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The dynamics of individual and pairs of vortices in a
classical easy-plane Heisenberg spin model is studied. There are
two types of vortices possible: in-plane, with small out-of-
plane spin components present only at nonzero velocity, and out-
of-plane, with large out-of-plane spin components even when at
rest. As a result, the two types are governed by different equa-
tions of motion when in the presence of neighboring vortices. We
review the static spin configurations and the changes due to non-
zero velocity. An equation of motion introduced by Thiele and
used by Huber will be re-examined. However, that equation may be
inadequate to describe vortices in the XY model, due to their
zero gyrovector. An alternative dynamical equation is developed,
and effective mass and dissipation tensors are defined. These
are relevant for models with spatially anisotropic coupling in

combination with easy-plane spin exchange.

INTRODUCTION

A model for the dynamic correlations of vortices in easy-
plane two-dimensional magnets has been presented, that uses the
idea of an ideal gas of weakly interacting vortices.lt Assuming a
Boltmann velocity distribution, and if the velocity-dependent
spin field of the vortices is known, then the dynamic structure
function S*%*(q,w) can be determined. At the microscopic level we

would like to investigate the time-dependent motion of a single



vortex, to understand how the neighboring vortices cause forces
and accelerations, and to have a clear picture of how equilibrium
is achieved.

Huber?'3 has done such an analysis for diffusive motion of
so-called "out-of-plane" vortices, ones that possess large out-
of-easy-plane spin components. However, it is now realized that
there are two type of vortices possible,4'5 depending on the
strength of the easy-plane anisotropy.ﬁ’7 The stable vortices of
the XY model, for example, are so-called "planar" vortices that
only have small out-of-plane spin components. In that case the
equation of motion that was used>'8 is found to be inapplicable
because these planar vortices have a zero gyrovector, to be
discussed below. Here we propose an alternative dynamic equation
of motion that applies to both types of vortices.

We begin by summarizing the properties of the two types of
vortices allowed in the easy-plane anisotropic ferromagnetic
Heisenberg model. The derivation of the equation of motion
introduced by Thiele,8 in terms of conserved force densities,
will be sketched out, and the breakdown for planar vortices will
be discussed. An alternative formalism using a canonical
momentum for the vortex is developed. The new equation of motion
includes the effects of vortex shape changes that are the result
of acceleration. This leads to definition of an effective mass
tensor, and, the gyrovector also re-appears. The new equation

allows for a consistent description of both types of vortices.

Anisotropic Heisenberg Ferromagnet

The model system is the nearest neighbor 2D Heisenberg
ferromagnet with easy-plane anisotropic exchange, characterized

by a parameter 0 < A < 1; the Hamiltonian is



H= - JE (si*sf + s{'s{ + As{sy) . (1)
17

J is an energy scale and the §i are classical spins with fixed
length. The XY model is given when A=0, the Heisenberg model
when A=1. The spin dynamics is described by the Landau-Lifshitz

equation,g'10

Si= {Si,H} - il S:- x Si= §ix (ﬁ»—agi] (2a)

- (2b)

H = JY, (Sf® + S{y + AS{2)
(17)

The sum is only over the neighbors of site i. A Landau-Gilbert
damping term of strength a has been included. At any given time

each spin is instantaneously precessing about the effective
field (fzf—aéfi) . Initially the vortices will be described in

the absence of damping, a=0, which can be later re-introduced at

the phenomenological level.

Static Vortices

The spins are parametrized in terms of an in-plane angle

(x,t) and an out-of-plane angle f(x,t) (or we use S%=S sind),
P g

S(X,t) = S(cosB cosd, cosb sind, sinb) . (3)

Then in a continuum limit including terms up to 2nd order in

gradients the equations of motion are®»2:7
0 = JS (cos® v - 2 sinb vO-wh) (4a)
bcosb = ~% JS {[6 (|98]2-4) + |¥¢[|?] sin28 + 2 (1-8cos?0) v26} (4b)

where §=1-). Using polar coordinates (r,¢), and assuming a



spatially isotropic solution, ¢=¢(¢), while #=60(r), static
vortices always have an in-plane angle satisfying Laplace'’s

equation,

$(%) = qp + ¢, = g tan™ (m) + ¢, . (5)
X-X,
The charge q is an integer, and ¢, is a constant of integration.
The two types of vortices are distinguished by the out-of-
plane angle §. The static planar vortices have an out-of-plane

angle that is zero, #=0. This solution exists independent of the

6,7

anisotropy A. However, when placed on a lattice, it is found

to be unstable for A>A,, where A, is a critical anisotropy

c}
depending on the lattice (A, =0.72 for a square lattice). Planar
vortices are stable only for A<A..

Out-of-plane vortices have a nonzero out-of-plane angle

with asymptotic behavior>’’
( p(l-ar?) as r-0
i 6
sinf ~ | (6a)
\ L, -r/r
—_— e ¥ as I~—o
I I
(6b)
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where r,, is a characteristic vortex radius and a is a constant.
The charge p is *1 which determines whether the spin at the
vortex center points along +z or -z. When this solution is

placed on a 1attice,6'7

it is found to be unstable for A<\, and
stable only for A>X,. Thus we have a situation where either
planar (A<Ac) or out-of-plane (A>Ac) vortices. are stable, and we
expect that the dynamics may also reflect this as a crossover

point in other quantities.



Dynamic Vortices

The equilibrium correlations between vortices can be found
in. an ideal gas phenomenology using the known spin profiles given
above. However, for correlations of the z spin components, for
A<, static planar vortices can contribute nothing to Szz(a,w).
Then the lowest order vortex contribution must come from moving
planar vortices, which do have nonzero SZ components. One can
determine the perturbation due to a constant velocity v by
assuming a solution §(§-3t). For planar vortices, with A<<1, to
first order in v we have no change in ¢. The change in ¢ is

given by6’7

i e YD o B iy P (7)
z: Js(48-|v$[?)  4agsr? ¥ G L |

in the asymptotic r-= regime, and T is measured from the
instantaneous center position of the vortex. A similar change in
sinf occurs for moving out-of-plane vortices, but it is small
compared to the large out-of-plane profile already present in the

static out-of-plane vortex.

Thiele’s Equation of Motion

6 and the

We review Thiele’s vortex equation of motion
definition of the gyrovector, which vanishes for planar vortices.
The equation is based on an interesting force-density
interpretation of the Landau-Lifshitz equation, first rewritten

in equivalent form,

net = O (8a)
H,=SxS+H-aS. (8b)

H is analogous to that in Eq.(2b), representing the effective



—

local field from neighboring spins. The other terms in H . are
dynamic and damping terms, respectively. In this notation the
dynamics is "simple," in that each spin remains parallel to its

instantaneous local field H Thus we could write S=gH

nec- net
where ﬂ(ﬁ,t) = 52/(§.ﬁ)_ Combinations of ﬁnet with gradients of

S have dimensions of force per unit volume. Applying the

operator * aj.‘.';" é‘j!'?.S_", (sum over repeated indices j=1,2) and

realizing S * VS = 0, there results the statement of conserved

force density,

}z:ec’3§=(ﬁ+§x§—a.§')-ﬁ§=0 )
where the contraction is over spin components.
To apply this to a vortex we assume a travelling wave
S(X - Vt) , and rewrite time derivatives using § = - v,0,5.
There results
HYS + S+ (0,5 x 0,S) é;v; + (3;5):(0,5) é;v, = 0. (10)
This then motivates the definition of the gyrovector G,
1 1la
G == [d?x 5+ (8,5 x 8,5) (11b)
and the symmetric dissipation tensor D
Dy = - [d2x @ (3;:5) - (3,8) . (12)

The gyrovector is derived from an antisymmetric tensor ij. An

equivalent expression for G is

§=Szfd2x’6¢ x S 2, (13)
The remaining term concerns reversible effects. It is taken to

give the effective force acting on the vortex,

13"=-fd2x£r'- vS. (14)

Then the Thiele equation of motion is



F"+C;"xt7'+}-3°t7°=0. (15)

This equation can be used to describe the motion of out-of-plane
vortices, for example, interacting in pairs, with a force
F—ZﬂJSquqz/rlz. The gyrovector is found to be G=2zpqZ. In the
absence of damping, the pair will move in a circle if the gyro-
vector are parallel (p;qy=ppqp) or they will have a parallel
translational motion if the gyrovectors are antiparallel
(P191=-P2492) -

A problem arises for planar vortices. The gyrovector for
static and moving planar vortices is ;g;g.ll This is due to the
asymmetry of the S% component about the direction of motion. The
Thiele equation of motion becomes singular because the dynamic
term Gxv vanishes. This is most obvious with no damping, then
the equation reads F=0, which is not necessarily true for a
vortex in the field of its neighbors. This leads to a conceptual

difficulty in making a vortex ideal gas description for A<A,.

Vortex Momentum

The problem seems to be that the analysis above does not
allow for shape changes of a vortex in response to external
fields as will occur for an accelerated vortex. That is, S$% for
a planar vortex depends approximately linearly on its
velocity.G'7 If it accelerates it changes shape by developing
more spin tilting out of the easy plane. On the other hand, the
out-of-plane vortices have a large S component even at zero
velocity so velocity-dependent changes in S? may have a lesser
effect.

An alternative viewpoint is to define a canonical

momentuml2 P for the vortex, conjugate to its position r, and



then use the equation of motion P = - dH/0F = F. A Lagrangian

that gives the correct spin-dynamics equations of motion is
ge=fd2xsz¢}-H (16)

because S% is the field momentum conjugate to ¢. This then

suggests that we take the definition of the vortex momentum to be

- - [arx 57 % an
and then Z=v-P-H for a vortex of velocity v. This definition is
analogous to the canonical momentum developed for describing

solitons in 1-D magnetslz’IB’la (generator of translations). For

a planar vortex we get

B e v 18
P 4JS in(R/a,) Vv (18)

where R is a large distance cutoff (system size), and a, is a
short distance cutoff (= lattice constant). The effective mass

seen here is identical to that found from the kinetic energy of

the planar vortex.’

An equation of motion results by conserving momentum,15

P = l‘:", and using

15'=—fd2x(.é'z'\-‘;¢+sza¢) , (19)
The vortex shape is determined by its velocity V = F(t) as well

as its position T(t), so we assume 'S = S(X - £(t), V(t))
Therefore the time derivative is replaced by space (ajsa/axj) and

velocity (5j=6/8vj) gradients,

d %
E = -VJaJ+aJaj . (20)

In the absence of damping the total rate of change of momentum is



B = - §;K; vy + EMpa, = - KV + M& (21)
where K and M are an effective gyrovector and mass tensor,
Ky = - [d2x 3,(s * 8;9) (22a)
. p (22b)
My, = - [d2x 3x(S % 3,0) .

The generalized gyrovector K is related to Thiele's gyrotensor C.

We separate K into a symmetric and an antisymmetric part,

Kix = 93k * Lijxs (23a)
9y T % (Kjx = Kij)e (23b)
Ly = -;— Ko + Kig) - (23c)
Then the equation of motion now becomes
F=-gGxvV-LV+Ma (24a)
where
g=- %eijkéigjk = %5 (24b)

g, is the gyrovector, smaller by a factor of 1/2 from equation
11. Note that the origin must be excluded from the integrals
giving K and M. The symmetric tensor L has no effect for
vortices, it is zero for moving planar and out-of-plane vortices.
The mass tensor M, determined by mixed space and velocity
derivatives, exhibits the dynamic effect that changes in velocity
cause changes in the internal structure of the vortex spin field.
The force need not be parallel to g x vV or a.

For planar vortices, E-O, i-O, Mij—(x/AJS)En(R/aO) Sij'
Then the equation of motion is Newtonian,

F-ma (25)

stating that a pair of interacting vortices move straight away or

straight toward each other in the absence of damping. This

behavior is seen in simulations. This is not qualitately



different from Thiele’'s equation with damping, but this new
approach remains applicable even when the damping is removed. In
this way we now have a microscopic dynamics for the vortices in
the XY model, or, whenever A<A,.

For out-of-plane vortices, g=wpq£, L=0, and the mass is

equivalent to the planar vortex mass. Then the equation of
motion is

F+gx V=M. (26)
We can consider the interaction of a pair of out-of-plane
vortices, with force F=A/rq,, AEZ«JSquqZ. If the gyrovectors
are antiparallel (pjqi=-pqp), then the motion is unaccelerated
parallel translation as mentioned earlier. However, if the
gyrovectors are parallel (p;q;=p,q,), the motion can be circular,
but the angular frequency depends on whether the pair’s
interaction is repulsive (A>0) or attractive (A<0). For small
mass (AM/G2r212<<1) the frequency is found to be

® = A(:L+ﬂ). (27)

2 2 2
g, g I,

The repulsive interaction gives the larger frequency, and has the

angular velocity w parallel to g. The attractive interaction,
with smaller frequency, has w antiparallel to g. This new effect
is related to a competition between an intrinsic vortex momentum
(similar to g) and the orbital angular momentum of the pair. For
a given size of force transverse to the direction of motion, a
larger acceleration occurs when the force is parallel to g x V.
The path of the vortex is more easily bent in the g x v direction
than in the -g x v direction (i.e., left turns are easier than

right turns for an "up" vortex, g=g2).



Conclusion

8 253

An equation of motion developed by Thiele® and Huber is
limited to cases where the vortex shape is fixed as a function of
velocity, excluding application to the important XY model. An
alternative equation of motion was developed here, based on
finding the time rate of change of vortex momentum. The new
equation alleviates the difficulty encountered when G=0 (for
planar vortices) and indicates new behavior for interacting out-
of-plane vortices. The differences with this new equation of
motion are summarized as follows: 1) an equation of motion
exists for planar and out-of-plane vortices even for zero
damping; 2) the new mass term accounts for velocity-dependent
shape changes that result from acceleration; 3) a pair of out-of-
plane vortices with parallel gyrovectors and 9,=4, (vortex-
vortex) orbits faster than a pair with gq;=-q, (vortex-
antivortex), all other things being equal. It should have
important applications for microscopic vortex dynamics,
especially for models with spatial anisotropy, whose vortices

will possess an anisotropic mass tensor.
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