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Gerais, Brazil

E-mail: wysin@phys.ksu.edu, winder@ufv.br, lucasmol@ufv.br, apereira@ufv.br

Abstract. The energetics of thin elongated ferromagnetic nano-islands is considered

for some different shapes, aspect ratios, and applied magnetic field directions.

These nano-island particles are important for artificial spin-ice materials. For low

temperature, the magnetic internal energy of an individual particle is evaluated

numerically as a function of the direction of a particle’s net magnetization. This

leads to estimations of effective anisotropy constants for (1) the easy axis along the

particle’s long direction, and (2) the hard axis along the particle’s thin direction. A

spin relaxation algorithm together with fast Fourier transform for the demagnetization

field is used to solve the micromagnetics problem for a thin system. The magnetic

hysteresis is also found. The results indicate some possibilities for controlling the

equilibrium and dynamics in spin-ice materials by using different island geometries.
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1. Introduction: Elongated thin ferromagnetic nano-islands

Disordered and frustrated magnetic states such as those present in artificial spin ices

[1, 2] continue to draw interest, due to their competing ground states, magnetic

monopole excitations [3], string excitations [4, 5, 6, 7] and the difficulty to achieve

thermal equilibrium. These systems are composed from elongated magnetic islands

or particles of some length Lx (several hundred nanometers) and width Ly < Lx

grown or etched lithographically to a small height Lz on a substrate, whose geometric

demagnetization effects (effectively, internal dipolar interactions) lead to a strong

magnetic anisotropy. The typical islands have Lz much less than Lx or Ly. Obviously

any very thin magnet acquires an effective easy-plane anisotropy [8], and if the particle is

narrow as well, the long direction (along x) becomes an easy axis. The demagnetization

field within an individual particle is responsible for this, making the plane of the island

(xy-plane) an easy plane, and the x-axis an easy axis. Then net magnetic moment

~µ acts somewhat like an Ising variable with a defined easy axis x̂. These islands are

arranged into ordered arrays to produce, for example, square lattice or kagome lattice

artificial spin-ices. The analysis of spin ice models assumes that such particles have

only the two states with ~µ either aligned or anti-aligned to the particle’s easy axis. The

dipolar interaction between different particles on one of the spin-ice lattices leads to

the ice-rules, such as the “two in / two out” rule for the square lattice and pyrochlore

spin ices [3]. Such ice rules are only energetic preferences, however, and only indicate

the preferred states of the magnetic moments. They are not absolute rigid statements

about the allowed states. Thus, the intention here is to investigate the energetics of the

fluctuations away from this Ising aligned state, in the individual elliptical islands that

are used to compose a spin-ice system.

At some level, there must be transitions between these Ising-like states. An

individual particle may contain thousands of atomic spins, leading to a substantial

energy barrier that must be surpassed to flip the Ising state of a particle. Hence,

the dynamics is greatly constrained by such energy barriers. It is our interest here to

discuss how this barrier depends on the particular geometry of the islands, and make

some evaluations of the dependence of the effective potential on the island shape and

height. The types of shapes we consider are ellipses. Thin single domain ellipses were

studied by Wei et al. [9], who found that the reversal process involves close to a uniform

Stoner-Wohlfarth rotation, but with reduced energy barriers due to some non-uniformity

of the magnetization. However, we find here that for high-aspect ratio ellipses, this non-

uniformity is minimal and a uniform rotation model could be very useful.

Although the theory for spin ice has been developed for Ising-like magnetic

moments, their dynamics requires a different model. In reality, the underlying magnetic

moment must be evolving from much more complex dynamics. The reversal of an

individual island, in the dipolar fields of its surrounding islands, must be a complex

process, and could involve the motion of domain walls and vortices within the individual

particles, or an impeded rotation of the local magnetization mostly in unison. But in
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the assumption of strong ferromagnetic exchange inside a particular particle, and a

uniform externally applied field, one can investigate the reversal process using different

approaches to the micromagnetics [10], and see whether vortices or domain walls play

any significant role. Especially, one can investigate whether there are intermediate

metastable vortex or domain-wall states as steps of the reversal. To a great extent for

the thin elliptical particles considered here, the reversal proceeds mostly as a nearly

uniform but impeded rotation of the magnetization of the particle [9], although the

switching fields are reduced compared to a perfectly uniform rotation. Hence, the idea

of an Ising spin for a particle can be replaced by a three-dimensional magnetic moment

~µ, moving in some anisotropy potential, but free to point in any direction, if enough

energy becomes available to it.

Obviously, by changing the aspect ratios g1 ≡ Lx/Ly and g3 ≡ Lx/Lz of the particle,

its effective anisotropy changes. The deviation of the ratio Lx/Ly from 1 determines the

strength of an easy-axis anisotropy constant, call it K1, for the net magnetic moment

to rotate within the xy plane. The other aspect ratio of length to thickness, Lx/Lz,

determines the difficulty for the magnetic moment ~µ to tilt out of the xy plane. Thus

it determines the strength of a hard axis anisotropy constant, call it K3. The goal here

is to make some accurate estimates for these constants, and in the process, to justify

a more generalized description of the magnetization dynamics, not based on an Ising

variable, but rather, on an effective three-dimensional magnetic moment, that is allowed

to make deviations from the Ising axis. For a particle whose hard axis is along ẑ and

easy axis is along x̂, an effective potential that approximately represents their energies

is shown to be

E = E0 + K1

[

1 − (µ̂ · x̂)2
]

+ K3(µ̂ · ẑ)2 (1)

where µ̂ is the unit vector pointing in the direction of the particle’s net magnetic moment.

E0 is the energy when the magnetic moment µ̂ is along the easy axis. This type of

potential is continuous, in contrast to the two-state Ising particle, having a well-defined

energy barrier, and having a more realistic dynamics. Further, it will give the possibility

of controlling the thermodynamics of spin-ices via changes or variations in the nano-

island structure, that can modify the energy barrier.

The calculational approach is a modification of usual micromagnetics [11, 12], as

follows. A particle is partitioned into cells of size a × a × Lz, under the assumption

of the local magnetization ~M(~r) being independent of the z-coordinate (along the

thin dimension). Thus, there is only a single layer of cells in the xy-plane, with the

desired shape, say, an ellipse of major diameter Lx and minor diameter Ly < Lx. The

saturated magnetization in each cell interacts with the neighboring cells by ferromagnetic

exchange, an externally applied magnetic field, and interacts with all cells via the

demagnetization field. The demagnetization field is calculated using an effective Green’s

function that applies for thin systems [13], see below, with the calculation accelerated

by using a 2D fast Fourier transform (FFT). To evolve towards the nearest (possibly

meta-) stable magnetic state, we do not use integration of the Landau-Gilbert spin



Magnetic anisotropy of nano-islands 4

dynamics equations with damping. Instead, a faster procedure is to use a local spin-

alignment algorithm, that involves no damping parameter. In one step of this algorithm,

each cell’s magnetic moment is pointed towards the local total magnetic field that is

instantaneously producing a torque on that cell. The same procedure is applied to

all cells, then, the demagnetization fields are recalculated, and the process is repeated

iteratively until a desired tolerance is reached. A microscopic uniaxial anisotropy energy

is also included, although using a strength that would be typical for Permalloy, it is

almost irrelevant when compared to the exchange and demagnetization effects. We have

checked that this procedure gives the same final states as integration of the Landau-

Gilbert equations with damping.

The internal magnetic energy Eint of the particle is calculated. This is the total

magnetic energy minus the interaction energy with the applied magnetic field, −~µ · ~Hext.

An applied magnetic field is used in the calculations to move the net magnetic moment

around, while it as well maps out the hysteresis loop. In one set of simulations, the

hysteresis loop was calculated with the applied field axis within the xy-plane at some

angle φH to the x-axis. There, the magnetization makes an angle φm to the x-axis. Then

the internal energy could be found as a function Eint(φm), from which the anisotropy

constant K1 is determined, by fitting to (1) in the form,

Eint(φm) = E0 + K1 sin2 φm. (2)

In another set of simulations, the applied field was set in the xz-plane, at some angle

θH to the x-axis. This tilts the net magnetic moment towards the z-axis by an angle θm

from the x-axis. Thus it gives Eint(θm), which depends on both constants K1 and K3,

according to

Eint(θm) = E0 + (K1 + K3) sin2 θm. (3)

This allows anisotropy constant K3 to be determined from the net stiffness, K13 ≡

K1 + K3. It is important to note that these potential functions Eint(φm) and Eint(θm)

found this way do not depend on the particular angle chosen between the applied field

and the x-axis.

In the following sections the Hamiltonian and algorithm is further specified. Some

details about the demagnetization field calculation are given, especially concerning the

Greens function. Finally the results for elliptic particles are discussed.

2. The particle model and its energetics

We consider thin elliptical particles with dimensions Lx × Ly × Lz , where Lx and Ly

refer to the major and minor diameters for the elliptical particles. The approach for

a thin system has been presented in Reference [14]; some of the main points towards

finding the spatial structure of magnetization ~M(~r) and the particle’s internal energy

are summarized here.

The system is partitioned into cells of size a × a × Lz on a square lattice grid,

where there is saturation magnetization Ms within each cell. Thus a selected cell i has
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a magnetic moment mi = Msa
2Lzm̂i, that points in the direction of the unit vector m̂i

and has magnitude µcell = Msa
2Lz . There is only a single layer of cells used, under the

assumption that the perpendicular demagnetization effect leads to magnetization nearly

independent of z, for the thin systems under consideration.

The exchange interaction in continuum theory is taken in terms of the exchange

stiffness A (about 13 pJ/m for Py) as a volume integral,

Hex = A
∫

dV ∇m̂ · ∇m̂. (4)

where m̂ = ~M/Ms is the local reduced magnetization. When expanded on the square

lattice of cells, this is equivalent to a nearest neighbor exchange term for the cells,

Hex = −J
∑

(i,j)

m̂i · m̂j , J = 2ALz. (5)

A uniaxial anisotropy energy K (about 100 J/m3 for Py) is included as another volume

integral

Huni = −K
∫

dV (m̂ · û)2 → −Ka2Lz

∑

i

(m̂i · û)2, (6)

where the anisotropy axis here is taken as û = x̂. The externally applied magnetic field

involves an energy of − ~B · ~µ for any dipole, so

HB = −
∫

dV µ0
~Hext · ~M → −µ0Msa

2Lz

∑

i

~Hext · m̂i. (7)

Finally, the most important part of the interactions is the demagnetization field or

dipolar interaction. Once the cells are defined on the grid with lattice spacing a, their

dipole interaction could be described by a Hamiltonian,

Hdd = −
µ0

4π
µ2

cell

∑

i>j

[3(m̂i · r̂ij)(m̂j · r̂ij) − m̂i · m̂j ]

|~ri − ~rj|
3 (8)

However, this does not take into account the fact that the system is very thin. The

demagnetization field can be found very accurately for thin systems using a Greens

function approach [13]. To do that, instead we start from the continuum dipolar energy,

Hdd = −
1

2
µ0

∫

dV ~HM · ~M (9)

where ~HM = −~∇ΦM is the demagnetization field at some point, and ΦM is its

corresponding scalar magnetic potential. That field is produced by all the dipoles,

according to a Poisson equation for magneto-statics:

−∇2ΦM = ρM , where ρM = −~∇ · ~M. (10)

Further, the discontinuity at the surfaces of the particle can be modeled as a magnetic

surface charge density, σM = ~M · n̂, where n̂ is the outward normal. In particular, that

gives charge densities of opposite signs, σM = ±Mz on the upper and lower faces at

z = 0, Lz, respectively, under the assumption of uniform magnetization not depending

on z within the cells. The field of those surface charges is responsible for keeping the

magnetization close to the xy plane. There are also surface magnetic charges at the
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edges of the island but those can be included into a localized volume charge for the cells

there. But whether the magnetic charges are surface charges or volume charges makes

no physical difference, however, and the solution of the Poisson equation is formally

Φ(~r ) =
∫

d3r′
ρ(~r ′)

4π |~r − ~r ′|
(11)

This can be used to find the demagnetization field at the point ~r = (x, y, z), and then

averaging that result over z from z = 0 to z = Lz. The resulting demagnetization field

at a cell centered at (x, y) has a vertical component HM,z and some in-plane component
~HM,xy. These are given by convolutions with appropriate 2D Green’s functions, involving

only the in-plane position, denoted here as r̃ = (x, y). For the vertical demagnetization

component, one gets

HM,z(r̃) =
∫

d2r̃ ′ Gz(r̃ − r̃ ′) Mz(r̃
′), r̃ ≡ (x, y) (12)

Gz(r̃) =
1

2πLz





1
√

r̃2 + L2
z

−
1

|r̃|



 , r̃2 ≡ x2 + y2 (13)

For the in-plane components, there is

~HM,xy(r̃) =
∫

d2r̃ ′ ~Gxy(r̃ − r̃ ′) ρ(r̃ ′). (14)

~Gxy(r̃) =
êr̃

2πLz







√

√

√

√1 +

(

Lz

|r̃|

)2

− 1





 . (15)

When applied, the unit vector êr̃−r̃ ′ points from source point r̃ ′ towards observation

point r̃. There is a singularity in Gz(r̃) as r̃ → 0, which is handled by averaging Gz

over a region with the same area as the cells being used, see [14] for further details on

this averaging of the Green’s functions.

Together with appropriate finite-difference approximations for the magnetic charge

density, these expressions are used to get the demagnetization field. The actual

evaluation of these convolution integrals was performed as multiplication in reciprocal

space using a 2D fast Fourier transform approach [15]. To simulate a free particle

without the periodicity effects of the FFT (i.e., to avoid the wrap-around problem), the

grid of the FFT is padded to a net size of Nx × Ny, where Nx and Ny are the smallest

powers of two satisfying Nx ≥ 2Lx/a and Ny ≥ 2Lx/a. Because we consider elongated

particles, the calculations can be very fast due to Ny being rather small compared to Nx,

for high aspect ratio particles. The FFT approach ends up giving the demagnetization

field at the cell center positions (as well as at other points outside the particle, due to

the padding).

It is convenient to measure magnetic fields ~Hext and ~HM in units of the saturation

magnetization Ms, just as done for the magnetization, m̂ = ~M/Ms, and define the

dimensionless fields,

~hext ≡
~Hext

Ms

, ~hM ≡
~HM

Ms

. (16)
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The basic (and largest) unit of energy is the exchange J between neighboring cells. Then

the total effective Hamiltonian can be written in units of J as

H = − J







∑

(i,j)

m̂i · m̂j (17)

+
(

a

λex

)2
∑

i

[

κ(m̂i · û)2 +
(

1

2
~hM,i + ~hext

)

· m̂i

]

}

.

This is written in terms of the ferromagnetic exchange length λex and the scaled

dimensionless uniaxial anisotropy κ, defined as

λex =

√

2A

µ0M2
s

, κ =
K

µ0 M2
s

. (18)

The magnetic internal energy Eint is of most interest. That is this Hamiltonian, but

with the interaction with the external magnetic field (the last term) removed.

For the calculations we used the values for Permalloy, Ms ≈ 860 kA/m, A ≈ 13

pJ/m, K ≈ 100 J/m3, then these give λex ≈ 5.3 nm and κ ≈ 1.1 × 10−4. Due to this

small value of κ, in most of the calculations the intrinsic uniaxial anisotropy energy is

negligible compared to the other energies of the system. In most of the simulations the

cell size was a = 2.0 nm, except for the smallest high aspect ratio particles, where values

as low as a = 0.5 nm were used, to produce a smoother edge to the particle. These are

sufficiently less than the exchange length to give a reliable description of the internal

magnetic structure.

3. Calculation procedures

The iteration procedure that moves the system towards the nearest local equilibrium is

a local spin relaxation algorithm [16], that points each cell’s magnetic moment ~mi (or its

unit vector m̂i) along its local magnetic field ~Bi. That local field enters the undamped

dynamic equation of motion,

d~mi

dt
= γ ~mi × ~Bi, (19)

and it is given by the variation of the Hamiltonian,

~Bi = −
δH

δ~mi

= −
1

µcell

δH

δm̂i

=
J

µcell

{

∑

nbrs

m̂j +
(

a

λex

)2 [

2κ(m̂i · û)û +
1

2
~hM,i + ~hext

]

}

(20)

Alternatively, this is the same as

~Bi = µ0Ms







(

λex

a

)2
∑

nbrs

m̂j +
[

2κ(m̂i · û)û +
1

2
~hM,i + ~hext

]







(21)

This defines a unit vector along which to point the magnetic moment of cell i, m̂i → m̂′

i,

where

m̂′

i = b̂i =
~Bi

| ~Bi|
. (22)
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The alignment of m̂i parallel to b̂i is performed for every site of the grid, after which

the demagnetization field must be recalculated. The process moves the system towards

lower energy. Each cell would stop moving if all became simultaneously aligned self-

consistently with their local magnetic fields. This does not insure a global energy

minimum, however, and the procedure does have the capability to generate the hysteresis

loops. The iteration is started from a partially aligned state of the cell dipoles, which are

given some small random fluctuations away from perfect alignment. For the hysteresis

calculation, though, the last relaxed state at one applied field is the initial state for the

next value of applied field.

As the iteration proceeds, periodically (every 200 iterations of the system) the total

magnetic moment ~µ of the particle is calculated, by summing over the cell dipoles,

~µ = (µx, µy, µz) = µcell

∑

i

m̂i (23)

The iteration is stopped when the changes in any component of ~µ are less than 1 part

in 5 × 107 for two states separated by 200 iterations. This is actually a more stringent

stopping requirement than waiting for the energy to converge to the same precision.

In one set of simulations, the applied magnetic field was directed within the xy-

plane at an angle φH to the +x-axis, ~Hext = Hext(cos φH , sin φH , 0). The field amplitude

Hext was scanned from positive to negative values and back to positive values to trace

out the hysteresis loop. This results in the net magnetic moment ~µ lying within the

xy-plane at angles φm < φH to the +x-axis. To distinguish the metastable states from

the stable states (before and after a reversal of µx), this angle was calculated from

φm = sgn(Hext,x) tan−1(|µy|/µx). Positive (negative) values of φm correspond to the

stable (metastable) states in the first and third (second and fourth) quadrants of the

hysteresis loop. A reversal of the magnetic moment shows up as a discontinuous jump

from a negative to a positive value of φm, together with the jump in magnetization.

Thus, the in-plane potential energy function Eint(φm) was found while calculating the

hysteresis loops. Then K1 was found by fitting Eint(φm) to the form in (2).

In the other set of simulations, the magnetic field was applied tilting out of the xy-

plane, making an angle θH to the x-axis, that is, ~Hext = Hext(cos θH , 0, sin θH). This pulls

~µ up an angle θm < θH from the easy (xy) plane, where θm = sgn(Hext,x) tan−1(|µz|/µx),

and gives the opportunity to measure the potential Eint(θm). Similar to the in-

plane potential, stable (metastable) states have positive (negative) values of θm. The

internal energy was fitted to the out-of-plane potential (3), whose stiffness is due to the

combination, K13 = K1 + K3.

The potentials obtained do not depend on the choice of φH or θH . This is seen by

combining the internal energy curves for applied field at different angles.

For the hysteresis curves, the total magnetic moment ~µ was calculated and

normalized by the particle volume V to get the averaged magnetization inside the

particle, 〈 ~M〉 = ~µ
V

. Then the component of 〈 ~M〉 along the applied field axis is found,

〈Mh〉 ≡ 〈 ~M〉 · ĥext (24)
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Figure 1. (Color online) The in-plane potential of an elliptical particle with a 5:1

aspect ratio, mapped out while determining the hysteresis loops shown in the inset.

Lines in the hysteresis loops are guides to the eye. The angle φm is the direction of

the net particle moment ~µ in the easy-plane, measured from the long (+x) axis of the

particle. The symbols come from calculations at different angles φH . The solid black

curve is a fit to Eq. (2). A different range of the potential is mapped out at negative φm

because that region corresponds to metastable states (~µ has a component opposite to
~Hext for φm < 0). The fit gives a reliable estimate of anisotropy constant K1 ≈ 31.5J ,

together with E0 ≈ 4.32J .

After scaling by the saturation magnetization, this is plotted versus the applied field

magnitude also scaled by saturation magnetization (hext = Hext/Ms).

4. Results for elliptical particles

We considered thin elliptical particles with thicknesses all 1/20th of the length, i.e.,

g3 = Lx/Lz = 20, and aspect ratios g1 = Lx/Ly = 2, 3, 5, and 8. The lengths ranged

from 120 nm to 480 nm. Some typical results for the internal energy curves are shown

in Figure 1 for the in-plane potential and Figure 2 for the out-of-plane potential of an

elliptical particle with g1 = 5, with major axis 240 nm, minor axis 48 nm and thickness

12 nm. The potentials Eint(φm) for in-plane motion of ~µ fit very well to the functional

form in Eq. (2). The constant E0 is an irrelevant ground state energy when the particle
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Figure 2. (Color online) The out-of-plane potential of the same elliptical particle with

a 5:1 aspect ratio as in Figure 1, mapped out while determining the hysteresis loops,

shown in the inset. Lines in the hysteresis loops are guides to the eye. The angle θm

is the tilting of the net particle moment ~µ out of the easy-plane. The symbols show

calculations at different angles θH of the applied field from the long axis (+x) of the

particle. The fit (solid black curve) to Eq. (3) gives a reliable estimate of the combined

anisotropy constant K13 = K1 + K3 ≈ 111.4J , together with E0 ≈ 4.25J .

is magnetized along its long axis. This same form applies very well to the potential

Eint(θm), but with a coefficient K13 = K1 + K3. The potentials found have a larger

range in positive angle than in negative angle; the negative angle states are metastable

and undergo reversal at a somewhat higher field strength. The negative φm or θm states

are those where µx and Hext,x have opposite signs (in the second and fourth quadrants

of the hysteresis loops). The limited range for negative angle gives a sense of the limited

stability of those metastable states.

The fits are best for smaller particles, where the cells stay strongly aligned with each

other, and the reversal can be considered close to a uniform rotation process, for the

most part. For the larger particles (length > 400 nm) this global alignment is lesser and

the fits are good but with considerably greater χ2. Even so, the internal magnetization

structure of the relaxed states tends to be close to uniform.

Fitting results are summarized in Table 1, with the constants presented in units of
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Table 1. Values of the in-plane anisotropy constant K1 and out-of-plane anisotropy

constant K3 in units of J = 2ALz for different particle sizes and aspect ratios

g1 = Lx/Ly. All of the particles calculated have g3 = Lx/Lz = 20.

Lx = 120 nm Lx = 240 nm Lx = 480 nm

g1 K1 K3 K1 K3 K1 K3

2 6.35J 72.7J 27.3J 287J 111J 1140J

3 7.32J 43.4J 31.9J 169J 134J 670J

5 6.96J 21.1J 31.5J 79.9J 133J 311J

8 7.39J 8.30J 29.5J 33.1J 118J 132J

J = 2ALz. The constant K3 is consistently stronger than the easy-axis constant K1, as

to be expected from the greater surface area of the lower and upper faces at z = 0, Lz,

compared to the very limited surface area of the edge of the ellipse. The energy unit J

itself varies according to the thickness. Thus it makes sense to also look at results for

the constants in joules.

Generally, K3/J increases proportional to the area of the ellipse, 1
4
πLxLy, multiplied

by the thickness Lz , so that in fact K3 (in joules) is linearly proportional to the volume of

the particles. Also, one sees that K3 decreases with increasing aspect ratio for particles

of the same length; this is because the particle volume is decreasing. On the other hand,

K1/J depends very weakly on the aspect ratio for the particle sizes tested. In addition,

the calculations suggest that K1 increases somewhat faster than the particle volume.

The weak dependence of K1 on the shape of the ellipse (at these larger values of g1) is

surprising.

To clarify the results we also show the constants converted to energy densities,

both K1/V and K3/V in joules/nm3, in Figure 3. The actual units are the exchange

stiffness A (units of joules/nm) divided by squared nanometers. One finds very little

dependence of either energy density constant, K/V , on the particle size, however, again

it is clear that K3 is always larger than K1. Furthermore, the easy-axis anisotropy

constant K1/V does increase rapidly with the in-plane aspect ratio g1, and the relation

could be close to a linear relationship. Although the values of K3/V are always greater

than the corresponding K1/V , these hard-axis energy densities K3/V decrease slightly

with increasing aspect ratio g1. At large aspect ratio, the two constants become nearly

the same, which would have to be the case for a needle-shaped magnet.

4.1. The magnetization structure

In the high aspect ratio particles, the magnetization states are very close to uniform,

even when undergoing the reversal. The elongated particle has such a strong anisotropic

effect that the magnetization cells move almost in a synchronized motion. For particles

with smaller aspect ratio, one starts to see some weak variations in the magnetization

inside the particle.
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Figure 3. (Color online) The anisotropy constants K1 (solid curves) and K3 (dashed

curves) scaled by elliptical particle volume, versus particle lengths, for the indicated

g1 aspect ratios. All data has g3 = 20. The values of K/V are given in units of

A/nm2, where A is the exchange stiffness. K1/V increases with aspect ratio while

K3/V decreases, and they become equal at high aspect ratio.

To get an idea of the size of this effect, some configurations are presented for ellipses

with g1 = 2, which has the strongest effect of all the particle shapes presented earlier.

In Figure 4 some configurations are shown for a 120 nm × 60 nm × 6 nm particle, at

different applied field strengths 45◦ to the particle’s long (+x) axis. The points shown

are at (a) close to saturation, (b) zero applied field, (c) a negative field close to reversal,

and (d) a negative field just after reversal. For the most part, the magnetization stays

nearly uniform for this relatively small particle.

Another example is presented in Figure 5, like the first example, but 2× larger in all

three dimensions. The four configurations shown correspond to the same four types of

states as presented for the smaller particle. The main difference here is that a nonuniform

magnetic structure develops. At zero field, the structure points inward/outward towards

the poles on the long axis. For the configurations just before and after reversal, a wave-

like structure is present. These spatial variations are due to the dipolar interactions;

in even lower aspect ratio particles (g1 < 2), they lead to C-states and even vortices

entering the particle.
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(a) h=0.20

120 nm x 60 nm

(b) h=0.0

(c) h=-0.030 (d) h=-0.032

Figure 4. Magnetic configurations for a 120 nm × 60 nm × 6 nm particle with

magnetic field applied at +45◦ above a horizontal axis pointing to the right. The

arrows are the coarse-grained averages of 3×3 groups of cells. In (a), the external field

is h = 0.20; in (b) h = 0.0; (c) h = −0.030, just before reversal; (d) h = −0.032, just

after reversal.

4.2. Particles with lower aspect ratio g1 < 2

When g1 → 1, the ellipse becomes circular and the easy-axis anisotropy must vanish.

Using smaller g1 is a way to produce particles with weaker easy-axis anisotropy constant.

However, as the system becomes closer to circular, the lowest energy configuration,

especially near zero applied magnetic field, tends to be nonuniform. The ground state

can tend towards a C-state or a vortex state if the particle is of sufficient size. The above

results do not apply to that situation, especially because the nonuniform magnetization

cannot be mapped into the model of an individual magnetic moment moving in an

effective potential.

To verify this, some particles were also calculated at small ellipticity, where K1 ≈ 0,

using g1 = 1.25 and g1 = 1.11. Generally, at these ratios, if there was a stable single-

domain ground state (for smaller particles only), the tendency is for the moments to try

to follow the border, and point inwards or outwards from the poles at the long ends.

At larger particle size this tilting eventually moves the system irreversibly to a vortex

ground state. Until the vortex state is reached, an effective potential can be estimated,

however, from the practical point of view it may be of limited use.

4.3. Thicker particles

The particles with g3 = 20 can be too thin to hold a magnetic moment stable against

room-temperature thermal fluctuations. Thus it is important to consider the changes
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(a) h=0.20

480 nm x 240 nm

(b) h=0.0

(c) h=-0.025 (d) h=-0.027

Figure 5. Magnetic configurations for a 480 nm × 240 nm × 24 nm particle with

magnetic field applied at +45◦ above a horizontal axis pointing to the right. The

arrows are the coarse-grained averages of 9 × 9 groups of cells. In (a), the external

field is h = 0.20; in (b) h = 0.0; (c) h = −0.025, just before reversal; (d) h = −0.027,

just after reversal. Note the enhanced curvature of the field compared to that in the

smaller particle in Figure 4.

when thicker particles are used. Further calculations were carried out for 240 nm long

particles to get results for g3 = 20, 15, 10, and 8, corresponding to thicknesses of 12, 16,

24 and 30 nm, respectively. The results for K1/V and K3/V are shown in Figure 6.

As could be expected, the thicker particles have weaker out-of-plane anisotropy K3/V ,

while K1/V increases due to the thicker lateral edges, but at a rate less than linear in

the thickness. We expect that these per-volume energy constants have only very weak

dependence on the particle length, as was already seen in the results presented above

for 12.0 nm thickness.

5. Conclusions and Discussion

The anisotropy properties of thin elliptical ferromagnetic particles have been estimated,

based on a 2D micromagnetics model that employs Green’s functions for the calculation

of the demagnetization fields. For the high-aspect-ratio particles being considered, the

magnetization was found to be close to uniform inside the particles. Then it was possible

to map out the changes in the internal energy versus the direction of the net magnetic

moment ~µ, which itself acts as a collective coordinate. The typical particles tend to have

stronger anisotropy in the hard-axis direction (K3/V ) than in the easy-axis direction

(K1/V ), however, these two energy scales approach each other for needle-like particles,

as expected. The results could be of practical application in the design and analysis of
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Figure 6. (Color online) The anisotropy constants K1 (solid curves) and K3 (dashed

curves) scaled by elliptical particle volume, versus particle thicknesses, for the indicated

g1 aspect ratios. All the data is for particles of length Lx = 240 nm. The K3/V

constant crosses below zero for the thickest high-aspect-ratio particles, which have

become needle-like and no longer satisfy the assumption of a thin particle. That is the

case of a particle with only uniaxial anisotropy.

artificial spin-ice with desired dynamics, beyond the usual Ising energetics.

In the theoretical study of artificial spin ice materials, it is usual to replace

the islands by point-like dipoles with an Ising-like behavior. Indeed, all theoretical

calculations for the properties of these systems were obtained with this approach.

However, a more realistic description of these artificial spin ices should require models

beyond the Ising approximation, such as continuous magnetic moments with anisotropy

considered in this work. In such a case, although the main properties of a spin ice system

may not undergo strong alterations, several quantities would change their values. For

instance, a recent work about the thermodynamics of the square lattice [17, 18] has

suggested a possible phase transition in this system, occurring at a temperature of 7.2D,

where D is the coupling constant of the dipolar interaction among the islands. Of course,

the transition temperature or similar quantities should be dependent on the island sizes

and anisotropies, but this dependence cannot be perceived with the Ising approach. It

is very probable that the correct critical temperature must be much smaller than 7.2D
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since the total magnetic moment of an island has more degrees of freedom, and effectively

moves in a softer potential. In addition, the properties must also be dependent on the

islands’ shapes, etc. So, the results obtained here are of fundamental importance for

developing this field not only theoretically but also experimentally, suggesting protocols

for improving experiments, and including studies about their dynamics.
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