2 − ω2
F )

2
+ 4γ2ω2

F

. (114)

Here a notation for a real shifted Faraday frequency is
used,

ωF ≡ ω + 1
2νωB , (115)

that is dependent on the polarization index ν. In the ap-
plication of this to gold nanoparticles, we assume transi-
tions from the lower d-band to the upper p-band, hence
there are values mf = −1, 0, 1 to be summed over.

The last result also has an approximate expression
that applies if the Fermi energy falls well within the band
gap. Then, the Fermi occupation factors can be approx-
imated with wi − wf = 1, removing all the temperature
dependence. The integral for Tν can be done exactly in
this case, see the Appendix. There results

Tν =
π(li + lf )

2(ω + iγ)2
{

i
√

ων − ωg −
√

ων + ωg

+
√

ωg − ζν +
√

ωg + ζν

}

. (116)

Obviously the expression is similar to that for the 3D
band model, but now the powers are 1

2 instead of 3
2 . A

comparison of the full integral (114) and this approxi-
mation (116), as functions of the photon energy, can be
seen in the Appendix in Figure 7.

G. Interband parameters for gold

Following Inouye et al.
14 and also Scaffardi and

Tocho15, the 1D band model was applied here for the di-
electric response of gold nanoparticles. As for the Drude
model, we can fit the 1D interband permittivity, Eq.
(114) for B = 0 to the absorption of a solution of 17
nm diameter gold particles in water. The absorption
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FIG. 4: (Color online) Fitting of the absorption of 17 nm
diameter gold particles in water solution, according to the
1D band model for the interband dielectric response. Fit was
made via a Monte Carlo search, allowing both the bound
electron and free electron parameters to be varied. Their
final adjusted values, for T = 300 K, are indicated on the
Figure. The fitted gold volume fraction is fs = 5.95 × 10−7.
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FIG. 5: (Color online) The IBT contribution to the permit-
tivity, from the 1D band model, Eq. (114), using the param-
eters of Figure 4. In this model both the real and imaginary
parts remain positive for all frequencies.

data from 350 nm – 900 nm were fit to Eq. (114) (using
also the MG theory presented earlier) while allowing the
gap energy ~ωg, Fermi energy EF , bound electron damp-
ing γ, and normalization constant Q to be varied. We
also allow the gold volume fraction fs and free electron
plasma frequency ωp and damping γp to be varied.

This is a multi-parameter search, which was carried
out via a Metropolis Monte Carlo algorithm. For the
effective energy function to be minimized, it was found
practical to use the sum of the absolute differences be-
tween the experimental data αi at each frequency and
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the theoretical expression αth, i.e.,
∑

i |αi(ωi)−αth(ωi)|,
instead of the squares (this gives a more uniform weight-
ing but looser fit to the points). A reasonable fit and
the associated parameters are shown in Figure 4. The
gap energy Eg = 2.02 eV, Fermi energy EF = 2.53 eV
and plasma frequency (~ωp = 8.59 eV) determined in
this fit are consistent with the values used in Ref. 15.
The dampings, ~γp = 0.152 eV (γ−1

p = 4.33 fs) and

~γ = 0.269 eV (γ−1 = 2.45 fs), are somewhat different
from those for bulk gold, and the resulting real and imag-
inary parts of dielectric function ε(ω) are different from
those for bulk gold.33 However, γp is consistent with the
prediction from Eq. (43), as expected due to extra sur-
face scattering and other factors for the nanoscale par-
ticles. If this surface scattering effect is taken out, the
model reproduces the real and imaginary parts of ε(ω)
for bulk gold that are completely consistent with those
found by Johnson and Christy.33

A value of gold volume fraction fs = 5.95 × 10−7 was
needed in the fit. It is about half the value estimated
by the techniques in Ref. 26, see Sec. II, showing the
difficulty in estimation of fs in the lab. We might note
that this fit is not strongly constrained; it was deter-
mined only by the absorption data; other values cannot
be strongly ruled out. Unlike the Drude model presented
earlier, this model is very good at fitting the ultraviolet
end of the dielectric properties, and also fits the infrared
end better. Thus, we expect it should give more reliable
predictions for the Faraday rotation properties.

VI. FARADAY ROTATION DUE TO GOLD
NANOPARTICLES

Here we apply the 1D band model to the interband
transitions, and compare the theory to experiments for
gold NPs. Based on the fitting of parameters for 17
nm diameter gold particles in the previous section, the
results for scaled complex Faraday rotation angle Ψ =
Υ + iZ = (ϕ + iX )/(Bzfs) can be estimated using Eq.
(15) together with the MG theory for the response of a
dilute solution, Eq. (40). The real and imaginary parts
are the Verdet and ellipticity factors, respectively, scaled
by volume fraction fs of gold in the solution.

The theory results for 17 nm diameter gold NPs are
compared with experimental data for the FR spectrum
in Fig. 6. The experimental data for Υ = υ/fs has been
scaled down by a factor of 1/10 so that its negative FR
peak is similar in magnitude to the theory. Although
some details are not identical between theory and ex-
periment, the general trend in Υ as a function of wave-
length is similar. Both show a strong negative peak due
to the plasmon near 520 – 530 nm, and a zero cross-
ing in Υ near 550 nm. This peak is about ten times
stronger when using the IBT theory than the simpler
Drude approach presented in Fig. 3, but the negative
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FIG. 6: (Color online) (a) The real and imaginary parts of
the scaled complex Faraday rotation Ψ = (ϕ + iX )/(Bzfs),
from experiment (points), and calculated including IBTs for
bound electrons in the 1D band model for gold particles of 17
nm diameter (lines). The real part (solid curve) is the Verdet
factor per volume fraction, Υ. The experimental data for Υ
has been scaled by a factor of 1/10, which brings its peak to
the same size as in the IBT theory. The imaginary part is the
ellipticity factor scaled by volume fraction (not measured).

FR peak in the experimental data is still much stronger
than in both theories. The experimental result for Υ,
however, is obtained by dividing raw FR data by the es-
timated gold volume fraction (using techniques of Ref.
26), fs = 1.23 × 10−6. Any error in the volume fraction
will modify the experimental value of Υ. The volume
fraction divides out in the theory for Υ. Various mul-
tiple scattering and backscattering effects11 and other
similar aggregation effects10 not included in this theory
could explain this large discrepancy.

Above 560 nm both theory and experiment indicate a
positive Faraday rotation angle. According to the theory,
there is also a strong positive peak in ellipticity expected
around a wavelength slightly larger than that due to the
plasmon (around 550 nm). Notably, both the rotation
and ellipticity tend towards zero at short wavelengths,
removing the artifact present in the classical Drude ap-
proach.

VII. DISCUSSION AND CONCLUSIONS

The interband electronic transitions are known to have
a considerable effect on dielectric properties of gold and
other metals. Although it is popular to consider only a
simple Drude model for quasi-free electrons, it is shown
here to be inadequate for describing, say, the absorption
in gold nanoparticles. A fit for the dielectric parame-
ters based on a Drude model, combining free electron
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and bound electron contributions, was given in Fig. 1,
for a dilute solution of gold NPs. The absorption peak
near 520 nm, associated with the excitation of a plas-
mon resonance in the NPs, can be fit rather well. In the
violet and ultraviolet, however, it is impossible to get a
good match between the theory and experimental data
for gold particles of average diameter of 17 nm. This ap-
proach leads (incorrectly) to negative values of the real
part of permittivity at shorter wavelengths (below the
plasmon resonance), which is why the fit fails in that
wavelength region.

For the optical effects such as absorption or Faraday
rotation, it is clear that a correct description of ε(ω)
for a macroscopic sample completely determines the out-
come. If the absorption cannot be fitted properly, then
it is hard to see how the Drude approach could explain
Faraday rotation very well. Instead, we include the in-
terband transitions for the bound electrons, based on the
quantum formulation due to Boswarva et al.

20 and also
Adler.21. However, the calculation done here is specifi-
cally for nanoparticles in the presence of a DC magnetic
field B. Bulk calculations20,22 have assumed Landau lev-
els due to B for an infinite sample, but the Landau radius

r0 =
√

2~

eB for weak B will be larger than the typical NP

size. Hence, the Landau levels have no physical sense for
weak magnetic field; they are not the quantum energy
eigenstates. The states are modified due to the geometric
confinement of a limited size nanoparticle. The shift in
energy states used here is a Zeeman shift due to the DC
magnetic field for electrons in bands of specified angular
momentum.

We are applying this calculation at a magnetic field
strength such that the Landau radius is only about twice
the NP radius. This more intermediate field is needed
to insure adequate signal to noise ratio in the FR data.
This should be within the range of the quantum theory.
However, at a magnetic field strength about four times
larger, the Landau radius will match the NP radius, and
crossover to a more bulk-like behavior could be expected.

We have sketched out the details of the IBT integral,
especially for the 1D band model. While it was required
to fit the amplitude factor Q and other dielectric param-
eters, this results in a much better fit between theory
and experiment for the absorption, Fig. 4. The fitting
leads to an interband permittivity whose real and imagi-
nary parts remain positive for λ > 200 nm, Fig. 5. Thus
we expect this approach to be good when applied to the
Faraday rotation properties of a dilute solution of NPs.

When applied to a solution of 17 nm diameter gold
NPs, one finds a strong negative peak in the Verdet fac-
tor, as expected, near the plasmon wavelength of about
525 nm. This negative peak is certainly due to extra
Faraday rotation that is associated with the surface plas-
mon mode in nanoparticles. This is at least partially
confirmed by experiments at a small volume fraction of
gold. The theory also predicts a positive peak in ellip-

ticity at a wavelength somewhat larger than the plas-
mon wavelength (nearly 550 nm for 17 nm gold NPs).
However, at present, the experimental results for scaled
Verdet factor Υ = υ/fs seem to be about an order of
magnitude stronger than that indicated by this theory.
Some of this discrepancy could be due to uncertainty
in the true value of gold volume fraction. There may
also be other processes present in the NP data, such as
aggregation10 and backscattering effects,11 that are not
included in the model. At present we do not have com-
parable experimental results on the ellipticity factor. It
will be important to clarify this discrepancy in the size
of the magneto-optical responses.
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Brazil, where parts of this work were carried out, and
financial support of FAPEMIG grant BPV-00046-11. We
acknowledge the support of NSF through grants NSF-
930673 and NSF-1128570, and the Terry Johnson Cancer
Center at KSU for funding the construction of the pulsed
magnet.

APPENDIX A: EVALUATION OF INTEGRALS
OVER SCALED WAVE VECTOR

This analysis applies when the Fermi level is well
within the band gap, and then the upper band is as-
sumed to be unoccupied. This removes the temperature
dependence from the model.

1. 3D band model

The integral for the 3D band model, equation (100),

is best evaluated using s =
√

~/2m∗ k as the variable of
integration. We assume wi = 1, wf = 0, and initially
include the damping parameter γ. For the sum over mf ,
the Kronecker deltas select mf = mi ± ν for each inte-
grand. For the sum overmi, between bands with defined
orbital angular momentum li and lf , there are multiple
equivalent transitions, all with the same thermodynamic
weight. This leads to a multiplicity

gm =
∑

mi

1 = min(2li + 1, 2lf + 1) = li + lf . (A1)

Essentially, this constant factor replaces the temperature
dependence that would have been included by the occu-
pation function, gmf

(x) in the full theory expression.
Then in this approximation, the interband susceptibility
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is χν = QTν(ω), with Q defined earlier in (99), and the
transition integral expressed

Tν =
gm

ω + iγ
(K1 +K2) . (A2)

Tν has been split into two similar integrals,

K1 =

∫ sF

0

+ds s4

(s2 + ωg − ζν)(s2 + ωg − ων)
, (A3)

K2 =

∫ sF

0

−ds s4
(s2 + ωg + ζν)(s2 + ωg + ων)

. (A4)

The shifted frequency ων is defined in (103) and ζν =
1
2νωB. Consider K1 using the partial fraction expansion,

K1 =

∫ sF

0

ds s4

ων − ζν

[

1

s2 + ωg − ων
− 1

s2 + ωg − ζν

]

.

(A5)
The integral K2 is the negative of this with ζν and ων

reversed in sign:

K2 =

∫ sF

0

ds s4

ων − ζν

[

1

s2 + ωg + ων
− 1

s2 + ωg + ζν

]

.

(A6)
Note that ων − ζν = ω + iγ. These integrals can all be
found from the indefinite integral,

f(s) =

∫

ds s4

s2 + a2
=

1

3
s3 − a2s+ a3 tan−1

( s

a

)

, (A7)

where the parameter a is complex for the four differ-
ent cases where this is used. Thus the function f(s)
is defined with the analytic continuation of the inverse
tangent to complex arguments. Applying this gives

K1 =
1

ω + iγ

{

(ωg − ων)3/2 tan−1

(

s√
ωg − ων

)

− (ωg − ζν)3/2 tan−1

(

s
√

ωg − ζν

)}

+ s , (A8)

K2 =
1

ω + iγ

{

(ωg + ων)3/2 tan−1

(

s√
ωg + ων

)

− (ωg + ζν)3/2 tan−1

(

s
√

ωg + ζν

)}

− s . (A9)

It is interesting that once these are summed to produce
Tν = gm

ω+iγ (K1 + K2), all linear and cubic terms in s

cancel out, leaving only the inverse tangents. These are
evaluated at the upper limit sF . Due to these cancel-
lations, the upper limit can be let to go to infinity as a
reasonable approximation (also, the choice of a finite sF

may be difficult in any case). With s real, the limit of
the complex inverse tangent can be shown to have the

following dependence on the parameter a:

lim
s→∞

tan−1 s

a
= sgn (Re{a}) π

2
, (A10)

lim
s→∞

tan−1 is

a
= sgn (Im{a}) π

2
. (A11)

The latter form is useful for the first tan−1 in K1, chang-
ing

√
ωg − ων to i

√
ων − ωg, which is more convenient

when assuming above the gap excitation. Then the re-
sulting interband integral for the 3D band model under
these approximations is

Tν =
πgm

2(ω + iγ)2

{

i(ων − ωg)
3/2 + (ων + ωg)

3/2

−(ωg − ζν)3/2 − (ωg + ζν)3/2
}

. (A12)

These complex square roots are defined by the root with
the positive real part, i.e., the root in the first or fourth
quadrant. It is interesting to notice that the photon fre-
quency does not appear inside the last factors involving
the Zeeman shift ζν . Also, in the limit of zero damping
γ → 0, the very first term is the entire imaginary part.
For below the gap excitation (ων < ωg) the imaginary
part becomes zero in the absence of damping. For typi-
cal material parameters, this approximation gives results
very close to the full theoretical result from Eq. (106).
This is mostly due to the high dimensionality; in the 1D
band model this approximation is farther from the full
theory expression.

2. 1D band model

The analysis is nearly the same, with interband sus-
ceptibility expressed via χν = QTν(ω). One has the
same expression for the multiplicity, gm = li + lf . The
weighting factor Q is now given in equation (110). The
expression for the transition integral can still be written

Tν =
gm

ω + iγ
(K1 +K2) , (A13)

except that in this case, the parts have the power s2 in
place of s4 in their numerators:

K1 =

∫ sF

0

+ds s2

(s2 + ωg − ζν)(s2 + ωg − ων)
, (A14)

K2 =

∫ sF

0

−ds s2
(s2 + ωg + ζν)(s2 + ωg + ων)

. (A15)

The partial fraction expansions are

K1 =

∫ sF

0

ds s2

ων − ζν

[

1

s2 + ωg − ων
− 1

s2 + ωg − ζν

]

,

(A16)
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FIG. 7: (Color online) The IBT contribution to the permit-
tivity for the 1D band model, as functions of photon energy
in eV, using the parameters of Figure 4. The solid curves
apply the full theory, Eq. (114), including the Fermi occupa-
tion factors, for temperature 300 K. Note the peak in Re{ε}
at the Fermi energy (2.52 eV) in the full theory. The dot-
ted curves show the result of assuming a totally unoccupied
upper band, wf = 0, obtaining ε(ω) from Eq. (A21).

and for K2, reverse the overall sign and the signs on ων

and ζν ,

K2 =

∫ sF

0

ds s2

ων − ζν

[

1

s2 + ωg + ων
− 1

s2 + ωg + ζν

]

.

(A17)
The basic integral needed is

f(s) =

∫

ds s2

s2 + a2
= s− a tan−1

( s

a

)

. (A18)

Applying this to all the sub-integrals, the results are sim-
ilar to those in 1D,

K1 =
1

ω + iγ

{

−(ωg − ων)1/2 tan−1

(

s√
ωg − ων

)

+ (ωg − ζν)1/2 tan−1

(

s
√

ωg − ζν

)}

, (A19)

K2 =
1

ω + iγ

{

−(ωg + ων)1/2 tan−1

(

s√
ωg + ων

)

+ (ωg + ζν)1/2 tan−1

(

s
√

ωg + ζν

)}

. (A20)

Again, it will be useful to reverse the order in the radical
in the first term in K1, assuming above the gap excita-
tion. Then we apply again,

√
ωg − ων → i

√
ων − ωg.

Letting the upper limit of integration sF → ∞, and in-
serting the limiting values of the inverse tangents, there
results

Tν =
πgm

2(ω + iγ)2
{

i
√

ων − ωg −
√

ων + ωg

+
√

ωg − ζν +
√

ωg + ζν

}

. (A21)

Note that for typical values of the parameters, both the
real and imaginary parts of Tν(ω) are positive. This
function derived has a peak in its real part, for frequency
near the gap frequency ωg. Otherwise, it is very similar
to the more complete theory of (114) that includes the
varying Fermi occupation factor. That complete theory
differs primarily in that the location of the peak in its
real part is near the Fermi energy rather than the gap
energy.
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