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ABSTRACT

Dynamic properties of classical spin excitations in models
for quasi-two-dimensional materials are described. Included
are spin configurations for vortex and vortex-like excita-
tions from continuum limit equations of motion, together
with comments about their stability. Models studied are the
anisotropic ferro- and antiferromagnets, and an easy-plane
ferromagnet with &4-fold in-plane symmetry breaking. Re-
sults from numerical simulations of the dynamic structure
function S$°*(k,w) are shown and compared with phenomeno-
logical theories.

1. INTRODUCTION

1.1 Tow-Dimensional Models

Understanding the dynamic properties of excitations in magnetic
models is a challenging and exciting enterprise, and from the theoreti-
cal viewpoint, analysis for systems in one or two dimensions can in many
cases be carried out with more details than would be possible in three
dimensions. From the experimentalists' perspective, there exist a wide
variety of real materials which can be quite accurately described in terms
of strong spin-spin interactions acting only along one or two of the
crystal axes, thereby imposing a lower effective dimensionality.l'a For
these materials, at temperatures above a transition temperature where the
full three-dimensional interactions become relevant, the spin degrees of
freedom can be described by a Hamiltonian with a lower effective dimen-

sionality d < 3. Then the material is called "quasi-d-dimensional."

1.2 Quasi-One-Dimensional Magnets and Solitons

Historically, the most well known quasi-one-dimensional magnetic

1.

materials™ are the spin-1 easy-plane ferromagnet CsNiF4, and the spin-

5/2 easy-plane antiferromagnet (CHq),NMnCl3, known as TMMC. These and



other materials have been thoroughly studied experimentally and analyzed
in terms of nearest neighbor classical spin chain Hamiltonians possess-

5-7 The analysis of equilibrium and dynamic proper-

ing soliton modes.
ties for such models is a mature and still active field (for example, see
the article by D.P. Landau herein). Usually the interactions are
anisotropic, perhaps with an Ising (easy-axis) or planar (easy-plane)
symmetry. Presence of Ising anisotropy will lead to the possibility of
static soliton-like excitations, involving rotations of the spin field
through =, connecting regions having the two energetically equivalent
alignments along the Ising axis. With planar anisotropy, there is the
possibility of static soliton-like excitations involving in-plane
rotations through 27 for ferromagnets or m for antiferromagnets. These
typically will be better defined if there is a small applied magnetic
field within the easy plane, breaking the symmetry in that plane.

Quite generally, with reasonable continuum 1limit assumptions,
magnetic Hamiltonians in one dimension map approximately onto the one-
5-7

dimensional sine-Gordon (sG) equation, Therefore, phenomenological

descriptions involve an "ideal gas" of sG solitons moving within (and
perturbing) a background field of small amplitude spin waves.® Within
this sG description, contributions to the dynamic structure function,
SQG(E,w), as measured in inelastic neutron scattering, are expected due
to solitons (peaks at w = 0), spin waves (peaks at finite w) and multi-
spinwave processes (which can also contribute to w = 0 intensity). In
terms of gross features this description is probably wvalid for many
materials, However, there are known difficulties. Corrections are

9,10 The mapping onto the

expected due to deviations from sG dynamics.
sG equation is approximate---spins tilt out of the easy plane for "planar"
systems, an effect not fully accounted for in the sG equation. Also there
could be quantum effects, and higher order soliton-spinwave interaction
effects. However, if we consider quantum effects to be small (expected
for 8 > 1), then numerical spin dynamics integrations are a productive way
to avoid the sine-Gordon mappings and at the same time obtain accurate

results for S$**(k,w). Conveniently, at this time available computin
iently 8

power is appropriate for performing these spin dynamics calculations for



reasonably large systems in two dimensions (100 x 100) as well as for one-

dimension.

1.3 Quasi-Two-Dimensional Magnets and Vortices

Understanding of the statics and dynamics of quasi-two-dimensional
magnets is not so thoroughly developed. However, the variety of chal-
lenging models and materials and possibilities for topological excita-
tions is much greater than for one dimension. Some typical examples of

2

quasi-two-dimensional magnets include BaCo,(AsO,),, an XY ferromagnet,

BaNi(POQ)z, an XY antiferromagnet, and Rb2Cr014, an XY ferromagnet with

3

in-plane symmetry-breaking. Also, there 1is the mnearly isotropic

Heisenberg ferromagnet K,CuF,, and the XY ferromagnet CoCl, intercalated

4 Among the available materials spin-S values range from 1/2

in graphite.
to 2, with interesting exchange and crystal field anisotropies on
triangular, honeycomb and square lattices.

For two-dimensional models, in addition to spin waves and solitons
(or now, "domain walls"), there can also be "vortex" excitations in-
volving a singular point in the spin field, which has a nonzero curl.
All of these can be expected to make contributions to S**(k,w). The gross
features should be well described by a phenomenological model, in terms
of an ideal gas of walls, vortices, and spinwaves weakly interacting. For
a simple model such as one with planar anisotropy but no applied fields
(e.g., XY model), only vortices and spinwaves are present, and an ideal
gas phenomenology has been developed by Mertens et al.ll to describe the

12 ¢ransition temperature (Kosterlitz-

dynamics above the vortex unbinding
Thouless transition temperature Tgr). Static vortices are responsible for
zero frequency intensity in S““(E,w), that is, a central peak. The
phenomenology can be compared with numerical simulations of S%%(k,w),
however, an exact separation of central peak intensity into vortex and
multi spinwave components is difficult., The numerical simulations suggest
that corrections to the ideal gas phenomenology are needed, especially for
the out-of-plane spin component correlations. However, for T > Ty, the
phenomenology assumes unperturbed vortices moving with a Boltzmann
distribution of velocities, but at present it is not completely understood

how strongly the vortex-spinwave or vortex-vortex interactions modify the



correlations, nor are the dispersion relation and velocity distribution
of moving vortices actually known.

Ideally, one should consider the linearized perturbation about a
vortex solution to obtain the vortex-spinwave scattering properties and
vortex stability with respect to perturbations. In practice, this leads
to a 4th order eigenvalue problem for which the bound states are not
known. Instead, numerical integrations can be used, starting from a
vortex initial condition, to indicate the dynamic stability, Similarly,
numerical simulations have been used to indicate properties for travel-
ling vortices. Any information about dynamic properties of isolated
vortices obtained in this way will be helpful in improving phenomeno-
logical models, and offer guidance for other models involving more complex
anisotropic interactions.

There are three primary goals for this paper: i) to review the
classical mechanics description of spin waves, domain walls, and espe-
cially, vortices in several magnetic models; ii) to present some results
relating to stability of vortices (as derived from continuum theory) when
placed on a lattice; iii) to present results for S%*(K,w) for these
models, in the light of available phenomenology theories. The models
considered are the anisotropic Heisenberg model (ferro and antiferro-
magnetic exchange), and a model for Rb,CrCl,, which is an easy-plane
ferromagnet with 4-fold in-plane symmetry breaking anisotropy. The
intention is to give an idea of the remarkable assortment of excitations
in the various models, concentrating on their spin configurations,
stability and dispersion properties, and the implications of these for

their contributions to dynamic space-time correlation functions.

2. ANISOTROPIC HEISENBERG MODELS: XY TO ISOTROPIC FERROMAGNETS

For spin wvariables §i' where i labels a lattice site in two dimen-

sions, a simple Hamiltonian is

X X V¥ 22
Hw -~ J .8, S,S, + 845< 4+ A 8.8 : 1

i3 ( oy £ i j) (1
where the sum is over nearest neighbor pairs (i,j) and the parameter A

measures the degree of exchange anisotropy. Here we consider only planar



anisotropy, with 0 < X <1. As X ranges from O to 1 the model changes
smoothly from the XY model to the isotropic Heisenberg model.
The discrete equations of motion resulting from (1), obtained most

easily through classical Poisson brackets, are

das .

.,__E..:g x i:" (2)

dc i i

- xh yh ZA

F. =3 .. 5. (8 + §7 + X ST z). 3
i (3,3 ( i 37 J ) (3)

The sum in (3) involves only the nearest neighbors of site i. This form
of the differential equations is used for numerical integrations due to
its simplicity and lack of trigonometric function evaluations. Using
these equations, and assuming small dynamic fluctuations from a state with
§-S(1,0,0) leads to the spinwave dispersion relation for an excitation

with wavevector (kx.ky).

(w/235)% = (2-¢) (2-Xc); c = coskya + coskja (4)
where a is the lattice spacing. This dispersion has an interesting fea-

ture. For small wavevectors, we have

w =~ JS(ka)? for A = 1 (Heisenberg) (5)
w = 2JS(ka) for A =0 (XY). (6)

This point is that for intermediate values of A, there is a mixture of
linear and quadratic wavevector dependencies, with a crossover from linear

to quadratic k-dependence at adequately large k.

2.1 A Continuum Limit

A crossover effect for the continuum solutions as ) ranges from 0
to 1 might also be expected, especially since a planar vortex is not

13 can be studied

expected for the isotropic model. The continuum limit
by using spin variables in terms of the spherical coordinates:

§(?) = S(cosfcos¢, cosfsing, sinf). (7)



In a lowest order continuum limit derived from a square lattice, the

coupled equations of motion for the 6(r) and ¢(r) fields are

§ = JS (cosf V24 - 2sind V¢-Vp) (8)
gcosf = -JS ([|V8]2 + |v8|2 - 4 + X (4-]V6]|2)] sind coso
+ (sin28 + 2 coszﬁ) 923} (9

These equations have two types of soliton-like vortex solutionsl® (orx,

an "instanton" when X = 1).

2.2 Planar Vortices

Angle ¢ measures the spin angle projected on the easy xy plane, while
angle § measures the tilting of the spins up out of the xy plane. In the
XY limit one expects a static planar solution, with 8 = 0 and 8 = é = 0.
This exactly satisfies (9) and then (8) simplifies to the Laplace
equation, for any value of X:

v2 -0 . (10)
This has a simple "planar vortex" (or antivortex) solution

$ =+ tan"l (y/x) + ¢,

§ =0 (11)
where ¢  is an arbitrary constant. The energy depends logarithmically

on the system size R and a short distance cut-off T

E;; =« JS? In(R/x,). (12)

pl
This is the well known vortex (antivortex) of the XY model, but it also
exists for nonzero X. The vortex is singular at its center; the spin
direction is undefined there. The antivortex differs from the vortex
only in the sense of the circulation in the spin field.

In a system in thermodynamic equilibrium, it is expected that these
are created as vortex-antivortex pairs, where the cost in energy depends
logarithmically on the separation of their centers. 1In the Kosterlitz-
Thouless transition for the XY model, it becomes possible to lower the

free energy by creating pairs when the creation energy AU can be

pair

counterbalanced by the entropy term TAS This occurs at a transi-

pair-
tion temperaturelS T ~ 0.8 JS% for A=0. It is useful to see whether
KT



peculiarities of the classical magnetic Hamiltonian may affect this
transition, and consider the dynamic signatures of the unbinding

vortices.

2.3 OQut-0f-Plane Vortices

It can be seen that equations (8) and (9) admit another static vortex

13,14 possessing a nonzero out-of-plane component #. With the

solution,
in-plane angle ¢ given by (11), one can find asymptotic solutions to (9)
with the following behaviors for small r and large r:

sing S [1-%a (x/r)?) r -0 (13)
bS (ry/r)1/? exp(-r/r)) roe . (14)

u
I+

sinf =

I+

Here a and b are constants, and r, is an effective "vortex radius"

1 S )
r., = — —_— . (15)
2 i=%

This vortex is not singular at its center; the spins point along the z-
axis at the center, with the z-component dying off exponentially away
from the center over a length scale r,. This configuration is called an
"out-of-plane vortex."

Although an exact analytic expression for the out-of-plane vortex
is not known, Gouvea et al.14 have made an approximate evaluation of its

energy E The result is that for A << 0.8, the planar vortex is

out"
energetically favorable; Epl < Egue- But for XA > 0.8, the relationship
is reversed; Epl > Egue- This is an intriguing result; for a given value
of X, are both types of vortices possible, or is only the energetically

favorable type dynamically allowed?

2.4 Vortex Dynamic Stability

One way to answer this question is to assume perturbations 6 and &
about the known vortex solutions, and linearize the equations of motion
in these perturbations, obtaining a pair of coupled linear differential
equations for § and é. These will be in the form of an eigenvalue

problem, whose bound state solutions with negative energies will



correspond to instabilities of the original unperturbed vortex. If no
negative energy bound states exist then the vortex is stable. Unfortu-
nately, the eigenvalue problem cannot be solved for the case of the planar
vortex, nor even set up for the out-of-plane vortex.

An alternative is to make a numerical integrations of the equations
of motion, using a continuum vortex solution discretized on a lattice as
the initial condition. A Landau-Gilbert damping term can be added to the
equations of motion, to take up excess energy and reduce the effects of
putting a continuum solution for an infinite system on a finite sized

lattice. The equations of motion become

—* =3 xF, - ¢85, x (3. x F) (16)

with ﬁi given in (3) and € is the damping strength. Integrations were

14 on a 40 x 40 lattice, with Neumann or free boundary conditions and

done
a 4th order Runge-Kutta scheme, time step 0.04. The equations were
integrated out to several hundred units with damping e=0.1, starting from
a planar vortex initial condition for a set of values 0 < A <1. On a
square lattice, for X < 0.72, the planar vortex is found to be stable
under these conditions (# remains zero everywhere). For X > 0.72, the
simulation produces a striking destabilization of the planar vortex into
an out-of-plane vortex, as seen in Figure 1. Similar results were
obtained by repeating the simulations on triangular and hexagonal
lattices. On the triangle lattice (coordination number z = 6) the planar
vortex becomes unstable at A = 0.62, and on the hexagonal lattice (z = 3)
the planar vortex becomes unstable at A = 0.86. The stability of the
planar vortex is diminished by increasing coordination number and is
strongly affected by the discreteness of the lattice.

A comparable set of simulations using the approximately known out-
of-plane vortex as initial condition led to the same conclusion; there

is a crossover value A_, below which only planar vortices are stable and

CJ
above which only out-of-plane vortices are stable. These statements are
also true for vortices in the XY antiferromagnet on a square lattice,

where we find A, = 0.71. These results are especially relevant for
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Figure 1. S% spin components for out-of-plane vortices, with A=0.80, for
a) ferromagnet, b) antiferromagnet. The lengths of the arrows are
proportional to the out-of-plane angle §; the arrows are oriented at angle
6 with respect to horizontal in the diagram. Note the antisymmetry of the
antiferromagnetic vortex,

phenomenological calculations of the vortex contribution to the z-

component spin-spin correlacion functions.

2.5 Moving Vortices

It is useful to consider spin profiles for moving vortices, based
on ideas from one-dimensional soliton dynamics. Boosting a static sG
soliton for an easy-plane ferromagnet, which has S% = 0, results in a

profile with $% -~ & = -v¢ The out-of-plane component is proportional

s
to the soliton velocity v and the spatial derivative of ¢. Generalizing

to two dimensions, a planar vortex boosted along the x-direction should

have

vy
% ~ v, = — (17)

2

or, for a vortex moving along an arbitrary direction, this is

v - 8
a

§% = - , forr -+ « (18)

4(1-2)JSr



where (r,a) are polar coordinates. This is an approximate far-field
solution. Probably effects of discreteness can strongly affect the vortex
core, and an adequate r—+0 solution is not known. However, it is important
to note the symmetry of the moving planar vortex. It is antisymmetric
about a line through the center in the direction of the velocity. Along
this line S* changes sign. The presence of nonzero z components implies

that moving planar vortices will contribute to S%%(k,w).

3. NUMERICAL CALCULATIONS OF S%**(k,w)
15

Kawabata and Bishop introduced a convenient combined Monte Carlo-
molecular dynamics technique for performing microcanonical ensemble spin
dynamics calculations. First, a Monte Carlo (MC) simulation (canonical
ensemble) is used to generate a set of equilibrium configurations for a
chosen temperature. Then these configurations can be used in an energy-
conserving numerical integration of the spin dynamics equations of motion,
written most efficiently in terms of the Xyz spin components.

11,14,16 reviewed here involved a 100 x 100 square

Typical simulations
lattice, with periodic boundary conditions. The system was considered to
have two sublattices. In the MC algorithm all spins on one sublattice
were updated simultaneously, so that the algorithm could be vectorized.
Individual spins were updated in one of two ways: i) by using trial spins
uniformly distributed on the units sphere, or, ii) by adding small
increments to the old spin position, scaled by a parameter £, and
adjusting the length £ to give an acceptance rate from 30% to 40%. The
former worked well for higher temperatures, the latter was more efficient
for lower temperatures but may not be recommended for extremely low
temperature. Most interest was in T/J 2> 0.5, where J  is the near neighbor
exchange, so low temperatures were not a problem. About 2000 passes
through the lattice were used to equilibrate the system, with the
temperature slowly lowered to the desired value exponentially, in the
sense of simulated annealing. Then, about 10,000 passes were used to
generate an initial state for the spin dynamics, and for computing
equilibrium averages.

In the spin dynamics part of the simulation, a 4th order Runge-Kutta

integrator with fixed time step of 0.04 was used. The spin configuration



(or, selected components of its spatial Fourier transform) was sampled
every m time steps, with m chosen from 1 to 32 depending on the frequen-
cies of interest. A set of 512 samples were taken, to take advantage of
a fast Foﬁrier transform. Time-displaced correlations of the spatial
Fourier transform of S(r,t), that is, C®¥(K,r) = <S%(k,t) S¥(K, t+r)>
were formed; the average is over initial times t, assuming periodic bound-
ary conditions in time over an interval At = 512.m-0.04. The correlation
C** was multiplied by a Gaussian window function for smoothing the effects
of the finite time interval; then the product was Fourier transformed with
respect to the time displacement r, thereby producing the dynamic
structure function $%*(k,w).

Finally, the entire process described above was repeated 3 to 5 times
and the set of results were averaged together to give S$%*(k,w). The
result was then plotted and analyzed in terms of central peak and spin

wave components, characterized by appropriate intensities and widths.

3.1 Numerical Results for Dynamic Correlations: XY Model

Some results for the correlations S$**(k,w) for ferromagnetic and
antiferromagnetic XY models are shown in Figures 2 and 3. In both cases
the obvious feature is development of central peak intensity with increas-
ing temperature, which is attributed to the unbinding of vortex-antivortex
pairs. At the same time a softening and broadening of the spinwave peak
occurs. For the ferromagnet, the width and intensity of the central peak
has been compared with predictions of the ideal gas theory.ll For the
antiferromagnet, the optical spinwave appears in the $*X correlation
function, and there is a broad background intensity with frequencies
ranging up to the spinwave frequency, while the acoustic spinwave appears

in 8%% (see next section).

4. ANISOTROPIC HEISENBERG ANTIFERROMAGNETS

Reconsider model (1), but with antiferromagnetic exchange:

o X X Y ay Z oZ
H=1J (ig) (si sj + si Sj + X 8) sj) (19)
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Figure 2. Correlation functions of in-plane and out-of-plane components
for the XY ferromagnet at wavevector ka = (0.1,0.1)x, from MC-MD simula-
tions described in the text (J=1).
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Figure 3. Correlation functions of in-plane and out-of-plane components
for the XY antiferromagnet at wavevector ka = (0.1,0.1)r, from MC-MD
simulations described in the text. The acoustic spinwave appears in $%%;
the optical spinwave appears in S*¥,

with J > 0 here. The discrete equations of motion are given by equations
(3) and (4) but with the spin of J reversed (equivalent to reversing the
time axis). Now, the spinwaves are fluctuations from a ground state with
alternating up/down spins on the two sublattices, e.g., §A = §(1,0,0),

§B-S(-1,0,0). The spinwave dispersion then generally has two branches:

(/29832 = (4:2c?) & 2(1-2)c : & = coska + coskya (20)



with +/- corresponding to optical/acoustic branches. For X = 1, the
symmetry of these modes is such that only the optic mode is seen in
S¥*(k,w), and only the acoustic mode is seen in Szz(i,w). However, for

A=1l, the branches are degenerate and this distinction disappears.

4.1 A Continuum Limit: Heisenberg Model =1

A continuum limit can be made following Mikeska® in terms of four
fields ©, @, 6, ¢, assuming fluctuations from an antiferromagnetic

configuration,
Sy = + S [cos(B+0) cos(®+d), cos(8+0) sin(B+4), sin(6+0)] (21)
B

and then the isotropic equations of motion, assuming small spatial

derivatives and § << 1, ¢ << 1, are

8/JS = -8¢ cos® (22)
8/JS = cos8 V2% - sin® [2V8-Vd - 864] (23)
8/JS = 86 sec® (24)
/38 = sine (862 sec?e - 842 - |v3|2] - seco V26 . (25)
For static solutions, § = ¢ = 0, and the equations for © and ® are identi-
cal to those for the ferromagnet (this is true for any A). Therefore,
static antiferromagnet topological excitations are the same as those in
the ferromagnet. For example, we can have the "instanton" solutionsl’
w?-r?
® = tan"L(y/x);  sin® = (26)
w +r2

where w is an arbitrary width parameter, and this configuration has finite

energy E = ANJSZ, independent of w and the system size! In thermal equi-
librium there can be a small population of instantons in a background
field dominated by spinwaves, with both making contributions® to s(K,u).
Theoretical modelsl? 20 for the finite temperature spinwave contribution

have been developed, especially for wavevectors near the antiferromagnetic

Bragg point ka = (m,n). For comparison, some numerical simulation
results?l are shown in Figure 4. These responses fit well to a product
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Figure 4. S(k,w) for the Heisenberg antiferromagnet at wavevector ka =
(45,45)n/50 (from 100 x 100 lattice), from MC-MD simulations. The smooth
curves are least squares fits using products of Lorentzians. Such fits
account for most of the w=0 intensity.

of Lorentzians, symmetrically located at positive and negative frequen-

cies. Spinwave linewidths and frequencies from such fits are shown in
Figure 5. Softening and broadening with increasing temperature are
readily seen. These results are consistent with the dynamic scaling

theory of Chakravarty et al.}? Further details of these simulations will

be published elsewhere.

5. A MODEL FOR RbyCrCl,: IN-PLANE SYMMETRY-BREAKING

Hutchings et al.? has studied the compound Rb,CrCl, using neutron
scattering, and designed the following two-sublattice model Hamiltonian

on a square lattice:

— -

Z 2 z 2
H= =3 gy 5110 S50 § DL + (55507
p A Vo2

TN CALERC A (27)

The indices 1 and 2 refer to even and odd sublattices. The model includes
ferromagnetic exchange J, easy-plane anisotropy D, and most importantly,
an Ising anisotropy P which is sublattice-dependent. P reflects the
crystal field effects of the Cl1 ions on the magnetic cr*t ions. On the
"1" sublattice, the Cl  ions are closer to the Cr't ions measuring along

the y-axis, and on the "2" sublattice, the Cl ions are closer to the Cr'"
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Figure 5. MC-MD data for spinwave frequencies (w) and linewidths (hwhm)
for the Heisenberg antiferromagnet, a) versus reduced wavevector
q = |k- (r,m)| and b) versus temperature T. Curves in a) are labeled by
various temperatures, curves in b) are labeled by wavevectors in units of
n/50a. Solid curves correspond to a fit to the theory of reference 19,
using parameters §=2.5, Yo=1.7, p=1.7 and §=0.7.

ions measuring along the x-axis. Therefore the Ising-axes of the two sub-
lattices are perpendicular. When competing with the nearest neighbor
exchange, this results in an approximate 4-fold anisotropy within the easy
(XY) plane. José et al.22 have suggested that a 4-fold in-plane symmetry
breaking (p = 4) is a borderline case for Kosterlitz-Thouless transitions.
it is expected that XY-like systems with p < 4 will not show a KT
transition, while p > 4 systems will, making Rb,CrCl, an interesting

system to consider.



5.1 A Continuum Limit

Following the method used for antiferromagnets, spins on the two

sublattices are parameterized asl6

§1 = S[cos(8+0) cos(P+d), cos(B+) sin(d+¢), sin(e+6)]. (28)
2

Assuming small spatial derivatives and 6 << 1, ¢ << 1, the resulting equa-

tions of motion have planar solutions which satisfy (with 8 = 8 = 0)
® =+ n/4, + 37 4; ¢ = (P/8J) sin2®, (29)

These represent the 4 possible local ground state configurations (or, 4

possible domain orientations).

Another planar solution exists, where &
16

must satisfy

vZo - ——1—-2 3 ' % (4—‘1;)2 skl (30)
4D'JS

where D' = D + P/2. This is a time-dependent sG equation in the wvari-

able 4®. A static vortex-like solution given by Hudak,23 is a synthesis

of a vortex circulation constrained by the 4-fold domain pattern at large

distances (see Figure 6),
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$ = + tan™1 { sinh|[ (¥y-¥5)1/sinh [;E (x-x,)]) + nn/b (31)

27

where n is an odd integer. This configuration, consisting of four domains
separated by n/2 walls, has an energy which is linearly proportional to
the system size (i.e., proportional to the length of the walls), in
contrast to the logarithmic size dependence for the vortex in the XY
model. However, a vortex-antivortex pair has a finite energy which is
linearly proportional to the separation. As a result entropy and energy
arguments for transitions in this system could be considerably modified
from the XY model results. There are some numerical simulation data
available from Gouvea et al.,16 but the effects of the degree of symmetry-
breaking and the freedom of out-of-plane spin components on KT transitions

has not been clarified.

6. SUMMARY AND OUTLOOK

The rich variety of possible magnetic models in two dimensions gives
remarkable opportunities for investigating dynamics of nonlinear excita-
tions, including domain walls, vortices, instantons, and their subsequent
effects on spinwaves. In addition, in-plane anisotropy and applied fields
modify the vortex shape and dynamics, for example, as in RbyCrCl, . Aniso-
tropies and out-of-plane spin components are expected to modify vortex
unbinding transitions but the details '‘are not understood.

In the anisotropic Heisenberg models (both signs of J), there are

planar and out-of-plane vortices; for a given anisotropy strength )\ only
one type will be stable. The planar vortex is unstable for A greater than

a crossover value )\, and the out-of-plane vortex is unstable for )\ < Ao

c!

In the Hutchings model for Rb,CrCl,, the competition between exchange
and the sublattice-dependent Ising anisotropy leads to a special vortex-
like excitation which might be called a "domain-vortex." It is a &4-
domain coherent structure terminated in a singular point with a vortex

core,



Further understanding of these and related systems will act as a

foundation for investigating coherent dynamical modes, such as those

involved in driven systems and in pattern formation.
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