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The interactions between an excitation (similar to a pair of Nambu monopoles) and a lattice

defect are studied in an artificial two-dimensional square spin ice.

This is done by considering

a square array of islands containing only one island different from all others. This difference is
incorporated in the magnetic moment (spin) of the “imperfect” island and several cases are studied,
including the special situation in which this distinct spin is zero (vacancy). We have shown that
the two extreme points of a malformed island behave like two opposite magnetic charges. Then,
the effective interaction between a pair of Nambu monopoles with the deformed island is a problem
involving four magnetic charges (two pairs of opposite poles) and a string. We also sketch the
configuration of the field lines of these four charges to confirm this picture. The influence of the
string on this interaction decays rapidly with the string distance from the defect.

PACS numbers: 75.75.-c, 75.40.Mg, 75.50.-y, 75.30.Hx

I. INTRODUCTION

Artificial spin ices! are systems composed by an ar-

ray of lithographically defined two-dimensional (2d) fer-
romagnetic nanostructures with single-domain elements
(elongate permalloy nanoparticles, in general) where the
island net magnetic moment is assumed to be well ap-
proximated by an Ising-like spin (for a regime out of
the Ising behavior in a single elliptic island, see Ref. [2)).
They can be organized in diverse types of geometries
with lattices like the squarel, brickwork®, honeycomb or
kagome®?, triangular® etc. Recently, these artificial ma-
terials have been object of intense experimental and the-
oretical investigations!**17 associated mainly with the
appearance of collective excitations that behave like mag-
netic monopoles.

The theoretical and experimental studies concerning
the physical properties of the ground state and excita-
tions of the artificial square spin ices have deserved a
great deal of attention in the last years® 1217 n this
system, there are four Ising spins at each vertex and
they can be distributed in sixteen configurations grouped
in four different topologies (see Fig. [1]). It is relatively
well established that its ground state has a configuration
that obeys the ice rule (two spins point inward while
the other two point outward in each vertex but, fol-
lowing only topology T as shown in Fig. [1)). In addi-
tion, the elementary excitations are quasi-particles akin
to opposite magnetic monopoles connected by an ener-
getic string” +2L7 (this string is an oriented line of dipoles
passing by vertices that obey the ice rule but, sustaining
only topology T»). The string energy is associated to the
fact that the ice rule is not degenerate in two dimen-
sions since topology T> has more energy than topology
T, These monopoles can be then referred to as Nambu
monopoles due to their similarities with the monopoles
studied by Nambu in the 1970’s (considering a modi-

fied Dirac monopole theory*®). Indeed, the forces that
bind “monopoles” and “anti-monopoles” in a 2d artificial
square spin ice are of two kinds®Y, One is the tension
b of an energetic string; the other is the Coulomb force
q/R?, where q measures the strength of the interaction
and R is the distance between the poles. Then, differ-
ently from the three-dimensional crystalline spin ices™
in which the string is observable but does not have en-
ergy, in the 2d case, there is an oriented and energetic
one-dimensional string of dipoles that terminates in the
monopoles with opposite charges. This string costs an
energy equal to bX where X is the string length. Thus,
the interaction potential between two opposite charges
is generally given by Vy (R, X) = ¢(¢)/R + b(¢)X + ¢,
where ¢ is the angle that the line joining the monopoles
makes with the z-axis of the array (there is a small
anisotropy in the interaction”). Numerically, the the-
oretical values™® for the constants arising in the po-
tential Viv(R, X) are ¢(0) ~ —3.88 Da, b(0) ~ 9.8D/a
while ¢(7/3) ~ —4.1 Da, b(0) ~ 10.1D/a, where D =
pop?/4ma® is the coupling constant for the dipolar in-
teraction among the islands and a is the lattice spacing.
The constant ¢ ~ 23 D, associated with the pair cre-
ation energy (E. ~ 29 D" is independent of ¢. The
modulus of the magnetic charge is, therefore, given by

Q@ ()] = V/(4rla(d)]/ po)-

Although the fabrication of these systems is relatively
easy, the limitations of the lithographic techniques are
a significant barrier for building “perfect” arrays, with
identical islands disposed at all lattice sites. Indeed, a
large number of samples are made, for example, with mal-
formed islands (see for example Ref. 20). On the other
hand, defects can also be introduced intentionally into
the system (for instance, by removing an island from the
array or making, by design, some islands with holes?1*42).
Then, as it happens with natural materials, lattice de-
fects could also play an important role in the properties
of these artificial frustrated compounds. Our primary
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Figure 1. The four topologies for the vertices in an artifi-
cial square spin ice. The energy of these topologies increases
from left to right. Topologies T1 and T> obey the ice rule
(two-in/two-out) but, they are not degenerate. Topology T5
exhibits the configurations with three-in/ one-out or one-out/
three-in while in the topology T4, one has four-in or four-out.
Topology T1 gives the ground state. Topology 7% is associated
with the string-like excitations and the last two are associated
with magnetic monopoles-like excitations.

aim in this paper is to study the effects that a single
malformed island causes on the elementary excitations of
the artificial square spin ices. Our results show that the
malformed island induces magnetic charges on adjacent
vertices, giving in this way further and strong support
to the magnetic monopole picture for the excitations of
the artificial square spin ice. This picture is also corrob-
orated by the determination of the magnetic field lines
produced by excitations. Our results also suggest that
by changing the shape and size of some islands of the
system it may be possible to tailor design systems with
desired properties.

II. DEFORMED ARTIFICIAL SQUARE ICE

Defects may be either naturally present in the system
(due to the limitations of experimental techniques) or
intentionally introduced in the artificial arrays. For ex-
ample, one could remove an island (“spin”) from a 2d
square lattice. Thus, it is important to study the effects
of these defects on the properties of the system. Here,
we will consider an arrangement of dipoles similar to that
accomplished in Ref. [I; however, at a particular site (de-
noted by site ) the island is deformed and may be larger
or smaller than the other ones. In our calculations, such
island deformation is incorporated in its magnetic mo-
ment which is proportional to the island volume (the spin
or magnetic moment S, is considered to be proportional
to the island’s volume). In our approach, the magnetic
moment of each island is replaced by a unity Ising-like
point dipole at its center (|S;| = 1) which is restricted
to point along the x or y direction depending on its po-
sition for all islands, except for the deformed one, site [,
whose magnitude is chosen in the interval 0 < |5)| < 2.
Note that the special limiting case of a missing island
(gl = 0) is included in our range. In this way, the system
is described by the following Hamiltonian?19:

— D3 Si - S; (i Ti)(S; - 7y)
H=Da*) ERT |£ |5J = @

rij

where 7j; is the vector that connects sites 7 and j,
D = pop?/4ma® is the coupling constant for the dipo-
lar interactions. In all calculations periodic boundary
conditions were implemented by means of the Ewald
Summation2324,

In the system with a single defect, like a deformed is-
land, we have observed, by using a simulated annealing
process (see Refs. [9and [10) that, the ground state is the
same as that of a perfect array (all vertices obeying the
ice rule). However, at the two particular adjacent ver-
tices shared by the malformed island, there is a nonzero
net magnetic moment due to the unbalance caused by the
defect, since its spin is smaller (or greater) than the other
three normal spins that complete the vertex (see Fig.[2)).
Therefore, although this ground state is neutral, in the
sense that it is composed by T7 vertices only, it should ex-
hibit, in principle, a pair of opposite net magnetic charges
separated by a distance of the order of the lattice spac-
ing. To better understand this picture one may think
that an augment in the magnitude of the spin, for ex-
ample, was caused by the inclusion of another (smaller)
spin in the vertex, which is located at the same place and
that points in the same direction of the increased one. In
this case one has five spins instead of four at the adjacent
vertices shared by this island, and thus there is no way to
achieve neutrality in the vertex that contains the defect.
Since vertices that do not satisfy the ice rule are viewed
as magnetic monopoles it is likely that these deformed
vertices can also be viewed as monopoles. One may also
easily arrive at the same conclusion by using a dumbbell
picture as the used by Castelnovo et al*?. There is thus
a pair of magnetic charges of magnitude Q) p, whose value
depends on the unbalance at the vertices shared by the
deformed island.

Figure 2. (Color online) Particular configuration of excita-
tions in a lattice with a malformed island (yellow arrow be-
tween numbers 3 and 4). We use two basic shortest strings
in the separation process of the magnetic charges: pictures
(a) and (b)exhibit strings I and I1, respectively. The black
circle is the positive charge while the red circle is the negative
charge.



III. RESULTS

In order to verify these assumptions, we consider now
an elementary excitation in the system. It is a single
pair of Nambu monopoles and its associated string placed
around this static lattice defect as illustrated in Fig. 2}
We have analyzed the two particular string shapes shown
in Fig. [2} other string shapes were also studied given sim-
ilar results. In Fig. numbers 1 and 2 indicate the
positions of the Nambu monopoles, with charges —Q s
and Qs respectively, while numbers 3 and 4 indicate
the extremes of the lattice defect, which are represented
by a small yellow arrow (at these points, as discussed
above, two hypothetical opposite magnetic charges —Q p
and @ p are positioned). Also, the two string shapes con-
sidered are referred to as strings I and II as shown in
Fig. [2| in (a) and (b) respectively. In our calculations,
the Nambu pair size R (the smallest distance of sepa-
ration between the two charges) is varied but only the
position of charge 1 will be shifted for convenience; posi-
tion 2 is kept fixed while positions 3 and 4 cannot change
naturally, since we are considering a static defect. Con-
sidering a suitable choice of the origin at position 2, we
get |71 | = R. Then, in principle, we now have four poles
in the array: two hypothetical coming from the static lat-
tice defect and two from the induced excitation (Nambu
pair).

Firstly, we would like to know the effects of this de-
fect on the interaction potential between the monopoles
1 and 2, Vp(R). The potential Vp(R) can be easily ob-
tained by calculating the system’s energy for each con-
figuration and subtracting the ground-state energy (see
Refs. 9 and [10)). To extract the effects of the deformed
island on the interaction energy we look for the the differ-
ence A = Vp(R) — Vn(R), where Vp(R) is the potential
obtained for the system with the deformed island and
VN (R) is the potential obtained for a perfect system,
where |S)| = 1. Since Vi (R) contains the interactions
between the monopoles 1 and 2 and the string energy,
A gives the interaction between the deformed island and
the monopoles 1 and 2 as well as the interaction between
the deformed island and the string. In this way we can
write a general analytic expression for A by considering
the Coulombian interaction energy between four charges
(1 and 2 with magnitude Qps and the hypothetical 3
and 4 with magnitude @ p) added by the interaction be-
tween the defect and the string. The interaction between
charges and strings and also between strings may be very
complicated to explicitly write. Thus, for the moment,
we are including in the general expression for A an ad
hoc term, such that A reads:

1 1 1 1
s |
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where
Ho
K| =—
1= QpQum (3)

and Ky are constants that must be determined, 6(z) is
the step function (6(z) = 0 for < 0 and §(z) = 1 for
x > 0), 75; is the distance between vertices ¢ and j, 7 is

the position of charge 1 and Ry is the position of the de-
formed island. The first term of equation [2|is simply the
Coulombian interaction energy between the four charges
(we remark that the interaction between charges 1 and
2 is not present in A as well as the interaction between
the defects 3 and 4). The second term represents the ad
hoc interaction of the string with the defect and will be
discussed later.

Fig. [3| shows the potential A as a function of the dis-
tance between the Nambu monopoles 1 and 2 (r = R/a)
for strings I and I, using |§l| = 0, i.e., considering
a missing island in the system. The results presented
here are for a lattice with size equal to 80a (with 12,800
spins). In this figure the smallest distance between the
defect and the string is 6 = 5a (¢ is measured as the
distance between the line that connects the monopoles
1 and 2 and the deformed island; note however that for
the string shapes used here this distance is exactly the
smallest distance between the string and the deformed
island). Since ¢ is relatively large we may consider that
the defect does not effectively interacts with the string,
so that the constant K5 may be set to zero. The dashed
red line in Fig. |3| is a nonlinear curve fitting made by
using Eq. with Ky = 0. It can be easily seen that the
Coulombian interaction between the Nambu monopoles
(charges 1 and 2) and the defect charges (3 and 4) cor-
rectly describes the data. Similar results are obtained for
0 < |S)| < 2 and for any value of § > 2.

These results show that either, the vacancy or even a
malformed island, behave simply like a pair of opposite
monopoles separated by a lattice spacing a as suspected
above. The maximum and minimum of the data in Fig. [3]
can be easily understood by considering the repulsion
and attraction between the mobile Nambu monopole 1
and the defect charges 3 and 4. Indeed, the potential
changes from repulsive to attractive, or vice-versa, as the
monopole 1 passes through the defect charges. The re-
pulsion or attraction occurs if the monopole 1 is closest
to a defect charge of the same or opposite sign. Another
characteristic of this interaction concerns the presence
of the string. Since K5 was set to zero to fit the data,
one could conclude that the string connecting the Nambu
monopoles does not cause any effect on the interaction
if its distance from the defect is relatively large. This is
really the situation as we explain latter.

Figure [4] shows the fitted values (K7) as a function
of Sj, obtained for type I string (the same result was
also obtained for type II string). The red dashed line
is a linear regression. For S; = 0, our results show that
K, ~ 2 Da. Besides, using the fact that K; is given in
units of Da, it is easy to show that Qp = qu—l and since

m
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Figure 3. (Color online) Data for A as a function of r = R/a,
considering string type I and 11, for the situation in which the
smallest distance & between position 1 and the defect is larger
than one spacing lattice. The magnitude of dipole moment is
|§l\ = 0. The simulation data A are the points and represent
the case with 6 = 5a. The dashed lines are the fittings for
expression [2]

gm =~ 2, Qp = 1 ~ Qn/2. It leads to |Qp| ~ |Qum|/2,
which should be expected since the defect topology is
an arrangement with configuration 2-in/1-out and vice-
versa. The magnitude of K; decreases with increasing Sj,
vanishing, as expected, when S; = 1 (which is the case of
a “perfect array”). For S; > 1, the sign of K; changes,
indicating that there is a switch in the position of the
positive and negative charges produced by the defect, as
shown in figure [} In this figure, the white and gray cir-
cles represent the negative and positive charges induced
by the lattice defect. In fact, the switch of the position of
the induced charges can be easily seen by observing the
change in the net magnetic moment (red arrow) on the
vertices that form the lattice defect when S; is smaller
or greater than the other islands. Therefore, the effect
of varying S; from values smaller than 1 to values larger
than 1 is the same as that of inverting the effective mag-
netic moment of an island from z to 2 — 2z (0 <z < 1);
hence, the characteristic effect of a vacancy is essentially
the same as that caused by a defect island with a spin
whose magnitude is twice (S; = 2 ) the magnitude of the
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Figure 4. (Color online) Data for K as a function of the size
of the malformed island. Observe the linear behavior of K3
as S is increased.

spin of the normal islands (for defects with S; = 0 and
S; = 2, the magnetic moment has the same modulus but
it points in opposite directions).
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Figure 5. (Color online) Ground state configuration of the
system around the malformed island for (a) S; smaller (b) S;
greater than other islands. The white circle represents the
negative charge induced by the lattice defect while, the gray
circle represents the positive charge.

On the other hand, if the “moving” Nambu monopole
1 passes around the lattice defect at a distance smaller
than 2a (on the order of la), a substantial difference
in the interaction potential can be noted, as shown in
Fig. [0 which is obtained for string shapes I and I
near a vacancy (6 = la). For large values of r we can
see that A goes to a constant value, while in Fig. [3] it
goes to zero. This difference is attributed to the inter-
action between the string and defect. Indeed, the string
may be viewed as a sequence of magnetic quadrupoles,
whose magnetic field decays very quickly, and then, it
is expected to interact only with very close objects. In
this way, we may see that when all parts of the string
are far from the defect there is no contribution from its
interaction with the defect to the total energy; on the
other hand, if a segment of the string is close enough to
the defect (distance smaller than 2 lattice spacings), only
the small segment that is close enough to the defect in-
teracts with it. This explain the ad hoc term included
in Eq. 2l When the “distance” between the defect and
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is negative, the string has not crossed the defect yet, and
thus it is not close enough to contribute to the total en-
ergy. On the other hand, for r4 > 0 there is a segment of
the string at a distance § from the defect and for § < 2a
this segment contributes with a constant value K» to the
total energy. In Fig. [f] the dashed red line was obtained
by doing a nonlinear curve fitting according to general
Eq. [2 in such a way that for r < rgq, Ko was set to zero
and then, keeping fixed K the remaining points (r > ry)
were fitted for arbitrary K». In Fig.[7]we show the results
for the constant K5 as a function of §. As can be seen
K5 has a significant value only for § < 3.
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Figure 6. (Color online) Data for A as a function of r = R/a,
considering strings I and II, for § = la and S; = 0. The
simulation data for A are the black points and the red dashed
line is the fitting for the expression [2}

IV. MAGNETIC FIELD LINES

The above results give a strong support to the
monopole-like picture for the excitations and defects of
the artificial square spin ice as presented on Ref. 9l To
give further support to this scenario we have also an-
alyzed the magnetic field lines for this configuration of
charges. We start our analysis by presenting in Fig. 8| a
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Figure 7. (Color online) The interaction constant between

string and defect, K2, as a function of the distance between
the defect and the string, §.

color map of the magnetic field intensity of a perfect sys-
tem at its ground-state, where all islands have the same
spin value. It is easy to see that the field is null at the
center of the plaquettes as well as at the center of the
vertices. This fact allows us to obtain the field produced
by the excitations alone by simply inverting spins (cre-
ating excitations) and thus by calculating the resulting
magnetic field at the center of the plaquettes and at the
center of the vertices. In Fig.[9] we show the stream lines
of the aforementioned field for a configuration were the
red spins were flipped. We notice that the magnetic field
lines far from the flipped spins are very similar to the
field lines of a pair of electric charges, while in the space
between them the magnetic field follows the string. It
became clear then that the string carries the magnetic
flux back from one charge to the other. In Fig. (b)
we show the stream lines of a configuration containing a
vacancy and a pair of magnetic monopoles and its associ-
ated string while, for effect of comparison, in Fig. [10| (a)
we show the electric field produced by two unity charges
located at the same position of the Nambu monopoles
and a pair of one half charges located at the same posi-
tion of the vertices shared by the deformed island. Apart
from the region where the string is present, the similar-
ities between these two figures is remarkable. Although
very simple, this analysis gives further evidences for the
monopole-like behavior of excitations and defects in the
artificial square spin ice.

V. CONCLUSION AND PROSPECTS

We have studied the problem concerning the interac-
tion between two magnetic monopoles (and the energetic
string connecting them) with a lattice defect present in
the square spin ice array. We notice an interesting re-
semblance between the single defect and a static pair
of monopoles separated by one lattice spacing. The
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Figure 8. (Color online) Magnetic field intensity of the sys-
tem’s ground state. At the center of the plaquettes and at the
centers of the vertices, the field goes to zero (black regions).
These points were used to obtain the magnetic field produced
by the excitations.

strength of the magnetic charges of this small defect was
obtained as a function of the magnetic moment of the
malformed island (Fig. [4). Defects with S; = 0 (va-
cancy) and S; = 2 (double spin) produce the same ef-
fects in the lattice, since they have the same magnetic
charges (placed in opposite positions). There is also a
short range interaction between the string and the lat-
tice defect, which can be attractive or repulsive, depend-
ing on the orientation and local shape of the string. Our
results are a first step in direction to understanding how
lattice defects could change the thermodynamics of ar-
tificial spin ices’l. For instance, considering an array
with a finite density o of defects, it should be important
to know how the properties of the system change as o
increases and how it could affect the formation of the
ground state experimentally (a problem usually found in
experiments with artificial square icestII). In general,
we expect that the presence of a finite density of these
lattice defects will distort deeply the path of the strings
and even, they could break or join some different strings.
A more detailed study of these questions is in progress
at the moment.

A simple way to model unintentional defects in the
system is to supposing that the islands have a gaussian
size distribution around a given mean value. In a model
of point dipoles this would be achieved by considering
a gaussian distribution of the spin’s magnitude. In this
case, one may expect that, for a small variance of the size
distribution, the same ground state of the perfect system

-4 =2 0 2 4

Figure 9. (Color online) This figure exhibts the stream lines
of a pair of Nambu monopoles and its string (red spins). Only
a small portion of the system is shown for clarifying.

would be achieved. However, for a large variance or for a
system where the defects are not randomly distributed,
we may expect some differences in the ground state. For
instance, one may expect the formation of an ordered
arrangement of charges (like a crystal of charges) similar
to what happens in a kagome latticé®S. The control of
some defects (for example, inducing stronger or smaller
variances of the size distribution) may thus be used to
facilitate the experimental achievement of the system’s
ground-state.

Another interesting point is the possibility to construct
tailor designed systems to achieve some desired property.
Since the presence of a defective island can be interpreted
in terms of the induced charges at the vertices shared by
it, one can think in designing, for example, a magnetic
capacitor-like system. This would be constructed by de-
signing a system were all spins in a stripe immersed in a
square system have islands smaller than the other ones,
for example, in such a way that, in the edges of this
stripe, there will be residual charges as far as an ice-like
state is achieved. The presence of these residual charges
may significantly change the behavior of other excita-
tions inside this capacitor. A more detailed analysis of
this hypothesis is under consideration.
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Figure 10. (Color online) (a) Electric field lines produced by four electric charges: two of unity magnitude representing the
Nambu monopoles and two of one half magnitude representing the vacancy’s charge. (b) Stream lines of the spin configuration.
The red spins were flipped to produce the Nambu monopoles and its string. Only a small portion of the system is shown. The
vacancy is placed approximately at (-1,2).
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