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Dynamic correlations in the classical two-dimensional antiferromagnetic

Heisenberg model with easy-plane symmetry

A R. Vilkel, G. M. Wysin*, A. R. Bishop, F. G. Mertens®
Theoretical Division and Center for Nonlinear Studies.

Los Alamos National Laboratary, Los Alamos, New Mexico 37545

We investigate the dynamics of the two-dimensional antiferromagnetic Heisenberg model with sasy-
plane exchange symmetry. We develop a phenomenology of spin wave and vortex excitations and calculate
their contributions to the dynamical correlation functions 5°°{q,w). @ = £.y.s. The vortex shape
depends explicitly on an exchange anisotropy parameter A and changes from a mainly in-plane structure
below a critical A. to a shape with well established : components around the vortex center above A, In
this paper we will discuss only the case A < A, where the system behaves almost like the pure XY maodel
The general properties of the dvonamical behavior of the spin waves and vortices below the Kosterlitz-
Thouless transition temperature Tyt have been widely examined for the ferromagnetic XY model, and
do nat change much in the antiferromagnet (although here we have two magnon branches according to
the two different spin sublattices), Our main interest is focused on the unbound vortices just abave Tyr
Assuming a dilute gas of ballistically moving vortices, we obtain central peaks in 57%(q, =) similar to the
ferromagnetic case, but in some cases at different positions in q space depending on whether the static
vortex structure or the deviation from it due to a finite velocity dominates the correlations. These results
are compared with a combined Monte Carlo-Molecular Dynamics simulation on a 100x100 square |attice,
The phenomenslogical predictions for the correlation functions and the integrated intensities describe the
numerical results quite well and, by comparing both methods we obtain values for the vortex correlation

length, which are in good agreement with the Kosterlitz-Thouless theory.

PACS: 75.530.Ee, 73.10.Hk, 73.25.+2, 75.20.Ds



I Introduction

During the past few vears an increasing interest in two-dimensional magnetic materials has developed.
This 15 a result of (1) the investigation of a wide class of well-characterized quasi-two-dimensional magnetic
materials which allow a detailed experimental study of their properties (inelastic neutron scattering,
nuclear magnetic resonance, etc.), and (i1) the availability of high-speed computers with the capahilities
for simulations on large lattices. Examples of these materials are - (1) lavered magnets®, like K2CuFy,
RbaCrCly, (CHaNHa)2CuCly, and BaM3(XO4)2 with M = Co, Ni,... and X = As, P....; (2) CoCly graphite
interealation compounds”; (3) magnetic lipid layers®, like Mn(CsH3503)2 - here =ven monolayers can
be produced. which are literally two-dimensional as concerns their magnetic properties

Many of these materials have an “sasy-plane” (XY) symmetry and the simplest classical madel is
described by the amisotropic Heisenberg Hamiltonian

H=J ) (§757+5'si+A5is!) (1.1)
s>
Here < 1, j > label near-neighbor sites (which we take to be on a square lattice) and (x,v.z) spin compe-
nents. J < 0 and J > 0 correspond to ferromagnetic and antiferromagnetic coupling, respectively, and
0 < A<l for XY spin symmetry.

The XY symmetry leads 1o a well-known topological phase transition' at a temperature Tpr (the
“Kosterlitz-Thouless™ transition), Below Tixr. vortex-antivortex spin configurations appear as thermal
excitations in bound pairs, for T > Tgr, these bound states dissociate and the density of unbound
vortices increases with T At sufficiently high T, the mean spacing between unbound vortices approaches
the vortex core size and diffusive spin dynamics results,

The static vortex spin configuration depends on the anisotropy parameter A - for A < A (= 0.72
on a square lattice®) static vortices are purely in-plane: for A > A. an additional out-of-plane component
develops - the size of this 57 component increases with A allowing a cuntiuuolus crossover to the isotropic
Heisenberg limit (A = 1), where the topological excitations are merons and instantons'? rather than
vortices,

The bound vortex pairs below T only renormalize the shape of the spin wave pesks in the corelation
functions while the free vortices above the phase transition should contribute to extra peaks. An earlier

investigation of the dynamics of pairs of free vortices at T = 0 in ferromagnets (FM) and antiferromagnets



(AFM) showed that their motion crucially depends on their shape'!. But so far a detailed study of the
vortex dynamics above Tir is available only for the FM with A < A}, including in-plane symmetry
breaking'® and 1n-plane magnetic field'?. There a phenomenology built on weakly interacting vortices
moving ballistically between their interactions suggested central peaks (CP), with maximum weight at
zero frequency in the dynamic spin correlation funetion, in good agreement with numerical simulations
and experimental results for temperatures just above Tyt

Most of the above mentioned materials, however, are AFMs = it is therefore abviously necessary to
expand this vortex phenomenology to the AFM ease. Here we have two different spin sublattices and
for this reason also twa spin wave branches which show up either purely in-plane or out-of-plane. The
spatial vortex structure is almost the same as in the FM case leading to CP's with the same shape, but at
different q values in the correlation functions. In the static vortex structure the spins are locally perfectly
antiferromagnetically aligned, resulting in a CP around the Bragg point, while the deviations from this
structure due to a finite vortex velocity point in the same direction for adjacent spins, leading to weak
ferromagnetic behavior yielding small contributions to a peak at q = (0,0}, For A < A, the static vortex
structure is purely in-plane, leading to a squared Lorentzian CP at the Bragg point with an intensity that
15 decreasing with increasing vortex density, The only velocity dependent changes of this vortex structure
are perpendicular to the easy plane and result in a Gaussian CP in the out-of-plane correlation function
at q = (0,0} which is proportional to the number of vortices. Both in-plane and out-of-plane vortex
CPs are in a ¢ range where the corresponding spin wave branches also give a low frequency structure,
But above Tx1 the in-plane magnons almost disappear ( “universal jump”)? and the vortex CP is clearly
visible. In the out-of-plane correlations, however, the spin waves are not affected by the phase transition
and dominate over the vortex contributions for almost all g values.

A combined Monte Carlo-Molecular Dynamics (MC-MD) simulation on a 100x100 square lattice
of the discrete system (1.1) using Landau-Lifshitz dynamies verifies our phenomenclogical results in a
temperaturs regime [k ST 50.25Tkr (Tt = 0.79J5%); above this T range a diffusive spin motion
becomes dominant. A fit of the in-plane correlation function to cur theoretical result gives us values for
the average vortex velacity and lower and upper bounds for the vartex correlation length.

The paper 15 organized as follows ; in section (II) we discuss the different possible excitations in a
system described by (1.1). In section (I} we calculate their contribution to the dynamical correlation

function neglecting any interactions between them. The next section gives a short deseription of the MC-
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MD simulation. and in section (V) we compare the numerical data with our phenomenalogical results.

Section (V1) contains a brief summary.

IT Excitations

1. Spin waves

The ground state of the classical two-dimensional antiferromagnetic isotropic Heisenberg model on
a square lattice is the Neel state, Though this long-range order is destroved at finite temperatures.
Anderson!? showed that the low lying excitations can be well described by a linear spin wave theory. The
same is true for the anisotropic Heisenberg system where the spin wave spectrum was first caleulated
by Kanamon and Yosida'® (with this easy-plane symmetry all the spins are confined to the XY plane
for T = 0). Starting with the semi-classical Holstein-Primakoff ansatz'® they obtained, after a few
teansformations (appendix A). the Hamiltonian in diagonalized form up to second order in this expansion -
viz

H=-IS'N:+ 3 [hulqlafaq+ 4]+ hualq)[8F 3q + 1}, (2.1)
q

where a:. ey, :.3; and 3y are the creation and annihilation operators for the magnons. N is the total
number of spins in the systems, and : is the number of nearest neighbors in the easy-plane. The frequencies

are given by

J1[q1=?~f5-'1/':1+ Ar(q)) (1 ==+iq)) (2.2a)
and
“2lq) = 2-’5:\/{1 - Av(q)) (1 +7(a)) (2.26)
with
rla) = fic"""‘. (2.3)
=1

In this paper we will refer ta w; as the acustical and w5 as the optical spin wave branch. The p; are the
vectors to the nearest neighbors and on a square lattice (= = 4) with lattice constant a = 1 eqn, (2.3)

reduces to
1
1laq) = E{cmq: + cosgy ). (2.4)
The two dispersion relations (2.2) are related to each other by the following symmetry
«1(K® - q) = wa(q) (2.5)
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with K" = (= =)

2. Vortices

The theory of Kosterlitz and Thouless' for phase transitions in two-dimensional systems with a
continuously degenerate ground state suggests that, in addition to the spin waves, there will be topological

excitations, namely vortices in this case. To obtain these vortices from the claszsical Hamiltonian (1.1)

! using an ansatz of Mikeska!” containing four different angles

S{"" = S{cos(®; +0,)5in(B; +8,), sin({®; + 2, )sin(O, +8,), cos(O; + 8;)},

we have derived equations of motion

(2.6)

§7% = —5{cos(®; — ¢;)sin(O; — 6;).sin(®; — o, )sin(O; — d;),cos(O©; — 9,1},

where even and odd denote the two sublattices.

To find an analytical solution we work in the continuum limit. That is, we introduce two spin fields
§°*"(r) and $°**(r) (or equivalently the fields ®(r), ©(r), o(r), and #(r}) which are defined on the whale
lattice and which are identical to (2.6) at the even or odd lattice sites, respectively, In this approximation
it 15 easy to see (fig. 1) that the capital angles @ and @ describe the local antiferromagnetic alignment,
while the small angles @ and # describe deviations from it. These deviations point in the same direction
for both the even and the odd sublattice - the dynamics expressed by these small angles will therefore
show ferromagnetic behavior (see section III).

The four equations of motion for the angles introduced in (2.6) are fairly long and can be found in
ref. 9. As in the ferromagnetic case®3 we find two different single vortex solutions which are stable for
different regimes of A. The two ranges are separated by a critical value A, which depends on temperature
and on the density of vortices, (For a single static vortex on a 50x50 square lattice we find® A, = 0.72.)

Far A < A. the following "in-plane” vortex is stable, and has up to first order in the velocity v, the form

(2.7}

f{r) = f(r) sin{¢ —¢).

Here (r, 2} are cyvlindrical coordinates, ¢ = =1, =2, ... is the vorticity and ¢ is the angle between the
direction of motion and the x-axie. For arbitrary A the function f{r) is given by
g i ]
iv A(1+ )P
ftry = L, 5~ M0

= (2.8)
e [T [4® = 44(1 + )]
=
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with the asymptotic behavior

fr) = ' (2.09)

while for A =0 we find the compact form
N L 2.10
fir) 155 . (2.10)

Eqn. {2.7) describes a vortex which is purely in-plane in the static case and which has some out-of-plane
components proportional to the velocity which on one side of its direction of motion point above, and on
the other side below, the plane.

For A > A, the following “out-ol-plane” vortex is stable

Pir) =y arclan%

e "=
Bir) =
T/ Fe I r—x
S48 (2.11}
#JEH;” r=g

alr) = cosip —€)

k

¢ /Fe /e

)

feqn 2 L
et =0
__i.n.g" L —

TSy T30,

The constants 3 and ¢y are determined by matching the asymptotic solutions of G(r) and

L. £ X
r, = m :2.[2]

Both vortices have a static structure which is described only by the n:lapital angles & and @ and

flr) =sinf{p =€)

L=l

is the radius of the vortex core®,

has the same form as in the ferromagnetic case except that we have here two sublattices with mutually
antialigned spins. The deviations from these structures are small and are expressed by the angles o and
A, These velocity dependent contributions are also almost identical to those of the ferromagnet; only in
the large r limit do we obtain different results for the out-of-plane angle - in the denominator we have

a factor (1 — A} in the ferromagnetic, but a factor (1 + A) in the antiferromagnetic model. & describes
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an out-of-plane structure where all the spins have a positive - component on one side of the direction of
motion and a negative = component on the other side, even in the antiferromagnetic case (see (2.7) and
(2.11}). Increasing ) means that the system becomes more isotropic and for the ferromagnet one needs
less energy to orient the spins out of the plane. Conversely for the antiferromagnet, a similar consideration
shows that the structure described by § becomes less favourable for increasing A. The factors (1 - A) and

(14 A) in the denominator of 4 reflect this behavior for the two different models.

ITT Dynamical correlation functions

One of ocur goals in this paper is to calculate functions which reveal some of the dvnamical properties
of the system deseribed by the Hamiltonian (1.1) and which are directly related to explicit measurements.
A typical experiment to obtain such information from a magnetic system is inelastic neutron scattering
where the results are proportional to the dynamical correlation functions 52%(q,w). o = z,y. 2. which
we discuss in this section. We first start with some thoughts about how to deal with the two sublattices
in an antiferromagnet. Then we will approximate the contributions from spin waves and {ree vortices
to the in-plane and out-of-plane correlation functions. Due to the 2] symmetry in the easy-plane the
functions 57 and S¥¥ are equal to each other and we therefore will discuss only 57 as the in-plane

carrelation function.

1. The magnetic structure factor for an antiferromagnet
In the antiferromagnet we have two sublattices with a different magnetic scattering behavior which
can be expressed by the structure factor'” ={K). For a short derivation of this structure factor we divide

our system (fig. 2) in a square lattice (Bravais lattice) described by the vector
R=2ma+nb), mn=0£1 %2 _ (3.1}

with basis

r; € {0.a.b,a+b} (3.2)

(the lattice spacing is @ = | and 4 and 4 are unit vectors). The reciprocal lattice vectors for (3.1) have
the form

K = n(pa + vb) (3.3)

with p, v integers,



The magnetic structure factor is now simply the sum over the spin form factors ¢, which determine
their seattering behavior, times a phase factor'®
a
Z(Kr) = ) ¢je'n, (3.4)

=0

At T =0 the antiferromagnet is in & perfect Neel state with spin form factors

to=exa=+1 and e; =¢e3=-1 (3.3}
Inserting (3.5) into (3.4) gives
- _ {4 i, A odd integers (3.6)
= 0 else. '

In this case a magnetic scattering experiment would only give a contribution at wave vectors
K® = 7(ga + rb), {(3.7)

with e =2+ 1land r=2%+ 1.

The spin form factors become more complicated for finite temperatures with spin waves and vortices

present, Howewver, the information in eqns. (3.6) and (3.7) allow us to define a sign function

SR 41 r denoting an even lattice site (3.8)
=1 r denoting an odd lattice site, '

which helps us to take care of the different signs in the ansatz (2.6).
For the derivation of the coreelation functions we will restriet ourselves to the first Brillouin zone

and therefore only use the vector K? = (7, 7). Furthermore we will introduce here the vector
| [ I: oy
" =K"-q, (3.9)
which gives us the g dependence of a function with respect to K%

2. The contribution of spin waves to the correlation function
Because of the lack of long range order in our system for finite tsmperatures’? there is no Bragg peak
present in our system and the one-magnon processes should give the main contribution to the correlation

function (at least for TS Txr).
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Using the results of appendix A, a straightforward calculation (appendix B) vields

$E (i, ) ifdu-w' < [5%(q.0)]"5%(q,0) >

(3.10)
ﬁ-—'?{ql
= f =l g qjt o lwral g b
= & [ttt B < () () + e
and 4
57 (q.w) = :—rfdte"“‘ < [5*(q,1)]"5%(q,0) >
3 (3.11)

5 [ gpemior___Manta) y .
= — | die=""* - Ty (gt [)aiwrialt s
ir .[ : 2J8:(1 + Av(q)) mi(q)e + (ni{q)+ 1)e

The in-plane {out-of-plane) correlation function depends only on w={q) {«1(q)). but this does not mean
that ws describes pure in-plane and oy describes pure out-of-plane correlations. This can sasily be seen
by considering the spin waves in terms of the angles &, 8, o and # as defined in (2.6). E.g. for the
out-of-plane angles we find that ® (which describes the local AFM ordering - of. Sec. 11.2) follows the
~a-dispersion while & {which describes the local FM ordering) follows the wy-dispersion. The (AFM)
angle &, however, depends on q°, as was discussed in [I[.1 and therefore we have to consider the optical
spin wave branche wq with respect to the edge of the Brillouin zone. As a consequence of the symmetry
{2.3) between the two spin wave branches we observe only one spin wave peak in 5%, The same is true
for 55

The explicit line shape in eqns. (3.10) and (3.11) for the in-plane spin wave peak has the following

asymptotic form?®?
1 l

5% (k,w) x kP [l —uli-" (3.12a)
for |w| =1 and
5°°(k, o) & s T (3.126)
for |w| — == with the notation
w= .4;{11:1 (3.13)
and
k={f:u_q :-_,_:z (3.14)
The exponent
s % (3.15)

was first derived by Kosterlitz and Thouless' and has the value 1/4 at T = Tkr.
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Below Tyt there also exist bound vortex-antivortex pairs which reduces the correlations berwean
the spin waves, The effect of these additional excitations can be described by a renormalization'? of

{3.15), namely

i
e(r — )’

n= (3.16)
where ¢ir) is a size dependent vortex dielectric function which makes the spin wave peak broader.

The divergence of the amplitude in (3.12a) is a feature of the infinitely extended system for which the
whole derivation was made. Above Tyt the in-plane spin stiffness constant goes to zero discontinuosly

(“universal jump”) as was discussed by Nelson and Kosterlitz?, and the spin wave theory in the easy-plane

as presented here fails.

3. The contribution of free vortices to the correlation function

As mentioned in the previous section the bound vortex pairs below T contribute only as a screening
of the spin waves 1n the in-plane correlation function. Above Ty, however, we expect that the unbound
vortices give rise to an extra peak in 57%(q, ).

In our discussion we will restrict ourselves to temperatures just above Tt where we assume that
the vortices behave like a dilute gas of particles with average separation equal to by twice the correlation
length & of the Kosterlitz-Thouless theory. Furthermore we consider only vortices with |§| = | which are
the ones with lowest energy (the energy of a single vortex is pr-.ortional to the square of the vorticity!)
and, ta match with our simulations, we consider only the case A < A,

a) In-plane correlation function

The in-plane correlation function in the (r,f) space is defined as
5%, ) =< [S'{r.l}]'S’{ﬂ, 0. (3.17)
Inserting the sclution (2.7) in (3.17) we obtain

.‘!I‘T'-"l‘,” s s: < e"“ﬁ"m@{r,ﬂsin[% 4 E‘KarﬂErltJ]CGG‘D[U.EHﬁ"l[% 3 ﬂ[ﬂﬂ]] > {3.18)

5% 45 only globally sensitive to the presence of vortices — i. e if we consider length scales much larger

than the vortex core radius we can neglect the angle # and the main effect of a vortex passing a lattice site
is to change the sign of the spin at this place (i.e. to rotate the spin about 130°). In this approximation
{3.18) reduces to

5% (r,t) = 525" < cos?® > (= 1)V 5 (3.19)

]



where N(r.t) is the number of vortices passing an arbitrary, nonintersecting contour between a spin at
{0.0) and the spin at (r.t). Eqn. (3.19) has the same form as eqn. (2.4) in ref. 4. (The additional
exponential [scrar will add to the exponentials of the Fourier transformation and yvields only a different
q dependence of 55%(q,~).) We can therefore follow exactly the calculation of Mertens et al.® to obtain,

for the dynamical in-plane correlation function,

2 Jp2
S (qu) = e TN . (3.20)
7 {w? 4921+ (6P}
with
e {; (3.21)

and 4 is the vortex average velocity. This is a squared Lorentzian central peak with its maximum in g
space at K%

A single vortex has the effect of disturbing the local Neel order in the vicinity of its core. For the
in-plane correlation function this means that some of the intensity of the Bragg-peak is shifted to other ¢
values. For a whole gas of single vortices (but with an average distance between the vortices much larger
than the core radius, as assumed) we therefore expect to find a peak with its maximum at the Bragg-point
and with a finite width in q and » space. For the antiferromagnet this gives a peak at q = K" and = = 0
which 1s true for (3.20). Furthermore we see that the integrated intensity, see (5.1). is decreasing with
the density of free vortices

ny o (2£)73, (3.22)

while the width is increasing, which we also expect from our previous discussion.

b) Out-of-plane carrelation function

The out-of-plane correlation function is given by
5t (r.t) =< K cos[O(r. 1) + K *0(r. 1)] cos[B(0,0) + 6(0,0)] > . (3.23)

Our vortex solutions are all given in the continuum limit which means that they are only valid bevond
a certain distance from the vortex core [at least one lattice constant). Therefore we will use for our
calculations only the large r limit of # (8 = =/2) which should give a good approximauen for small ¢
values and reduces (3.23) to

§*(r.t) =< 8(r.t)8(0,0) > . (3:24)
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Again we can follow the calculations of Mertens et al.® and also Gouvéa et al.¥ to abtain for the dynamical

correlation function a Gaussian peak

n, i - =
BT NTAEE (343)

5:."*1‘*" =

5% is sensitive to the explicit out-of-plane shape of the vortices and, because this structure has ferromag-
netic order for A = 0 (i.e. neighboring = components of both sublattices pomt in the same direction), we
find a maximum at q = 0 and < = 0 while the intensity of the peak is increasing with the density of free
vartices n,. Except for the plus sign in the factor (1 + A)? in the denominator, eqn. (3.23) is equivalent

to the dynamical out-ofl-plane correlation funetion in the ferromagnetic model.

IV Simulations

For the numerical simulations we consider a 100x100 square lattice with periodic boundary conditions
and A = 0 (XY model). To obtain the dynamical correlation functions we basically follow thres steps. (i)
With a canonical ensemble MC algorithm we generate spin configurations for a given temperature. (ii)
These data are used as input for a MD simulation realized by a fourth order Runge-Kutta method with

time step 0.04/J5 which integrates the Landau-Lifshitz equations of motion

d
ES,-:S,-J:F. {41?
with
F; = o = J STx+ Sy + ASiz) 1.2)
e Tt Z{Jx+::::r+ Siz (4.
iy

(%.¥,% are unit vectors parallel to the axis). Here, H is the Hamiltenian from eqn. (1.1} while the
sum in (4.2) runs over all the nearest neighbors of the spin i. (iii) Finally a fast Fourier transformation
gives us 5%%(q,w), a = z,y,2. To minimize the thermal and numerical fluctuations we used 10 initial
configurations for the MD simulations, each separated by 2000 MC steps, fm." every temperature. These
data are averaged before performing the time Fourier transformation.

A detailed deseription of the numerical simulations can be found in ref. 21,

V Discussion of the simulation results

For the following discussion we use dimensionless quantities, viz. we measure energies and tempera-

tures in units of J 57, frequencies in units of JS and lengths in units of the lattice constant a (h = kg = 1)
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1. In-plane correlations

For the planar madel Kosterlitz and Thouless’ estimated a critical temperature for the vortex-pair
unbinding of Tyt = 0.89. Due to our use of a A = O-anisotropic Heisenberg model®? as well as finite size
effects this temperature is smaller in our simulations and has a value of about T = 0.79. Below this

orr

temperature 577 (q, = | displays a single peak with a dispersion displayed in fig. 3a and which we identify
as the optical spin wave branch (2.2b) ineluding a rencrmalization of the frequency due to thermal
Auctuations, and with thermal broadening {increasing with T) caused by the scattering of spin waves.
This spin wave dispersion has its zero at q = K" where we also expect to find a central peak just
above Ty caused by unbound moving vertices. However, the softening of the spin stiffness constant in
this temperature regime® allows us to abserve this peak without a big overlap of magnon contributions
(fig. 4) - for g = K® the spin waves disappear totally while for q # K there are still some magnon
contributions left in 55%. Our phenomenclogy predicts a squared Lorentzian shape (3.20) for this peak.
This result was denived in the large r limit treating the vortices as point-like excitations. Moreover, to
make an analytical treatment possible Mertens et al.? replaced the exponent in 5%{r, t) by a convenient
function which has almost the same shape as the original one. This substitution does not change the

integrated intensity of S7%(q, «)

=3 d
:ztrll:-/ duS"fq.'--':|= 5._?‘—--‘5-—-—--'| {51}
- (L4 (gep?
as can be checked directly by caleulating
I*(q) = 5% (q,t =0) = (2x)"* fdzq S (1 =0) (5.2)

uging the unchanged S*%(r,t) in (5.2). This 7 dependence of the intensity (5.1) 15 well supported by the
MD data as can be seen in fig. 5 - the solid line in these pictures is a fit to the function given in (5.1)
using only small values of ¢° (0 < ¢ < 0.157) corresponding to the g range where the theory should be
valid, The correlation lengths obtained by these fits are listed in table | and we will call these values £
for the remainder of this paper.

For our fits we used the total intensity of $7% which for q # K contains spin wave contributions in
addition to the vortex ones, This overestimation results in a vortex correlation length which is system-
atically too short - therefore £; can be regarded as a lower bound of the real vortex correlation length of

the system. Within the g range we used for our fits, S exhibits only a single peak so that we are not
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able to identify and substract the spin wave part. However, here the vortices strongly dominate over the
spin wave contributions and the arror in the correlation length should be small

We also used the amplitude as a fitting parameter and the results are shown in table 2. Though
we have neglected any internal structure of the vortices in our caleulation the theoretical amplitudes
Ay = £7 /4~ are only about a factor 3.3 larger than the values from the MD data. (The amplitude is given
by I*(q = K%) and therefore doss not depend on the spin waves® )

So far we have discussed only a static quantity of the system. I*, and found that it can be very
well described by our phenomenclogy. However, we are mainly interested in whether the dynamies, as
described by the correlation function, 1s also in agresment with our theory,

The g dependence of the width of the central peak is shown in fig. 8. The data are obtained by

fitting 5% with a squared Lorentzian of the form

A
1+ 2=’

Liw) = {5.3)

where 4 is the amplitude, [ is the width at hallf maximum, and both quantities are functions of the

wavevector q. These results are comparsd with the hall width

, :
() = 3V a(vE-1) VIF &) (5.4)

of the function (3.20) (solid line in fig. 6). For increasing ¢° the remaining spin wave contributions in 57°
move away from w = 0 and we obtain values {or the width from our fitting which are systematically larger
than the one for the pure vortex peak (fig. 4b). Again, we use only data for small ¢* (0 < ¢* < 0.157)
where the vortex and the spin wave peaks lie on top of each other and we cannot distinguish between
them. In this q regime the vortex intensity is much larger than the magnon intensity - that is why
the estimate of the width obtained by fitting of 5% to a single squared Lorentzian should already give
us quite good values. The results should become even better f[or higher t;empemtutes because of the
renormalization of the spin wave [frequencies to smaller w with increasing T These fits give us values for
the correlation length (which we call here £4), listed in table 1, and the average velocity, listed in table
3. Because of our overestimating of the width, we obtain values for the correlation length £ which are
too large - thus £2 has to be regarded as upper bound - and the true vortex correlation length £ should

therefore he within the range £, < £ < &;.



The temparature dependence of the correlation length is'
§(T) = Eoet!V™, (3.5)

where £; is of the order of unity, # = (T=T.)/T. and b is a slightly T dependent number®®. Neglecting this
T dependence of b and averaging over the upper and lower bounds of £ we obtain b 2= 0.51 for T. = 0.79
(using only T = (.85, 0.90, 0.95 ,1.00). This value is much smaller than the result of Kosterlitz and
Thouless™ (7/2) but is closer to results of a renormalization group analysis of Heinekamp and Pelcovitz?®,

The average velocity i obtained by our fits also has to be regarded as upper bound, because it is
determined by the linear slope of ['*(q) for large ¢'s (fig .6) and increases with an overestimation of the
width. Especially for temperatures just above Tgy, only data for very small q values show an almost
pure vortex behavior and the determination of 4 becomes more uncertain

As far as we are aware there exists only one theory for the dynamics of hallistically moving vartices®
with a resulting mean velocity

VT

i T (5.6)

This formula was developed for FM out-of-plane vortices and predicts an increase of 4 for small = and a
nearly constant behavior above about 7 = 46% = 1.0 (which corresponds to T 2= 1.6). Above T = 0.85 our
fitted data show an increase of the average velocity with temperature (tahle 3) but the absalute values
are about a factor J larger than we would expect from (5.6). On the other side, if we omit the value for
T = 1.05 (where we already suspect diffusive behavior), our data seem to show a saturation of @ at about
T =10.95 which agrees with the data of the ferromagnet? at A = 0.

However, (5.6) was developed using FM out-of-plane vortices which interact via an additional gyro-
force between them and therefore show a quite a different dynamical behavior than the AFM (and also
FM) in-plane vortices!' which we have in our system (A = 0). Therefore it is not clear whether our
data should foilow the predictions of Huber - a detailed study of the mm'mln of in-plane vortices is in
preparation (both theoretically and numerically).

A study of the dynamieal correlations in an AFM with A = 0.8, where the vortices have the out-
of-plane structure (2.11), shows a temperature dependence of @ which is qualitatively consistent with
the A = 0.0 case (also for this case it is not clear, whether (5.6) should be valid, because we have no

gyro force in AFM systems for all values of A under consideration), but the absolute values for i are
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about twice as large as for A = 0.0. From our investigation of the motion of pairs of free vortices at
T = 0 we know, that out-of-plane vortices, in contrast to in-plane vortices, are not very sensitive to the
discreteness (pinning ) effects of the lattice because of their extended out-of-plane core structure. Though
for T2 Tt the themal fuctuations are large enough to compensate the lattice pinning, we still expect
that the mobility of the in-plane vortices is smaller as for the out-of-plane anes, giving rise to the different
average velocities observed in our simulations. A detailed discussion of the AFM with A = 0.8 will he
presented elsewhers,

Above T =22 1.0 the correlation length (and with it the average distance between two vortices) drops
helow two lattice constants and we expect that our model of ballistically moving vortices loses its validity
while the motion of the spins hecomes more diffusive. The change in the amplitude ratio A, /Ay p of the
integrated intensities from 1.3 to about 2 (table 2) seems to reflect this change in the dynamics, while a
squared Lorentzian still is consistent with the shape of the central peak, leading us to the expectation

that a theory of diffusive spin motion gives a shape which is similar to (3.20),

2, Out.of-plane correlations

We find, as expected from our discussions in section 1112, a single peak in 5% (q,w) for T < Tkt
which corresponds to the acoustical spin wave branch (fig. 3b) given by eqn. (2.2a), The spin stiffness
constant of these out-of-plane magnons suffers no sudden softening at Tyt and we therefore can observe
a clear spin wave peak even for high temperatures (T = 1.05).

The central peak caused by the freely moving vortices at T2 Txr as predicted by (3.23) 1s here
centered at q = (0,0), which gives us again a strong overlap with the spin waves. The intensity of the

vortex peak
nydi 1
Flq) = -?-Eu?qj (5.8)

is proportional to the density of fres vortices and therefore is expected to be small in the temperature
range where aur phenomenoclogy should be valid. Fig. 7 shows MD data of the out-of-plane correlation
function and the dashed line in these pictures is a plot of expression (3.25) with @ and n, 2= (2§)~* from
the in-plan= correlation function. The singulanty in (5.8) for ¢ — 0 can be avoided by intrducing a cut-off
function expi—¢r/€) with ¢ = (1) (we use ¢ = 0.5 for the curves in fig. 7) in order to account for the

finite size of the vortices®. Thereby the eqn. (3.25) is changed by a factor x{q) with

vig) = Y CET (5.9)
Ve + (g€)?
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Close to q = (0, 0) we observe a strong increase of the CP intensity in S°* which is in good agreement
with (3.25). Despite this increase of the vortex intensity with n, we see from fig. 7 that 5°7 s, even for
high temperatures, clearly dominated by the spin waves for almaest all ¢'s so that we are not able 1o tell
whether the CP has a Gaussian shape. However, the MD data for small q suppart our result for the CP

width I(q) = g = const for fixed g but varying temperatures (fig. 7a and ¢).

V1 Conclusions

In the present paper we have investigated the dynamical behavior of the classical twe-dimensional
AFM Heisenberg model with easy-plane symmetry. First, we discussed the possible excitations - spin
waves and vortices - and second, we examined their dynamies by studying the dyvnamical correlation
functions 5% {q.w}, a =z,y. 2.

There are two spin wave branches according to the two sublattices. One of them (the optical branch)
is present only in the in-plane correlation function and shows above Tyt a sudden softening of the spin
stiffness constant {“universal jump” | as predicted in Ref. 2. The other (acoustical) shows purely in
out-of-plane correlations and is not visibly affected by the KT phase transition,

There exist two different vorrey solutions : below a eritical A. the m-plane vortex (2.7 is stable while
above Tyt the sut-of-plane vortex (2.11) is stable. Both types of vortices have a statie structure which
has locally perfect AFM order while a finite velocity causes a deviation from this structure which points
in the same direction for adjacent spins. In this paper we discussed only vortex dynamies for A < A,

Below TwT the vortices are closely bound in pairs and their effect on 5** can be described as a
renormalization of the shape of the spin wave peak'®. Above the eritical temperature, however, the pairs
begin to unbind, giving rise to additional central peaks (CP) in the correlation functions as in the FM
case®  In eontrast to the FM , where we find the CP's centered at q = (0.0) far both in-plane and
out-of-plane correlations, we have a different scenario in the AFM : the static structure contributes to a
CP centered at q = K? while the additional structure due to motion gives nl CP centered at q = (0,0),
and especially for A < A;, we have a CP at q = K? in 57 and one at q = (0,0) in 5°°.

The in-plane CP in our simulation data (for A = 0) can be well-explained by the squared Lorentzian
shape (3.20) and the q dependence of the widths and intensities of these peaks are in good agreement
with our phenomenolgical result up to a temperature T = 1.0 - our vortex phenomenology therefore

seems to be a good approximation for a temperature range of about T ST S 1.25T . Through fitting

i}



the MD data with our theory we obtain values for the vortex length, which are in good agreement with
the KT theory!, and the vortex ris average velocity . A comparison of @ with the formula of Huber®
developed for FM sut-of-plane vortices shows a reasonable agreement, but an extension of these results
of Huber to the in-plane case may be appropriate : this is in preparation,

In the out-of-plane carrelation function an analysis of the vortex CP s difficult, because it is domi-
nated by the spin wave peak for almost all ¢ values. We can therefore not unequivocally decide whether
it has the Gaussian shape (3.23), but the MD data for small ¢ values show a CP with constant width,
consistent with our predictions.

For A > A. with or without an applied magnetic field we expect to have even more vortex peaks for
the AFM (at q = (0.0) and q = K" for both, §°% and 5%*). Each of thess peaks is dominated by ane of
the four angles intr-duced in (2.0) and we therefore can investigate the different (static, dynamie, Reld
induced) contributions from vortices to the dvnamical correlation function seperately. Detailed analysis

of these cases will be presented elsewliere,
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Appendix A
Without any loss of generality we assume here that for T = 0 all spins are parallel to the y-axis.
With a Holstein-Primakoff ansatz'® up to second order in the Boson operators we obtain
5T = 8] +iS] = /284,
57 = 57 - i8F = 25a; (A1)
S =5-aa,
§7 + 157 = V25b;

oy
+
I

S; = §F - iSF = V25h, (A.2)

S; =-S+b;&_,.

We now transform to the Fourier space with

g = 1#;,-:1:,-:""“"
e T e
4
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Restricting ouerselves to half of the Brillouin zone we eliminate of all the terms with mixed plus and

minus q terms by the transformation

<

(A4)

Here A5 (B ) and Aq (Bg, ) are operating on different subsets of the q space, but together they cover

the whole Brillouin zone. Now we transform to real operators according to

. 1
Q'h i T: 'J'qg + A }L 'Fq.r = I-_"_’J'il:"lql -4

I (A5
Ry = Efﬂql + 83 ) Sq, = Eﬂﬂql - Bg)
with I = 1,2, Finally after the transformation
1
ta, = —=(Qq, + Aq, )i Pa, (Qa, = Rq,)
u;h v" (A6)
re, = 7B (Pq, +8q)i 8q = E{Fq' - S5q,):

where (Pq, 4q,) and (sq,, rq, ) are paus of canonically conjugate variables, we obtain the Hamiltonian in

the form of harmonic oscillators

H=Ey+I5:3 ((1-+a)pd + (1+M(a))e],

hF

+{1+v(a)sg, + (1= 2+(a))rg |

+15: 5 { (1= Ml@)pd, + (14 2(a)e, L
: +{1+M(a))s], + (1 -2(a))r3, }-
From (A7) we obtain two dispersion curves
wifa) = 2785/ (14 M(@) (1 - 3(a)) -
-»':ltll=?f5=\/{1-1'r{m]{1+ﬂm} g
with
1(q) =%~ : gombr (A.9)
© m=1

[Pq,  5q, are the momentumand g4 , ry, are the position operators for the acoustic magnon branch (w1(q))

for all q values, and analogous p,_ . sq, and gq,,rq, for the optic magnon branch (w2(q))].
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Finally we can express the operators in (A.7) through creation and annihilation operators a for the

acoustic and 4 for the optic branch to obtain the Hamiltonian in its diagonalized form
H=En+ Y (hfalafaq+§)+ heata)( 35 34 + 1) (A.10)
a

Appendix B
a} [n-plane correlation function

If we define the Boson operators a; (b)) also on the odd (even) sublattice then we can write the =
components of the spins as

&l
LV !

S7 = —i2 (=] 87 =)+ (o =0l = + b))
-v':j (B.1)
§F = -;5‘.;:;{{nJ —a} + b5 = ;) = (a; —a} — b7 +b,)}.
Using the “sign function” (3.8) we can rewrite (B.1) in a single line
. VS -
e — _I‘E_ﬁ{iﬂh —ay = by =) + % r"{III_IL —ap = by + bh}} (B.2)
with h running over all the |attice sites,
The dynamic in-plane correlation function is defined by
* ! g 3 . i
S (q,w) = ?_;fdte : ‘F}: < [8%(rm )] 5%(ra.0) >
: il (B.3)
== fm,-“' < [5%(q.0)]"5%(q,0) > .
Using (B.1) and without explicitly considering the time dependence we obtain
5%(q) = -t?ﬁiaq —alqtby=bgta g —ag =g+ bq'} (5.4)

or, in terms of the ereation and annihilation operators of the magnons,

g VS hualq) &
S =~ ST5e Tt 4 ) o ~ 8T a + 8%, + Bg, +aqr —a¥q —atq bag). (BS)

In (B.3) we made use of the symmetry property of the frequencies (2.3). After inserting (B.3) in (B.3)

and after a straightforward calculation we obtain
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. ) hea(q)
i) — | diem™ —
Wketd srf S TS+ Q)

< nutaq)e ™= 4 (po(q)+ eV 4 g (qt)em = E & (g (q7) + 1)etiaTH 5

with

nylg) = aqu e e =13

ai a’

Using eqn. (2.3) we can write down a similar equation for the number of excited magnons, viz
miq’) =nz(q).

Therefore we finally obtain for the dynamic in-plane correlation function

siwi___ funlg) =
= — | dte=*" " gl gt " 4 1)elmaiait 5
s j DS+ '.r{q]] < na(q)e + (na(q) +1)e >

B) Out-of-plane correlation function

For the : components an ansatz of the spins as in (B.2) vields

o~

5 . e
Si= 5ozl (an a3 + 8+ b)) + € @y + 0} - 81 - 3y)}

or, similarly to (B.5),

T \F hei(q)

: i 5 4+ + Lok i R .
Sq) = 11[x:r.,l-,-r:r:,hum a, +0q, + g+ g + 3% = dqu }-

\,-"f- 2J8s l+.'|;‘:-[:”

Thus the spin wave contribution to the dynamic out-of-plane correlation function becomes

orr i _ri =tit heyla) =twilqit + 1)etriqn
(q.w) = h'fdn 51+ an(q) < milae +(mi@) +1)e i

{B.6)

(B.T)

(B.9)

(B.10}

iB.11)

({B.12)
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table | Vorter correlation lengths above Tk (units as defined af the beginning of chapter V);
£1 ! values obatned by fitting the integrated itensity with (5.1);

£y ¢ values obtained by fitting the width of §%° wath (5.4).

T & 3
0.85 4.80 9.08
0.50 i.89 5.28
0.85 2.43 4.35
1.00 2.09 3.28
1.056 1.54 317

AR AR R R R RN RS

table 2 Amplitudes of the integrated wlensity [F{q = K");
Axrp o data from MD simulations,

Ay o theoretical amplitude [cf text).

T Auwp Aq Ai/Amp
0.85 0.81 1.79 2.93
.90 0.35 1.32 3.77
0.85 0.18 0.58 3.22
1.00 .12 0.42 3.23
1.05 Q.09 g.19 213
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table 3 Vorter average velocaties;

T

o

values obtarned by fitting the width of 5¥% wth (5.4);

values obtarned by wsing the formula of Huber (5.6).

0.85

0.85

1.00

1.08

24

.22

0.32

0.37

0.44



Fig.

Fiz.

Fig.

Fig.

Fig.

Fig.

Fig.

[

Definition of the in-plane angles @ and & (cf text).

al Squars larties defined by L (3. 1) with b) basis v, (3.2); # and s dencte spins of the even and odd

sublattice. respectively,

Spin wave dispersion along tlie (y, g)-direction for a) the in-plane (optical] and b) the out-of-planes

{acoustical) magnon branch; salid line : T =0 (theoretical result (2.2)); +: T =03, ¢: T =03,

In-plane correlation function 577 for different temperatures and wave vectors: solid line @ MD data:

dashed line : fit 1o squared Lorentzian (5.3).

In-plane integrated intensity [“(q) for a) T = 09 and b) T = L0: + : intensity of fitted squared

Lorentzian; o © intensity froiny MD simulation: solid line ; fit for small ¢* to (5.1).

Width ['*({q) of the in-plane correlation function for a) T = 0.0 and b) T = 1.0; + : data from fitting

5%F with (3.3): solid line : it for small §° to {5.4),

Out-of-plane correlation fnction 5*° for different temperatures and wave vectors; solid line = MD

data; dashed line : estimated vertex contribution using (3.25)=y3(¢) (cf chapter V.2).
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