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Small amplitude dipolar oscillations are considered in artificial spin ice on a square lattice in
two dimensions. The net magnetic moment of each elongated magnetic island in the spin ice is
assumed to have Heisenberg-like dynamics and be influenced by shape anisotropies and nearest
neighbor dipole interactions. The magnetic dynamics linearized around a ground state with four
sublattices leads to an eigenvalue problem with four branches of magnetic spin wave modes. An
energy analysis of the dipole motions enables an analytic solution while showing that the lowest
frequency modes are antisymmetric with regard to their in-plane dynamic fluctuations in each four-
island vertex. Although only the leading dipolar interactions are included, modes similar to these
may be observable experimentally in artificial square spin ice.
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I. INTRODUCTION: SQUARE SPIN ICE AND
ITS DYNAMICS

Nanostructured arrays of thin elongated magnetic is-
lands on a substrate, known as artificial spin ices, have
received a lot of theoretical and experimental interest
because of their unique properties and possibilities for
technological applications[1]. The magnetic islands are
typically created out of Permalloy, although other mate-
rials have been used. These islands possess an Ising-like
dipole moment that tends to point in one of two direc-
tions parallel to the long axis of the island. The arrays
are manufactured in a desired geometry that has built-in
frustration, where all pairwise dipolar interactions cannot
be simultaneously minimized [2]. For square lattice arti-
ficial spin ice, the lowest energy configuration at a vertex
between four neighboring dipoles follows an ice rule: two
dipoles point inward and two dipoles point outward at a
vertex [3]. This leads to a doubly degenerate ground state
as depicted in Fig. 1 where each vertex follows the ice
rule, although it may be very difficult to achieve simply
by cooling the sample [4]. This is distinct from the six-
fold degenerate ground state of tetrahedral spin ice due to
the fact that the spins are not equidistant in the square
lattice. Six-fold degeneracy can be restored by adding
a height offset to the lattice.[5, 6] Reversal of dipoles
in a ground state leads to the generation of topological
excitations that resemble magnetic monopoles, and are
connected by energetic string excitations [4, 7–9].

If only dipolar interactions are considered in Monte
Carlo simulations for an Ising spin ice model [7, 8, 10],
annealing of the system from high towards low tempera-
ture brings it to a ground state. That approach leaves out
the energy barriers involved in dynamic reversal. Each is-
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land has a strong easy-axis anisotropy that maintains the
dipole’s direction close to the island’s long axis, as well as
a strong easy-plane anisotropy maintaining the dipole’s
direction near the plane of the substrate. The energy
associated with shape anisotropy of the islands is rather
large compared to both the dipolar interactions and ther-
mal energy scales [11, 12]. This means that reversal of
individual dipoles is difficult by thermal activation, be-
cause some dipole reversals can be easily blocked by the
anisotropy barriers, making it difficult for the system to
relax into a ground state [13, 14] unless fields are applied.
However thermal relaxation to a ground state has been
observed experimentally using special protocols[15, 16].

The dynamics that is associated with lowest frequency
spin waves is especially relevant for understanding the
stability and signatures of different magnetic configura-
tions as well as transitions among configurations. Here
we consider the linearized dynamics out of a ground state
configuration (sometimes called a vortex state), where
no monopole excitations are present. Due to strong
exchange interactions among the atomic spins within
each island, we assume the that the net island dipoles
have nearly constant magnitude, while moving in an
anisotropy potential due to shape anisotropy, as con-
sidered in Ref. [11]. Iacocca et al. [17] refer to this as
a macrospin approximation, where they used a semi-
analytic approach including diagonalization and micro-
magnetics for finding various modes of oscillation in
artificial square spin ice. Other studies of oscillation
modes[18, 19] have been carried out to demonstrate how
the mode spectrum is affected by the presence or absence
of topological excitations, such as monopoles. Arroo et

al. [20] studied the connection between magnetic config-
uration and spin wave spectra using micromagnetics on
a small number of islands.

The model used here for spin waves in artificial ice
assumes that the island dipoles (1) maintain a constant
magnitude µ while rotating uniformly and (2) interact
only with nearest neighbors. The first approximation re-
quires strong ferromagnetic exchange within the islands,
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FIG. 1: Square spin ice in a ground state, with the identi-
fication of the four sublattices. Small dots indicate the ver-
tices, at which the two-in/two-out rule holds. For one A-site
its nearest neighbors are labeled D↑, D↓, B↑ and B↓ and
the diagonal displacements rxy and rx̄y are indicated, see Eq.
(6). The island lattice constant along diagonal directions is
aI = a/

√
2, where a is the vertex lattice constant.

but tends to overestimate the island interactions and
mode stiffness, while the second approximation tends to
underestimate the island interactions. Both help to fa-
cilitate the analytic computation. The dipole moments
are assumed to behave with continuous dynamics, as
Heisenberg-like magnetic moments that can point in any
direction, as considered in previous studies of thermally
excited spin ice [12, 21]. The small-amplitude spin wave
deviations away from a ground state will be important
for use as a ground state signature, and to indicate what
applied field frequencies and wave vectors will be able to
reorganize a configuration.

The spin wave modes are determined as follows. In
Sec. II the square lattice spin ice model is summarized.
In Sec. III the dynamics for the nearest neighbor dipolar
coupling is described. The system obtained is linearized
in Sec. IV and the details of the modes found are given.
Some excitation spectra for different model parameters
are described in Sec. V, and results are summarized and
their importance is highlighted in Sec. VI.

II. ARTIFICIAL SQUARE LATTICE SPIN-ICE
MODEL

The islands’ dipoles are assumed to have fixed magni-
tudes µ pointing along some time dependent Heisenberg-
like unit vectors µ̂i(t), where i labels a site. The di-

rections of the µ̂i(t) are affected by magnetic shape
anisotropy and by long-range dipolar interactions. Due
to the elongated form of the islands, each island has some
uniaxial anisotropy with energy constant K1 along its
longer axis ûi, which points along either x̂ or ŷ, depend-
ing on the sublattice. A sketch of the system is shown
in Fig. 1. In addition, the islands are very thin perpen-
dicular to the substrate, which makes that direction a
hard axis, producing easy-plane (xy) anisotropy with an
energy constant K3 for all the islands. In Ref. [11], mi-
cromagnetics for an individual island indicates that the
easy-plane anisotropy constant K3 dominates, followed
by the easy-axis interactions K1, and then finally by the
much weaker dipolar interactions.
The Hamiltonian for this model with Heisenberg-like

island spins µ̂i(t) is

H = −µ0

4π

µ2

a3

∑

i>j

[3(µ̂i · r̂ij)(µ̂j · r̂ij)− µ̂i · µ̂j ]

(rij/a)
3

+
∑

i

{

K1[1− (µ̂i · ûi)
2] +K3(µ̂i · ẑ)2

}

(1)

The first term is the dipolar pair interaction, where µ0

is the magnetic permeability of space, a is the center-to-
center spacing of the islands along the x̂ or ŷ principal
directions, and r̂ij is a unit vector pointing from site
j to site i. Note, however, that the nearest neighbor
spacing of the islands, aI = a/

√
2, lies along the ±rxy and

±rx̄y directions at ±45◦ from the standard xy coordinate
system, see Fig. 1. The dipolar energy scale is affected
by island spacing, such that we define a nearest neighbor
dipolar energy constant,

D ≡ µ0

4π

µ2

a3I
. (2)

The anisotropy terms have been written so that they give
zero energy when the island dipole points along its lo-
cal easy-axis ûi. Rotation of µ̂i(t) within the xy plane
only involves the K1 energy, whereas, tilting of µ̂i(t) out
of the xy-plane is characterized by the sum of the two
anisotropy constants, K1 +K3.

A. The spin-ice ground states

In a ground state, such as in Fig. 1, the shape
anisotropy energies are totally minimized but the nearest
neighbor dipolar interactions are frustrated. The mag-
netic moments alternate in direction from site to site.
We assume four sublattices, A,B,C,D. The A and C sites
are aligned with +x̂ and −x̂, respectively, due to having
in-plane anisotropy axes ûi = x̂. The B and D sites are
aligned with +ŷ and −ŷ, respectively, due to having in-
plane anisotropy axes ûi = ŷ. In a ground state, the unit
island dipoles µ̂i on the sublattices are

A0 = ( 1, 0, 0), B0 = (0, 1, 0), (3a)

C0 = (−1, 0, 0), D0 = (0,−1, 0). (3b)
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The other ground state would be obtained from this one
by inverting all the moments. There is an enormous en-
ergy barrier preventing that transition. Instead, here we
consider only small spatially periodic deviations away
from this ground state configuration, characterized by
some two-dimensional wave vector q = (qx, qy).

III. THE DYNAMICS AND SYMMETRIES

The dynamic equation of motion for the magnetic mo-
ment of some island, regardless of which sublattice it
occupies, results from the Hamiltonian according to a
torque equation,

dµ̂i

dt
= γeµ̂i ×Bi. (4)

where γe is a gyromagnetic ratio. Based on the local
energies at each site, there is an effective magnetic field
that acts on the island at a site,

Bi = − ∂H
∂µi

= − 1

µ

∂H
∂µ̂i

=
D
µ

∑

j 6=i

3(µ̂j · r̂ij)r̂ij − µ̂j

(rij/a)3

+ 2
K1

µ
(µ̂i · ûi)ûi − 2

K3

µ
(µ̂i · ẑ)ẑ. (5)

In general, the anisotropy fields are local while the dipo-
lar interactions extend through the entire lattice.

A. Nearest neighbor dipolar model

Although the dipolar interactions are long-ranged, in
order to make initial progress and keep this calculation
tractable, only nearest neighbor dipolar couplings are in-
cluded. This approximation has previously been used for
artificial spin ice with good results, however there are in-
stances where it fails to fully capture the behavior of the
system[22, 23]. The general properties of the solutions
should not be significantly altered by this approximation,
although the exact values will certainly be different. To
develop the equations for the undamped dynamics, we
consider first a site on the A-sublattice, and its interac-
tions with the nearest neighbors on the B-sublattice and
the D-sublattice, see Fig. 1. An arbitrary A-site couples
to two B-sites whose unit dipoles are labeled as B↑ and
B↓, and two D-sites whose unit dipoles are labeled as D↑

and D↓, where the arrows (↑, ↓) indicate the y-direction
of the space displacement from the A-site. To be specific,
the displacements from the A-site to these neighbors are

rAB↑ = rxy ≡ ( a
2 ,

a
2 , 0), rAB↓ = −rxy, (6a)

rAD↑ = rx̄y ≡ (−a
2 ,

a
2 , 0), rAD↓ = −rx̄y. (6b)

These displacements have length aI = a/
√
2, the island

lattice constant. From (4), the dynamic equation for the

time derivative of the A-site unit dipole µ̂i ≡ A can be
expressed as

dA

dt
= A× F(A), (7)

where the effective field F(A) acting on that site includes
local anisotropy terms and only the nearest neighbor
dipolar terms,

F(A) = κ1Axx̂− κ3Azẑ (8)

+δ1

{

3
[

(B↑ +B↓) · r̂xy
]

r̂xy −B↑ −B↓

+3
[

(D↑ +D↓) · r̂x̄y
]

r̂x̄y −D↑ −D↓
}

.

The constants κ1, κ3, and δ1 have dimensions of fre-
quency and are defined as

κ1 ≡ 2γeK1

µ
, κ3 ≡ 2γeK3

µ
, δ1 ≡ γeD

µ
. (9)

Once the nearest neighbor displacements are substituted
into (8), the components of F(A) are found to be

Fx(A) = δ1
[

1
2

(

B↑
x + B↓

x +D↑
x +D↓

x

)

+ 3
2

(

B↑
y +B↓

y −D↑
y −D↓

y

) ]

+ κ1Ax, (10a)

Fy(A) = δ1
[

1
2

(

B↑
y + B↓

y +D↑
y +D↓

y

)

+ 3
2

(

B↑
x +B↓

x −D↑
x −D↓

x

) ]

, (10b)

Fz(A) = −δ1
(

B↑
z +B↓

z +D↑
z +D↓

z

)

− κ3Az. (10c)

By the symmetry of the lattice, a C-site follows a dy-
namic equation of the same form as in (7) and (8), with
its field F(C) obtained using the replacements A → C,
B → D and D → B, and relations just like (6) for the
displacements:

rCD↑ = rxy ≡ ( a
2 ,

a
2 , 0), rCD↓ = −rxy, (11a)

rCB↑ = rx̄y ≡ (−a
2 ,

a
2 , 0), rCB↓ = −rx̄y. (11b)

Similarly, with a B-site having a long axis along ŷ, the
effective field for its dynamics is

F(B) = κ1Byŷ − κ3Bzẑ (12)

+δ1

{

3
[

(A↑ +A↓) · r̂xy
]

r̂xy −A↑ −A↓

+3
[

(C↑ +C↓) · r̂x̄y
]

r̂x̄y −C↑ −C↓
}

The effective field F(D) on a D-site is obtained from (12)
with the replacements B → D, A → C and C → A.

IV. LINEARIZATION AROUND A GROUND
STATE

Next we consider the small-amplitude magnetic fluc-
tuations around the ground state defined in (3). To ac-
complish this, the four sublattices are assumed to have
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only tranverse deviations from the ground state, denoted
as a, b, c, d, with amplitudes much smaller than unity.
The net unit dipole fields are approximated as

A = A0 + a ≈ (1, ay, az), (13a)

B = B0 + b ≈ (bx, 1, bz), (13b)

C = C0 + c ≈ (−1, cy, cz), (13c)

D = D0 + d ≈ (dx,−1, dz). (13d)

These are used in the dynamic equations such as (7) and
its equivalent on the other sublattices. The equations
are linearized, such that any terms quadratic and higher
in these deviations are dropped. Longitudinal deviations
ax, by, cx, dy are zero in the linearized theory. The dy-
namic equations determine the time derivatives of the
eight remaining fluctuation components, that correspond
to small-amplitude rotations of the islands’ dipoles away
from the ground state configuration. Small-amplitude
oscillations are those for which angular deviations satisfy
sinφ ≈ φ. On the A-sublattice, one obtains from (7),

ȧy = δ1
(

6az + b↑z + b↓z + d↑z + d↓z
)

+κ13az, (14a)

ȧz = δ1
[

−6ay +
3
2

(

b↑x + b↓x − d↑x − d↓x
)]

−κ1ay. (14b)

The combination of anisotropy constants appears,

κ13 ≡ κ1 + κ3. (15)

There are equations of similar structure for the other
dynamically fluctuating pairs of transverse components,
(bx, bz), (cy, cz) and (dx, dz), but with appropriate sym-
metry modifications.

A. Traveling wave dynamic modes

The linearized equations can be solved by assuming
traveling waves for the small-amplitude fields. For ex-
ample, on the B-sites, we take

bx(r, t) = bxe
i(q·r−ωt), (16)

where bx is a complex wave amplitude, q = (qx, qy) is a
wave vector and ω is the frequency for that wave vector.
The equations contain combinations of the neighbors of
a site, which have been labeled by up (↑) and down (↓)
arrows. As these are always along the displacements rxy
and rx̄y, one gets, for instance,

b↑x + b↓x = bxe
i(q·r−ωt)

(

eiq·rxy + e−iq·rxy) , (17a)

d↑x + d↓x = dxe
i(q·r−ωt)

(

eiq·rx̄y + e−iq·rx̄y) . (17b)

The phase factors are denoted as

u ≡ eiq·rxy + e−iq·rxy = 2 cos[a2 (qx + qy)], (18a)

v ≡ eiq·rx̄y + e−iq·rx̄y = 2 cos[a2 (qx − qy)]. (18b)

This maps the linearized dynamic equations into an 8×8
eigenvalue problem,

−iωay = δ1(6az + ubz + vdz) + κ13az, (19a)

−iωaz = δ1(−6ay +
3
2ubx − 3

2vdx)− κ1ay, (19b)

−iωbx = δ1(−6bz − uaz − vcz)− κ13bz, (19c)

−iωbz = δ1(6bx − 3
2uay +

3
2vcy) + κ1bx, (19d)

−iωcy = δ1(−6cz − udz − vbz) + κ13cz , (19e)

−iωcz = δ1(6cy − 3
2udx + 3

2vbx)− κ1cy, (19f)

−iωdx = δ1(6dz + ucz + vaz)− κ13dz , (19g)

−iωdz = δ1(−6dx + 3
2ucy −

3
2vay) + κ1dx. (19h)

Before eliciting a solution for the general eigenmodes,
a physical analysis of the situation points towards the
symmetry of the lowest frequency fluctuations.

B. Lowest energy fluctuations

We consider small angular fluctuations of the dipoles
within the xy-plane, away from the ground state con-
figuration. A long wavelength mode is assumed, where
all the sites on a given lattice rotate nearly in-phase
with each other. Consider the dipolar energy contribu-
tions around a single vertex of the lattice, see Fig. 2.
Small in-plane angular deviations away from the ground
state configuration are assumed, one for each sublattice:
φA, φB, φC, φD. Ignoring any small out-of-plane devia-
tions, the unit dipole components for the sites on the
different sublattices in one vertex as in Fig. 2 are

A = ( cosφA, sinφA, 0), (20a)

B = (− sinφB, cosφB, 0), (20b)

C = (− cosφC,− sinφC, 0), (20c)

D = ( sinφD,− cosφD, 0). (20d)

The AB in-plane dipolar energy in (1) for one vertex is
found to be

Hdip
AB = −D

2

{

3 cos(φA + φB) + sin(φA − φB)
}

≈ −D
2

{

3 + (φA − φB)− 3
2 (φA + φB)

2
}

. (21)

In the sine term, increasing φA moves the A-dipole to-
wards the direction of the vector rAB, which lowers the
energy, while increasing φB moves the B-dipole away from
the direction of rAB, raising the energy. The in-plane
dipolar energy in the BC interaction follows the same
rules (positive φB moves the B-dipole to be more aligned
with rBC, lowering the energy),

Hdip
BC = −D

2

{

3 cos(φB + φC) + sin(φB − φC)
}

≈ −D
2

{

3 + (φB − φC)− 3
2 (φB + φC)

2
}

. (22)
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A=(φA,0)

B=(φB,0)

C=(φC,0)

D=(φD,0)

vertex angles

FIG. 2: In-plane deviations away from a ground state
(faint gray arrows) in a vertex, drawn with all the angles
φA, φB, φC, φD positive. This raises the nearest neighbor dipo-
lar energies, Eq. (25).

The CD in-plane dipolar energy in the vertex is lowered
for positive φC,

Hdip
CD = −D

2

{

3 cos(φC + φD) + sin(φC − φD)
}

≈ −D
2

{

3 + (φC − φD)− 3
2 (φC + φD)

2
}

. (23)

Finally, the in-plane dipolar energy in the DA interaction
is lowered for positive φD,

Hdip
DA = −D

2

{

3 cos(φD + φA) + sin(φD − φA)
}

≈ −D
2

{

3 + (φD − φA)− 3
2 (φD + φA)

2
}

. (24)

Summing these nearest neighbor dipolar energies gives
an expression with quadratic terms,

Hdip
vertex ≈ D

2

{

−12 + 3
2

[

(φA + φB)
2 + (φB + φC)

2

+(φC + φD)
2 + (φD + φA)

2
]}

(25)

Then, if the dipoles rotate in such a way to minimize

Hdip
vertex, the motion must be constrained according to the

phase relationships,

φA = −φB, φB = −φC, φC = −φD, φD = −φA. (26)

This means that in a low-energy (or low-frequency)
mode, neighboring dipoles will tend to move out-of-phase
with each other. These equations also then imply an in-

phase relationship across the two diagonals of the vertex:

φA = φC, φB = φD. (27)

Taken together, these conditions would be met, for in-
stance, when in-plane deviations φA and φC are both

positive, while φB and φD are both negative (or vice-

versa).
If the in-plane dipolar interactions were the only inter-

actions in the system, such fluctuations would correspond
to an acoustic mode in the system, whose frequency goes
to zero for zero wave vector. Of course, this system also
has anisotropy terms and dipolar interactions of the out-
of-plane components, which will give this mode of fluc-
tuation a nonzero frequency. This type of mode should
have a minimum frequency for zero wave vector but it
will not be at zero frequency. It is expected to become
an acoustic mode in the limit of zero easy-axis anisotropy
(but that would no longer be a model for spin ice). A
mode that has this property will be referred to as an
acoustic-like mode.
Refering to Fig. 2, the angle constraints (27) for the

lowest frequency modes imply that the Cartesian com-
ponents in (19) have antisymmetry across the center of
the vertex,

ay = −cy, bx = −dx. (28)

We call this mode type antisymmetric or type A, refer-
ring to the in-plane dipolar deviations across the cen-
ter of a vertex. On the other hand, the other angular
constraints (26) imply for the Cartesian components of
nearest neighbor dipoles,

ay = bx, cy = dx. (29)

To get these antisymmetric modes, we combine the con-
straints on the in-plane deviations with a phase relation
(39) below for the out-of-plane components that results
from consideration of the precessional dipolar motions.
The linearized energy in a vertex also includes dipo-

lar energy in the out-of-plane components, and the
anisotropy energy that was initially not taken into ac-
count in (25). When those terms are included, the total
energy change away from the ground state is found to be

Hvertex ≈ D
2

{

− 12 + 3
2

[

(φA + φB)
2 + (φB + φC)

2

+ (φC + φD)
2 + (φD + φA)

2
]

+ (az + cz)(bz + dz)
}

+ K1(a
2
y + b2y + c2y + d2y)

+ (K1 +K3)(a
2
z + b2z + c2z + d2z). (30)

The anisotropy terms produce a nonzero frequency even
at small wave vector. More interesting are the dipolar
terms involving the z-components, (az + cz)(bz + dz).
Those can be zeroed out, but not necessarily minimized,
by assuming opposite phases across the vertex:

az = −cz, bz = −dz. (31)

However, another possibility that could give even a neg-
ative energy contribution is if the z-components are in-
phase across the vertex,

az = cz, bz = dz , (32)
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together with an opposite phase relation such as az =
−bz. The selection of one of these possibilities is decided
next by analyzing the precessional spin dynamics.

C. Low energy precessional motion

The choice of phase relationship for the z-components
in a low energy mode was not determined in the energy
analysis. Expressions (31) and (32) both give low en-
ergy, without accounting for the dynamics. But some
insight can be found by a comparison to the phase re-
lationships that are present for spin wave modes in one-
dimensional (1D) antiferromagnets, which require a two-
sublattice model. Looking across a vertex, the A and C
sites in the spin ice ground state alternate in direction
just as in a 1D antiferromagnet, which has both acoustic
and optical modes. The torque equation (4) shows that
in a small time interval δt, the change in the A-site dipole
results from precession in the left hand sense around its
effective field F(A),

δA ≈ A× F(A) δt. (33)

From (10), the effective field for the A-site is dominated
by its x-component,

F(A) ≈ (6δ1 + κ1, 0, 0). (34)

With A ≈ (1, ay, az), this gives

δA ≈ (6δ1 + κ1)δt (0, az,−ay). (35)

By similar reasoning, a neighboring C-site precesses in
the left hand sense around its effective field, which is
predominantly in the −x direction,

F(C) ≈ (−6δ1 − κ1, 0, 0). (36)

With C ≈ (−1, cy, cz), one has

δC ≈ (6δ1 + κ1)δt (0,−cz, cy). (37)

From (28) for low energy modes, using the relation ay =
−cy in the expression for δC gives

δC ≈ (6δ1 + κ1)δt (0,−cz,−ay). (38)

This shows that both the changes δA and δC across the
center of a vertex could have identical z-components for
a low energy mode. Further, their y-components also are
consistent with A and C having equal z-components.
Thus we should expect that any antisymmetric mode
should have an in-phase relation for the out-of-plane com-
ponents:

az = cz, bz = dz. (39)

This should apply in conjunction with relations (28) and
(29) for the in-plane components. A sketch of the ex-
pected small deviations in one vertex for a lowest energy

antisymmetric mode is given in Fig. 3. Both the A and
C sublattices would rotate synchronized in-plane, in the
same direction (φA = φC), and they would also both tilt
out of the xy-plane with in-phase z-components. The B
and D sublattices would move together in the opposite
sense compared to A and C, for both the in-plane and
out-of-plane components. These motions can be seen to
minimize the linearized nearest neighbor dipolar energy
changes within the vertex, see Eq. (30). These are the
type of phase relationships present between the two sub-
lattices in the acoustic modes of a 1D antiferromagnet.

D. Finding the antisymmetric modes

For the antisymmetric modes, the fields on two sub-
lattices can be eliminated by imposing the expected an-
tisymmetric constraints from (28) and (39), summarized
together here:

ay = −cy, az = cz, (40a)

bx = −dx, bz = dz . (40b)

This reduces the original 8× 8 system (19) to four 2× 2
systems, one for each sublattice, with the same possible
eigenfrequencies:

ω2
A± = (α1α2 +

3
2γ

2
+)± γ+(α1 +

3
2α2). (41)

The new frequency constants are

α1 ≡ κ1 + 6δ1, α2 ≡ κ13 + 6δ1, (42a)

γ+ ≡ δ1(u+ v) = 4δ1 cos(
1
2qxa) cos(

1
2qya). (42b)

A little consideration shows that for small wave vector,
ωA− is the lower of the two frequencies, and it goes to zero
as q → 0 when no uniaxial anisotropy is present (κ1 =
κ3 = 0). The frequency ωA+ tends to a large nonzero
value at zero wave vector. Eq. (41) gives solutions for
four of the eight possible modes of the original 8 × 8
system in Eq. (19), because a chosen wave vector q has
frequencies ±ωA− and ±ωA+ , due to oppositely directed
traveling waves being possible. The modes’ frequencies
can be written as products:

ω2
A− =

(

α1 − 3
2γ+

)

(α2 − γ+) , (43a)

ω2
A+ =

(

α1 +
3
2γ+

)

(α2 + γ+) . (43b)

The factor
(

α1 − 3
2γ+

)

tends to zero in the simultaneous
limit of zero wave vector and zero anisotropy, making it
obvious that ωA− is an acoustic-like mode.

1. Mode A− eigenvector and features

For the mode at frequency ωA− we can also look at
the structure of its eigenvector, in terms of the phase
relationships between the different dipolar components.
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A=(φ,θ)

B=(−φ,−θ)

C=(φ,θ)

D=(−φ,−θ)
Mode A-

FIG. 3: Phase relationships of the dipolar angles expected
in the antisymmetric mode denoted as A−, with in-plane ro-
tations having φA = −φB = φC = −φD, and out-of-plane
components obeying az = −bz = cz = −dz. A and C rotate
in the same in-plane direction and tilt positively out of plane
together; B and D rotate together oppositely to A and C, and
tilt out of plane together oppositely to A and C. These mo-
tions minimize the nearest neighbor dipolar energy changes,
see Eq. (30). This mode becomes acoustic-like in the limit of
zero wave vector and zero anisotropy.

For its in-plane components, when frequency ωA− is used
in Eq. (19), one finds an in-phase relation for in-plane
components of neighbors,

ay = bx, cy = dx. (44)

and oppposite phase for out-of-plane components,

az = −bz, cz = −dz. (45)

A snapshot of the angular deviations for the A− mode is
given in Fig. 3, and its time-dependent oscillations are an-
imated in the Supplementary Material[24]. All in-plane
angular deviations are of the same magnitudes, but with
opposite phases between neighboring dipoles. All out-of-
plane deviations are also of equal magnitudes, but with
opposite phases between neighboring dipoles. The devi-
ations on each sublattice can be summarized in an eigen-
vector with Cartesian component pairs on each sublat-
tice,

ψ = (ay, az, bx, bz, cy, cz, dx, dz). (46)

For this lowest (acoustic-like) antisymmetric mode, the
eigenvector is

ψA− = (ay, az, ay,−az, −ay, az, −ay,−az), (47)

determined by just two components. Using bz = −az in
Eq. (19), the relation between those components is

az =
−iωA−

(α2 − γ+)
ay = −i

(

α1 − 3
2γ+

α2 − γ+

)

1
2

ay. (48)

A=(φ,θ)

B=(φ,θ)

C=(φ,θ)

D=(φ,θ)

Mode A+

FIG. 4: Phase relationships of the dipolar angles expected
in the antisymmetric mode denoted A+, with frequency ωA+

given in Eq. (43b). The in-plane rotations are equal and in-
phase: φA = φB = φC = φD, and the out-of-plane compo-
nents are also equal and in-phase: az = bz = cz = dz. These
motions tend to cause large changes in the nearest neighbor
dipolar energies, see Eq. (30).

In the acoustic-like limit of zero wave vector and zero
anisotropy, az tends towards zero, and the motion is pre-
dominantly in-plane.

2. Mode A+ eigenvector and features

For the mode at the higher frequency, ωA+ , we expect
different relative motions of the sublattices. For in-plane
components, when frequency ωA+ is used in Eq. (19), we
arrive at opposite phases for neighboring dipoles,

ay = −bx, cy = −dx. (49)

When combined with the assumptions in Eq. (40), this
shows that all of the in-plane angles move together in-
phase (φA = φB = φC = φD). One also finds in-phase
motions for the out-of-plane components,

az = bz, cz = dz . (50)

Together with (40), this implies that all out-of-plane com-
ponents move in-phase. As defined in (46), the eigenvec-
tor for this mode is

ψA+ = (ay, az, −ay, az, −ay, az, ay, az). (51)

A snapshot of the deviation structure is given in Fig.
4, and the motion is animated in the Supplementary
Material[24]. These angular deviations of the dipoles
tend to raise their nearest neighbor dipolar energy; this is
not an acoustic-like mode in the limit of zero anisotropy
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and wave vector. As far as the relative magnitudes of
in-plane vs. out-of-plane components, one finds

az =
−iωA+

(α2 + γ+)
ay = −i

(

α1 +
3
2γ+

α2 + γ+

)

1
2

ay. (52)

In the limit of zero wave vector and zero anisotropy, the
az and ay components have similar amplitudes.

E. Finding the symmetric modes

Contrary to the assumptions made in Eq. (40) for the
antisymmetric modes, it is reasonable to assume that
there are modes whose in-plane Cartesian components
are symmetric viewed across the center of a vertex,

ay = cy, az = −cz, (53a)

bx = dx, bz = −dz. (53b)

These are the same phase relationships that hold in the
optic modes of a 1D antiferromagnet. It is straightfor-
ward to show that they do indeed lead to solutions of the
original 8× 8 system in Eq. (19).
Using (53) to eliminate two of the sublattices, there

results from (19) a set of four 2 × 2 systems, one for
each sublattice, whose eigenfrequencies represent the four
remaining modes of the original 8× 8 system,

ω2
S− =

(

α1 − 3
2γ−

)

(α2 − γ−) , (54a)

ω2
S+ =

(

α1 +
3
2γ−

)

(α2 + γ−) . (54b)

This involves another wave vector dependent factor,

γ− ≡ δ1(u− v) = −4δ1 sin(
1
2qxa) sin(

1
2qya). (55)

This factor becomes identically zero if qx = 0 or qy =
0. Thus, the only symmetric modes that will have some
wave vector dependent features will not have wave vector
aligned with one of the lattice axes. In the small wave
vector limit, we have γ− ≈ −qxqya2. These modes have
an optic-like character, with a finite frequency at zero
wave vector even in the limit of zero anisotropy.

1. Mode S− eigenvector and features

For the mode with frequency ωS− , substitution of the
frequency into the equations of motion gives the relations

ay = bx, cy = dx az = −bz, cz = −dz. (56)

These are the same nearest neighbor phase relations as
for the mode A−. Taken together with the symmetric as-
sumption (53), the eigenvector in Cartesian components
is of the form

ψS− = (ay, az, ay,−az, ay,−az, ay, az). (57)

A=(φ,θ)

B=(−φ,−θ)

C=(−φ,−θ)

D=(φ,θ)

Mode S-

FIG. 5: Phase relationships of the dipolar angles expected in
the symmetric mode denoted S−, with frequency ωS− given
in Eq. (54a). The in-plane angular deviations are towards
the same side for dipole pairs across the vertex center. The
out-of-plane deviations are in opposite directions across the
vertex center. The nearest neighbor relative deviations are
partly energy reducing and partly energy enhancing.

By using az = −bz in Eq. (19), one arrives at the phase
relation between in-plane and out-of-plane components,

az =
−iωS−

(α2 − γ−)
ay = −i

(

α1 − 3
2γ−

α2 − γ−

)

1
2

ay. (58)

A snapshot of the deviations in a vertex is shown in
Fig. 5, and the motion is animated in the Supplementary
Material[24]. Out of the four dipole-pair interactions, two
of them reduce their energy while two of them increase
their energy, compared to the ground state. The AB and
CD couplings move towards lower energy while the BC
and DA couplings have moved towards higher energy.

2. Mode S+ eigenvector and features

For the mode with frequency ωS+ , substitution of the
frequency into the equations of motion gives the relations,

ay = −bx, cy = −dx az = bz, cz = dz. (59)

These are the same nearest neighbor phase relations as
for the mode A+. Together with the symmetric assump-
tion (53), the eigenvector in Cartesian components is of
the form

ψS+ = (ay , az, −ay, az, ay,−az, −ay,−az). (60)

By using az = bz in Eq. (19), one arrives at the phase
relation between in-plane and out-of-plane components,

az =
−iωS+

(α2 + γ−)
ay = −i

(

α1 +
3
2γ−

α2 + γ−

)

1
2

ay. (61)



9

A=(φ,θ)

B=(φ,θ)

C=(−φ,−θ)

D=(−φ,−θ)

Mode S+

FIG. 6: Phase relationships of the dipolar angles expected in
the symmetric mode denoted S+, with frequency ωS+ given
in Eq. (54b). The in-plane angular deviations are towards
the same side for dipole pairs across the vertex center. The
out-of-plane deviations are in opposite directions across the
vertex center. The nearest neighbor relative deviations are
partly energy reducing and partly energy enhancing.

A snapshot of the deviations in a vertex is shown in
Fig. 6, and the motion is animated in the Supplemen-
tary Material[24]. In a certain sense it is very similar to
the mode S−. Out of the four dipole-pair interactions,
again two reduce their energy while two increase their
energy. The AB and CD couplings move towards higher
energy while the BC and DA couplings have moved to-
wards lower energy, opposite to what takes place in mode
S−.
Indeed, there isn’t a significant difference between

modes S+ and S−, due to the behavior of the factor γ−,
which reverses sign with a change in sign of either qx or
qy, see Eq. (55). One can see ωS− → ωS+ under a change
such as qx → −qx or qy → −qy. Thus, the two modes
map into each other with an appropriate change of wave
vector.

V. POSSIBLE EXCITATION SPECTRA

Here we calculate some spectra for the excitations in
a couple of situations. The anisotropy constants κ1, κ3,
and κ13 as well as the dipolar coupling δ1 depend on the
specific geometry of the islands. In a typical artificial spin
ice, it is likely that the anisotropy constants dominate
over the dipolar coupling. Even so, it is instructive to
consider some different choices of these parameters to
observe how they affect the mode frequencies.
For convenience here, frequencies will be measured in

units of δ1. We assume elliptical islands like those studied
by Wang et al. [3] with length Lx = 220 nm, width
Ly = 80 nm and thickness Lz = 25 nm. If the material is

qx

qy

q x Iq y I

Γ

X
π/a I

M

π/a I

Bril
lou

in 
zo

ne
 ed

ge

FIG. 7: The first Brillouin zone for the square lattice of mag-
netic islands, whose near neighbor spacing at 45◦ from the
x-axis is aI = a/

√
2.

Γ X M Γ
q

I
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I
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FIG. 8: The excitation spectrum in the limit of zero
anisotropy (κ1 = κ3 = 0) for wave vectors in the island co-
ordinates from Γ → X → M in the Brillouin zone, Fig. 7.
Modes S− and S+ are degenerate along M → Γ. Mode A−

is acoustic-like at q → Γ, while its sister-mode A+ acquires
zero frequency at the M-point.

Permalloy with saturation magnetization Ms = 860 kA
m−1, the dipole moment per island is µ = 2.97 × 10−16

A m2, see Wysin et al. [12]. We take a lattice constant
a = 320 nm, then the dipolar coupling constant from Eq.
(2) is D ≈ 7.6×10−19 J. Using the electron gyromagnetic
ratio γe = 1.76 × 1011 T−1 s−1, Eq. (9) gives the value
of the dipolar angular frequency constant, δ1 ≈ 4.5× 108

s−1, corresponding to a frequency unit δ1/2π ≈ 72 MHz.

The original xy coordinate system was selected for
finding the eigenmodes because the islands are oriented
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along those axes, however, the unit vectors of the island
lattice are

x̂I ≡ 1√
2
(x̂+ ŷ), ŷI ≡ 1√

2
(−x̂+ ŷ). (62)

These are the directions of rxy (45◦) and rx̄y (135◦)
in Fig. 1. Then the dispersion relations for the modes
should be calculated with wave vectors q = (qxI

, qyI
) ex-

pressed in this rotated coordinate system, within the first
Brillouin zone, as sketched in Fig. 7. Then the rotated
components are

qxI
= 1√

2
(qx + qy), qyI

= 1√
2
(−qx + qy). (63)

The phase factors used earlier in (18) are now simply u =

2 cos(qxI
aI) and v = 2 cos(qyI

aI), where aI = a/
√
2 is the

near neighbor distance on the island lattice. This implies
simplified phase factors in the dispersion relations,

γ+ = δ1(u + v) = 2δ1[cos qxI
aI + cos qyI

aI], (64a)

γ− = δ1(u − v) = 2δ1[cos qxI
aI − cos qyI

aI]. (64b)

These were used in dispersion relations (43) for A± modes
and (54) for S± modes to obtain the mode spectra for
several situations.

A. Zero anisotropy limit

Initially, consider the extreme limit where the
anisotropy constants are zero: κ1 = κ3 = 0, and only
nearest neighbor dipolar coupling is present. The result-
ing spectrum for the modes is shown in Fig. 8. The anti-
symmetric mode A− is the acoustic-like mode, going to
zero frequency linearly at zero wave vector. The other
antisymmetric mode, A+, has its maximum frequency
ωA+ =

√
120δ1 at q = 0 (Γ), but linearly acquires zero

frequency at the M-point, where mode A− has its max-
imum frequency. The symmetric modes are degenerate
from M to Γ, or what corresponds to either having qx = 0
or qy = 0 in the original vertex coordinate system. Along
Γ to X, however, the S+ and S− frequencies move in op-
posite directions, with ωS− being higher. If one were to
consider wave vectors from Γ to Y (not shown), a sim-
ilar structure would appear but with ωS+ being higher.
As mentioned earlier, modes S− and S+ map into each
other, because the function γ− reverses sign if qx or qy
is reversed in sign, which then takes ωS+ into ωS− and
vice-versa. Overall, one sees that there are several wave
vector regions with a high density of low-energy modes
present, of different symmetries.

B. Weak island anisotropy

Next, we suppose that the islands have weak shape
anisotropies with energy constants K1 = 0.1D and K3 =
0.5D, but still with the same values of dipolar moment

Γ X M Γ
qIaI

0

4

8

12

ω
 / 

δ 1

A
_

A
+

S
_

κ1 = 0.2δ1, κ3 = δ1

S
+

A
+

A
_

FIG. 9: The excitation spectrum for weak anisotropy, with
κ1 = 0.2δ1 and κ3 = δ1 for wave vectors in the first Brillouin
zone of the island lattice. Note the small gap that opens up
in the spectrum, of size ωgap =

√

κ1(κ13 + 2δ1) = 0.8δ1.

µ = 2.97 × 10−16 A m2 and dipolar angular frequency
δ1 = 4.5× 108 s−1.
Then the scaled anisotropy factors from Eq. (9) are

κ1 = 0.2δ1 and κ3 = δ1, which also gives κ13 = 1.2δ1.
The mode spectrum that results is shown in Fig. 9. In
the limit of small wave vector, a gap opens at q = 0 in
the A− spectrum, given by

ωgap = ωA−(0) =
√

κ1(κ13 + 2δ1). (65)

For the chosen parameters, the gap is ωgap = 0.8δ1. The
same gap opens up for mode S+ at X, mode S− at Y,
and for mode A− at the M points. Now the acoustic-like
mode is only weakly linear at long wavelength; the dis-
persion relations very near the frequency minima depend
quadratically on the deviations of q.

C. Realistic anisotropy in a spin ice

Finally it is important to show a prediction from this
model for realistic parameters of typical islands in arti-
ficial square spin ice, such as that studied by Wang et

al. [3]. Assuming elliptical islands with length Lx = 220
nm, width Ly = 80 nm and thickness Lz = 25 nm, en-
ergy minimization simulations indicate that their dipoles
behave in a way described with easy-axis anisotropy pa-
rameter K1 ≈ 2.9 × 10−17 J and hard-axis anisotropy
parameter K3 = 6.4 × 10−17 J. For lattice parameter
a = 320 nm, we found above the dipolar energy constant
D ≈ 7.6 × 10−19 J. Then Eq. (9) implies the anisotropy
frequency constants are

κ1 ≈ 76δ1, κ3 ≈ 168δ1, κ13 ≈ 244δ1. (66)

As expected, the anisotropy is very strong compared to
the dipolar interactions. This leads to a substantial gap
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FIG. 10: The excitation spectrum for realistic anisotropy in a
spin ice, with κ1 = 76δ1 and κ3 = 168δ1, for wave vectors in
the first Brillouin zone of the island lattice. The spectrum is
strongly elevated by a gap of size ωgap =

√

κ1(κ13 + 2δ1) =
136.7δ1 , but otherwise similar to that at weak anisotropy.

in the spectrum,

ωgap =
√

κ1(κ13 + 2δ1) ≈ 136.7δ1. (67)

The resulting spectrum is shown in Fig. 10. One can see
that the q-dependence of the mode frequencies resembles
that for weak anisotropy, except that the entire spectrum
is elevated an amount equal to the gap frequency. The
variations in the mode frequencies with q are a rather
small fraction of the total frequency.

VI. DISCUSSION AND CONCLUSIONS

The eigenfrequencies and eigenvectors for four differ-
ent types of modes have been found analytically by di-
agonalization of the dynamic matrix for the model. In
the modes denoted as antisymmetric, the in-plane dipole
components across the center of one vertex move oppo-
sitely. For mode A−, both the in-plane and out-of-plane
components of two nearest neighbor dipoles such as AB
or AD also move oppositely relative to each other, see
Fig. 3. To the contrary, for mode A+, both the in-
plane and out-of-plane components of two nearest neigh-
bor dipoles move or rotate together in the same sense,
see Fig. 4. For q → 0, the frequency of mode A− goes to
a minimum; if no anisotropy is present, that minimum
frequency goes to zero linearly with q, and mode A− is
acoustic-like. An energy analysis for long wave vectors
(Sec. IVB) aided greatly in pointing towards the proper-
ties and phase relationships of the in-plane components
of the mode that becomes acoustic-like. An associated
analysis of the precessional motion of a dipole (Sec. IVC)
also was essential for understanding the phase relation-
ships needed for the out-of-plane dipole components for

the lowest energy modes. These symmetry considerations
reduced the problem to separated 2× 2 matrices for each
of the four mode branches.

In the other modes denoted as symmetric, the in-plane
dipole components across the center of one vertex move
in the same direction. Depending on the choice of wave
vector and especially its direction, one of the modes S−

or S+ may also go to low frequency in the limit of zero
anisotropy. That is because their frequencies ωS− and
ωS+ get interchanged when the wave vector dependent
factor γ− reverses sign, see Eq. (54). This sign reversal
would occur, for instance, by changing qx → −qx or by
qy → −qy (but not both together). Indeed, a similar
effect is present for the frequencies ωA− and ωA+ of modes
A− and A+, see Eq. (43), if the sign of the wave vector
dependent factor γ+ is reversed.

For nonzero anisotropy factorsK1 andK3, a gap opens
at the bottom of the spectrum, given by Eq. (65); mode
A− acquires a finite frequency as q → 0. The gap be-
comes significant for realistic anisotropy constants that
might be expected for typical elongated spin ice islands.
Still, there will be a q-dependent modulation of the
mode frequencies whose amplitude depends on the near-
est neighbor dipolar coupling, characterized by the dipo-
lar frequency δ1.

The spectra found here ignore magnetization dynamics
within the islands, thus the frequencies are higher than
those in the semi-analytic calculations by Iacocca et al.

[17] and others [18, 20]. We are not considering that
any islands’ dipoles rotate so far as to execute a rever-
sal. The nearest-neighbor approximation ignores the long
range of dipolar interactions, which facilitated the ana-
lytic solutions while slightly reducing the calculated fre-
quencies. As a result, we cannot expect the dependence
of frequency results on the dipolar frequency δ1 (due to
nearest neighbors only) to be completely correct. The
modes found should give some idea of the likely oscilla-
tory motions, but the numerical details are approximate.
On the other hand, the dependencies of the mode fre-
quencies on the anisotropy constants such as κ1 and κ3,
being local energy parameters, should be more reliable.
Accounting for interactions beyond nearest neighbors will
be the topic of a future study.

Ultimately, knowledge of the spin wave modes in ar-
tificial spin ice may be useful for identifying differ-
ences between a ground and other states. The pres-
ence of monopoles in excited states would modify the
spectrum[18] as the spin waves would scatter from
monopoles. That effect is likely to broaden each mode
frequency. Calculations such as those presented here may
be useful also for indicating the frequencies and polar-
ization properties of applied magnetic fields intended to
manipulate artificial spin ice states.
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