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Abstract

A Monte Carlo-molecular dynamics calculation of the dynamic structure fune-
tion S(q,w) for the classical two-dimensional isotropic Heisenberg antiferromagnet is
presented. For wavevectors near the antiferromagnetic Bragg point, S(q,w) is well-
described by a product of Lorentzians representing damped spin waves. For adequately
low temperatures, the dependence of the spin wave frequency and damping on wavevec-
tor and temperature are consistent with a dynamic scaling description of Chakravarty,
Halperin and Nelson. Even for higher temperatlures a scaling description is quite well

satisfied, but with a modified scaling frequency.
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[. Introduction

Studies of spin dynamies in quasi-2-dimensional materials have received a significant
hoost in the last several years because of the convergence of: (a) improved quasi-2-
dimensional magnetic materials; (b) low-frequency, long-wavelength inelastic neutron
scattering data; and (c) simulation capabilities for large sized lattices. Materials with
various spin symmetries have been studied, probing vortex, domain wall and spin wave
dynamics and interactions.?

In this context, the copper oxide based high-temperature superconductors in their
undoped (antiferromagnetic, non-superconducting) phase are now appreciated to be
excellent examples of very 2-dimensional, antiferromagnetic, near-isotropic Heisenberg
Hamiltonians.” This antiferromagnetism has been probed?® by preliminary inelastic neu-
tron scattering, NMR, ete. Comparisons with theory of the 2-D isotropic Heisenberg
model are very successful, except for a small Dzyaloshinsky-Moriya term appearing
in the real materials. This experimental-theoretical agreement is particularly well-
confirmed for static spin correlations which are very long ranged, even at substantial
temperatures. For dynamics, the data is much less complete at present, and theory®
has emphasized a dynamic scaling expectation and its consequences. The real materi-
als are extremely quantum (S=1/2) and the theory procedes by mapping the quantum
isotropic Heisenberg Hamiltonian to a quantum O(3) nonlinear sigma model, whose
scaling properties are studied by including quantum fluctuations into a classical O(3)
model. Furthermore, the O(3) model can be mapped to a ferromagnetic rotor model at
sufficiently low frequencies and long wavelengths, and this latter classical model has been
studied numerically in a Langevin molecular dynamics (MD) simulation,* described be-
low. This simulation appears to support the analytic dynamic scaling expectations. An
alternative analytic procedure has been suggested by Reiter,” who used a low-T and
(1/S) perturbative memory function approach for dynamic correlation functions. It is
not clear whether this approach yields subtle violations of dynamic scaling, without
further explicit evaluations.

It is of interest to explore the dynamics of the antiferromagnetic Heisenberg model

directly in order to confirm the scaling behavior, to extend expectations (which can be
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compared with experiment) outside the scaling regime, and to incorporate additional
symmetry-breaking terms, inter-plane coupling, ete. The most complete approach is
quantum Monte Carlo. This has been implemented for static properties,® 7 and ex-
tracting frequency dependence from the imaginary time simulation data is probably
also practical within some reasonable restrictions on the form of the dynamic structiure
function, Our aim in this paper is more limited, Namely, we wish to implement a
classical (5 = oo) MD simulation to test dynamic scaling, and to establish a form for
the scaling function and observe deviations at higher T, in the original discrete anti-
ferromagnetic isotropic Heisenberg model. This avoids mapping to O(3) sigma or rotor
models.

As mentioned above, Chakravarty, Halperin and Nelson (CHN) have developed a
scaling theory® for the low temperature dynamic properties of the quantum Heisenberg
antiferromagnet in two dimensions (QHAF). For adequately low temperatures, and
wavevectors ¢ close to the antiferromagnetic Bragg point, CHN have suggested that
the dynamic properties of the QHAF can be obtained from dynamic properties of a
classical lattice rotor model (CLRM). The CHN theory is a dynamic scaling theory,
in the sense that dynamic properties, suchias spin-wave frequencies, when measured at
different temperatures, can be related to each other easily, provided that frequencies and
wavelengths are appropriately re-scaled. The physical length scale at any temperature
T is the spin-spin correlation length £(T'), which is the factor for re-scaling wavevectors.

For dynamics, the theory requires a temperature-dependent physical time scale
7.(T), or alternatively a scaling frequency w,(T) = 2r/r,. The time-scale 7, is the
re-scaling factor for frequencies, and is closely related to the damping rate or linewidth
for the spinwaves. The scaling assumption asserts that the frequency and wavevector
dependencies of dynamic quantities will be determined only by the dimensionless re-
scaled variables, Q = qf, and 0 = wr,, rather than by w, q, and T separately. Through
the use of a renormalization group (RG) analysis, CHN give specific expressions for the
temperature dependence of the correlation length ¢ and time r,.

To test the CHN theory, Tyc, Halperin, and Chakravarty (THC) have recently

reported results® of a Langevin dynamics simulation of a classical lattice rotor model,
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wherein the dynamic structure function, 5(q,w), was calculated numerically using a
large Inttice (256 x 256). For some set of wavevectors and temperatures satisfying the
assumptions of the CHN theory, they obtained a reasonable fit to the scaling theory,
by adjusting several parameters describing the scaling functions for spinwave frequeney
and damping rate.

It is our purpose here to report results of a related simulation, directly for the
2D classical Heisenberg antiferromagnet, which also substantially supports the dynamic

scaling hypothesis. The classical isotropic spin model under consideration is

H=1J Sa+S 13

- &

where J > 0 is the exchange constant, S, is a classical (three-component) spin vector

at a lattice site n on a square lattice, and the sum is only over nearest neighbor pairs.

Note that we use the symbol q = (1,1)r/a — k to denote wavevectors measured from
the antiferromagnetic Bragg point, (1,1)7/a. The lattice constant is a.

The principal quantity calculated in these simulations is the dynamic correlation
function, S(q,w), which is the space-time Fourier transform of the space and time
displaced correlation function (see below). By fitting: S(q,w) to an assumed Lorentzian
response function, the spin-wave frequency wq and damping rate 7, were determined
numerically, and found to follow scaling relationships similar to those given by CHN.
The scaling frequency w,(T") we obtained is consistent with the CHN theory except for
temperatures greater than T = 0.80, which are probably cutside of the scaling regime,

Our simulation differs from that of THC principally in three respects: i) THC have
simulated a classical rotor model, with a Hamiltonian that includes a kinetic energy
term in addition to a ferromagnetic nearest neighbor interaction. Of course, that choice
was based on the CHN mapping to the QUAF mentioned above; to obtain properties
of the § = 1/2 QHAF. Our simulation represents the opposite limit, § — =o; ii) By
employing a Langevin type of equation to simulate finite temperatures, THC made
use of the canonical ensemble, by coupling te a heat bath via random forces with a
prescribed correlation, together with a small phenomenological damping. On the other

hand, we have used a two-step simulation, using a (canonical ensemble) Monte Carlo
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(MC) algorithm to produce states for a desired temperature, which were subsequently
used as initial states for an energy-conserving spin-dynamics (MD) integration of the
classical equations of motion, in a microcanonical ensemble. iii) We have used a 100 x
100 lattice (L = 100), smaller than that used by THC by a factor of 0.40 (L = 256).
The lowest accessible temperature is determined roughly by the point at which the
correlation length equals half the lattice size. The RG analysis and numerical results
give £ = 130a at T/J5* = 0.52, and £ ~ 50a at T/JS% = 0.57 , so the THC calculation
is valid to only slightly lower temperatures than results presented here. The lowest
accesible wavevector (either measured from (0,0)x/a or from (1,1)r/a) is g = 2n/La,
so that the major advantage of using a larger system size is access to much smaller
waveveclors,

We begin in Sec. IT by summarizing some general properties of the 2D Heisenberg
antiferromagnet, within the scaling hypothesis, This includes a low precision fit to
determine the correlation length for our finite system, followed by a description of the
scaling hypothesis and scaling functions. In Sec. Il and IV we will deseribe the details
of the numerical simulation, along with a discussion of the fitting functions used for
s describing the spin-wave {requency and linewidths. We then present two methods in
Sec. V for obtaining rough estimates of the scaling frequency w,(T'), and from those
obtain refined estimates. In the process of estimating w,(T'), we graphically obtain
scaling functions for spin-wave frequency and linewidth. Sec. VI contains concluding

remarks,

11. Scaling in the Classical Heisenberg Antiferromagnet

A principal interest here is to describe the dynamic signature of the spinwaves in a

2D system. Of course, the lack of long range order at finite temperature, as given by the
Mermin-Wagner theorem,® needs to be recognized. However, there is short range order,
on length scales less than the correlation length. Therefore, the modification from 3D
spinwave theory is that the spinwaves represent local perturbations from short range
order, and can be used as well-defined modes as long as their wavelengths are much
shorter than the correlation length( i.e., g£ >> 1 ). In addition, the interactions among

an equilibrium population of these modes at finite femperature leads to a damping of
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the modes. This gives a mode at any wavevector g a finite lifetime, or equivalently,
a nonzero frequency width 74, about the center frequency, wy. For some range of
wavevectors and temperatures, we are interested in finding v, and wq. For comparison,
Tyé and Halperin,® and Becher and Reiter'®, have each given leading order perturbation
expansions to obtain vq and wg, with somewhat different results, especially for the
temperature dependence of v,.

To determine the wavevector range where perturbation expansions will be applica-
ble, we can make some estimates of the correlation length, and compare with other work.
Shenker and Tobochnik!! (SB) have determined the correlation length using a MC RG

technique. Also, CHN have given an expression for the static structure function,

] = 3 ol
S(a) =3 <84:5.q> (2.1)
where
e 1 a a
Sa=5 D g (2.2)

are the spatial Fourier modes, with N the number of spins in the system. The CHN

RG analysis gives a modified Ornstein-Zernicke form (QZ),

1+ ;—!BIln[] + {QE}E]
1+ (g§)?

THC found By = 4x/125. The effect of the logarithm term is greatest at low temper-

S(q) = S(g = 0) (2:3)

ature. If we take this expression to be valid, but restrict to small wavevectors, g€ < 1,
then the effect of the logarithm is negligible and the q-dependence is very closely of
the OZ form. Then we can extract estimates of the correlation length from OZ plots
as in Figure 1. The curves of S(q = 0)/5(q) — 1 vs. ¢° for various temperatures have
slopes that are the squares of the correlation length for that temperature. These data
were produced from the MC calculation described below, Over the range of ¢ shown,
for temperatures 0.55 < T < 1.0, the OZ form is fairly closely followed. We did not
look carefully for the logarithmic corrections indicated above, The resulting correlation

lengths are shown in Figure 2, and compared with the low temperature RG result of
CHN,
exp(27J 5% /T)

UT) = Beay orisr)T

(24)
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Here By 2= 0.01 is a fitting parameter that was obtained by Shenker and Tobochnik.!?
For lower temperatures, T' < 0.65, the effects of the finite sized lattice clearly limitl the
correlation length. For temperatures greater than T = 0.8, our data also deviate from
the low temperature RG prediction, but are consistent with the SB results and high
temperature series.

For dynamic correlations, consider the temporal Fourier transform of the time-
displaced correlation function,
2

3 < 5a(0) - S—q(t) > (2.5)

Spr %f dt et

According to the scaling theory of CHN, this dynamic structure function can be written
in the scaled form,?
$(a,w) = wy*5(a)B(Q, Q), (2.6)

where w,(T) is the temperature-dependent frequency scale (= 2x/7,), and ® is a di-

mensionless scaling function, of the scaled variables,

Q = q&, 1 =w/w,. (2.7)

Note that S(g) is actually assumed to be a function of gf and T', by equation (2.3)
above (but not of g itself). Then one can see that the essential feature of the scaling
assumption is that the wavevector and frequency dependencies of §(q,w) are assumed
to be determined only by the scaled variables @ and £, independent of the temperature.
The only effect of the temperature is a re-scaling of the magnitude of §(q,w). CHN

give the following expression for the frequency scale:
w, = e~} (T /27T §%)'/?, (2.8)

with ¢ = v/8J 5%a/h being the zero temperature long wavelength spinwave velocity. In
analyzing 5(q,w) data, we take w,(T) to be a freely adjustable function, determined
via least squares curve fits to §(q,w), as described below. The scaling function ®{Q, 1)
is also an unknown function, not prescribed by scaling theory, to be determined by the
fits. However, this is intractable unless some simple functional form for ® is assumed,

possessing a limited number of fitting parameters.
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This, to determine ®, the data for S(q,w) is to be fit to an assumed functional
form, the simplest of which represents the frequency response of a damped harmonic
oscillator. As one of the simplest possible choices for €(Q, Q), THC have used a sum of
two Lorentzians, with equal widths but centered at opposite frequencies. However, when
they compared their least squares curve fits with their original MD data for §(q,w), at
fixed q, it was clear that the fitted curves fell below the data at low frequencies (w < wq),
and fell consistently above the data at higher frequencies (w > wq). Our curve fits to
a sum of Lorentzians for §(q,w) also consistently give the same “anomolous” behavior
for the temperatures presented here. This is apparenily a consequence of the isotropic
symmetry of the Heisenberg Hamiltonian, which places some restrictions on allowed
forms for 5(q,w). To be specific, .é{q,f —+ 0) must be zgero. This restriction can be
shown to rule out a sum of Lorentzians as a choice for ®; an alternative which dose not
violate this requirement is a product of Lorentzians, and is shown below to be a natural
choice.

We can demonstrate this restriction on S{q,w) using the equations of motion as

follows. The classical equations of motion resulting from Hamiltonian (1.1) are

g8 e o
i L 8 ! (2.9)
Fn = —J Z s"m‘ {E'lﬂ}
[m o)

where F,, is the effective field acting on §,, produced by all of its nearest neighbors; the
sum in Eqn. (2.10) is only over the nearest neighbors of n.
Using the spatial Fourier modes defined above in equation (2.2), one component of

the time-displaced correlation function can be written as
e I - - o o
S ayt) = 57 D VT < SHO)SL(H) > (2.11)

The f = 0 time derivative of this is

] (4]

§%°(q,0) =< §5(0)52,(0) >= Ni Y elalmorm) < 55(0)§3(0) > . (212)

[EEREE
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This can be evaluated in terms of the equal-time averages, < §2(0)S2(0) >, which
are equilibrinm averages that are readily evaluated. For example, consider & = z, with

equation of motion for this component

ni =—J Z {SIII |:|1" 5."5’]'-' } {213}
T
The sum is over the neighbors m' of site in. This is multiplied by S* and then the
equilibrium expectation value is taken:

CEESs==7 Y (RSSKGL > 2 SISEEL S (2.14)

i m' m* '
{avm,ma' )

However, the isotropic Hamiltonian is invariant under a re-labeling of the y and = spin
axes, so that < SESY S, >=< §257,5%, >. Then in this case the two terms in Eq.
(2.14) are identical and cancel, regardless of whether n = m, or whether n is a neighbor
of m or not. Thus we conclude that for the Heisenberg model,

< SIS, >=< SLSY >=< §i85 >=0, (2.15)

m

for any sites n and m. For n = m this is just a stalement of the conserved spin length.

However, since the isotropic symmetry makes it true more generally, then we also have
< S2(0)5%,(0) >= 0, (2.16)

for «# = z,y, or z (which are all equal). In similar fashion, for an XY-model, the
invariance of the Hamiltonian with respect to re-labeling = and y spin axes, implies
only that < Sq‘[ﬂ}-?iq[ﬂ} > is zero.
An apropriate form for 5(q,1), consistent with the above restriction, is
S(a,t) = Ae~ " {coswqt + :quigxi{f)sirl wqt}. (2.17)
q

The parameters wq and v, are to be fit as functions of q and T". This function is the
response of an underdamped harmonic oscillator that starts with zero velocity from

some initial displacement 4, and is constructed to be an even real function of t. The
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initial displacement 4 is identified as §(q,t = 0). The two-sided Fourier transform is

also real;

Y e EATq['rz +wl)/w
S w)= — 1)e twt q q -
(@)= [ dtsta [+ wal + 2w -wr+ g 218

and is a product of two symmetrically located Lorentzians.'2

Alternatively, note that if a sum of symmetrically located Lorentzians is assumed

for §{q,w),i. e

A'rq { 1 1

S
R P i L A )

7 ¥, (2.19)

then the time-correlation is

S(q,t) = Ae Ml cos wqt. (2.20)
This function has a discontinuous non-zero time derivative at ¢ = 0; §(q,0%) = —AYq,
and S(q,07) = + Avq, and making it unsuitable for use in the present context, especially

for strong dmnpiug, at short times (high frequencies).
There is also the possibility of fitting to the response of an overdamped harmonic
oscillator, which may be relevant especially for higher temperatures. Then we would

have a non-oscillatory time dependence,
S(q,1) = Ae_'“‘m{msh wat + :-J—q-sign[t:lsinhwth (2.21)
|

In this case the Fourier transform is also a product of Lorentzians, each centered at zero

frequency, but having different widths:

247q(7g —w)/7
[w? + (vq + wq}z}[**'z + (7q — wq)?]

S(q,w) = ; (2.22)

Generally, however, it was not possible to describe the behavior of 5(¢q,1) by these over-
damped functions; in all cases discussed here the response of 5(q, ) involved oscillatory
behavior, and was quite well described by the underdamped oscillator formulas, even

for higher temperatures and ¢q near (1,1)r/a.
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To complete the scaling description, note that Eq. (2.18) has exactly the scaling
form of Eq. (2.6), provided that the spinwave frequency and damping can be written

in terms of undetermined, dimensionless scaled functions Q(q¢) and I'(qé):
walT') = w,o(T)82qt), (2.23)

Ya(T) = ws(T)I'(qé). (2.24)

All of the explicit temperature dependence of wg and ~4 is given through the w,

dependence. Then the assumed form of #(Q, Q) is (with Q = q¢)

2Tq(Cf + Og)/=

) = ‘ 1
®(Q, 1) (2 + Qq)? + T4][( — Nq)® + [3) (2.25)
This funection is normalized such that
oo
[ EEREA=1, (2.26)
and
$(0,0) = —— o3
: 1 Tl'rn.‘ { F .I':l

with the assumption {3y = 0. It is interesting to note that Eq. (2.27) also would hold
had we assumed a single Lorentzian for Q = 0.

Equation (2.24) gives a direct method of estimating relative values of w, from
MD data. The g = 0 spinwave linewidth directly gives w,I's. Of course this method
requires first making the fit to obtain v4. An alternative procedure is to make use of
the ¢ = 0,w = 0 datum, for which the scaling assumptions (2.6) and (2.27) above imply

2 5(0,t=10)

Fows = Z 50,0 =0)"

(2.28)

The advantage of this formula is that a fit is not required, although there is still an
implicit assumption about the form of #(Q, 1) (as in Eq. (2.25)). However, Eq. {2.28)
has a fairly intuitive interpretation, especially in terms of the time scale r, thal resulis

from it. Eq. (2.28) gives

Tl'ru 1

+ e
= S j;m dt S(0,1). (2.29)
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Apart from the numerical factors, 7, is the ratio of the area under the §(0, t) curve to
the initial value S(0,1 = 0), which is the simplest way to extract a physical time scale
from these quantities. We used both of the above methods for estimating w,I'y from the
numerical simulation data, obtaining very similar results. Both of these methods only
give the produet, w,lo, and I'y is undetermined by this fitting procedure. For further

analysis, we sel I'y = 1.

1II. Numerical Simulation

Numerically we have simulated the classical spin dynamics of the isotropic Hamil-
tonian in equation (1.1). A 100 x 100 square lattice with periodic boundary conditions
was used. The product J§? sets the energy scale for this model. Therefore, in numerical
results presented here, temperatures will be measured in units of JS?, frequencies are
measured in units of JS/f, and wavevectors are measured in units of 1/a, where a is
the lattice spacing.

The method of simulation is a combined Monte Carlo — molecular dynamies
technique.’® First a Monte Carlo simulation is used to equilibrate the system (in ‘a
canonical ensemble) to a desired temperature T. A standard Metropolis importance
sampling schenie is used. The final state of the Monte Carlo calculation is then used
as the initial configuration for an energy-conserving spin-dynamics simulation (in a
microcanonical ensemble). Desired time-dependent correlation functions are abtained
directly from the spin configuration as it evolves in time. The ensemble average of any
time-dependent quantity is then obtained by repeating the spin dynamics calculation
using additional initial configurations obtained from new Monte Carlo simulations, and
averaging results over the separate initial configurations. Data presented here represent
averages over 5 initial configurations.

In the Monte Carlo simulation, the initial state is one in which each spin is given a
random initial direction (uniformly distributed on a unit sphere). To encourage the sys-
tem to sample the allowed phase space in an unbiased manner, trial states for individual
spins are also chosen randomly in direction, and then the acceptance rate is determined
by the temperature. For temperatures higher than about 7'/J5* > 0.4 the resulting

acceptance rate is greater than 15 % . For equilibration, the temperature is brought
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down to T' starting from 3T, exponentially with time over some equilibration interval of
approximately 1000 Monte Carlo passes through the lattice. The updating of spins is
done simultaneously on odd /even sublattices in a vectorizable fashion. A total of 10,000
Monte Carlo passes through the lattice (where each pass attempts to change every spin)
15 used after the equilibration interval to generate an initial configuration for the spin
dynamics simulation, as well as allowing calculation of thermodynamic functions.

In the spin dynamics simulation, the dynamic equations of motion in terms of the
Cartesian components are used, as in equations (2.9) and (2.10). We have integrated
these equations numerically using a fourth-order fixed time step Runge-Kutta integra-
tion scheme, chosen for its stability and simplicity. Conservation of spin length and
energy, to about 1 part in 10%, served as checks of the numerical acuracy. For the 100
x 100 lattice, the smallest accessible wavevector is ga = 0.02r = 0.06, for which the
zero-temperature spin wave frequency is w = cq = /8 0.06 = 0.17. To be able to access
frequencies several times lower than this and resolve the spin wave peak, we integrated
out to times as large as ¢ = 250/JS.

Data for time-dependent correlation functions was sampled at 512 equally spaced
sampling times separated by At = mi,, where ¢, = 0.04 is the fundamental time step
for the Runge-Kutta algorithm, and m is an integer from 6 to 12. The spatial Fourier
transform, §q{f}. of the spin configuration was saved at these times. The total time

interval of integration is tp = 511mt,. The time-displaced correlation (o = z,y, or z)
§9%q,t) =< Sg(te) - §24(te + 1) > (3.1)

could then be formed, where <> indicates the average over initial times to. In this
expression, when a time tg + ¢ falls outside of the interval over which data was obtained,
a periodic boundary condition in time is assumed. In this way, the number of sampled
times used to form §7%(q,1) is independent of ¢, resulting in better stalistics at large
times. The time displacement ¢ ranges over a symmetric interval from —{p/2 to +1p/2.
With this construction S%(q,1) is an even function of time. S9(q, 1) was then multi-
plied by a Gaussian smoothing window function before using a fast Fourier transform to

generate the dynamic structure function §99(q,w). The results obtained for S%(q,w)
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were averaged over 5 initial configurations from the Monte Carlo simulation, and also

averaged over the xyz spin components.

IV. Numerical Data and Least Square Fits

Numerical simulations as described above were performed for temperatures in the
range 0.1 < T/JS5* < 1.0, for a 100 x 100 lattice. At the lowest temperatures the
correlation length was vastly greater than the system size, and we used those points
only to check the spinwave frequencies. Equation (2.18) was used for a leasi-squares
fitting of S(q,w), for sets of wavevectors covering the entire Brilluion zone along the (11)
direction. The parameters wq and 7, and an amplitude in Eq. (2.18) were determined
as functions of ¢ and T

Some of the data and resulting fitted curves are shown in Figure 3, for q =
(0.1,0.1)m/a, and in Figure 4, for q = (0.1,0.1)r/a. The dotted curves are fits to
a product of Lorentzians (Eq. (2.18)), and the dashed curves are fits to a sum of
Lorentzians (Eq. (2.19)), for comparison. In nearly all cases, the Lorentzian sum passes
above the data at higher frequencies and below the data at lower frequencies, while ihe
Lorentzian product follows the data quite well in both frequency ranges. The softening
of the spinwave peak with increasing temperature is clear, and is accompanied by an
increase in linewidth and decrease in total integrated intensity. At the higher temper-
atures (T > 0.80) the spinwave frequency and linewidth are comparable in size, and it
is difficult to distinguish the spinwave frequency by eye. Due to the rather high degree
of noise in these data, our estimates of spinwave frequencies are accurate to about 5-10
% (with the frequency grid spacing Aw = 0.025). Our estimates of spinwave linewidths
are accurate to about 15-20 % .

For the particular case, ¢ = 0, with wy, = 0, we can check whether the 5(q,w) data
follows Eq. (2.18), which reduces to

5(0,w = 0)
[+ (w/7q=00]"

5(0,w) = (4.1)

For the Lorentzian product, the power p = 2. A graph of [5{{]‘,.__, = ﬂ}fﬁ'{ﬂ',w]] 1{p. o

w? will be a straight line if this form is valid, where the slope is 1-;:“‘ We found that
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such plots give a straight line for T/J5? > 0.70, using p = 2. For lower temperatures,
it is likely that a power p somewhere between 1 and 2 is necessary. This may also he
an indication that a completely different flundamental form for S(g,w) (and #(Q,)) is
needed. Nevertheless, we take Eqs. (2.18) and (2.25) as reasonable approximations and
continue the analysis using them.

The temperature dependence of the spinwave frequency wq for several wavevectors
is shown in Fig. 5. We show temperatures well below those where the calculation would
be considered valid for static properties. Yet the T — 0 extrapolation of these data is

rather close to the zero temperature dispersion,
wy = csinga, ¢ =/8JSa/h, (4.2)

for q along the (11) direction. The wavevectors shown have magnitudes ga = 0.18, 0.44,
and 0.71, which would have T = 0 frequencies wq =~ 0.50, 1.22 and 1.85, respectively.

The solid curves in Fig. 5 are a comparison with an expression given by THC for
the scaled spinwave frequency,’

g = Qs+ % in(1 + Q)] i (4.3).

The constant f is a factor which is V’TH for the quantum case analyzed by THC and
1 for the classical case here. The parameter & is an adjustable parameter, which was
found to be § == 1.7 for the classical lattice rotor model; we have used § = 2.5 to get
a reasonable fit in Fig. 5. Equations (2.4) and (2.8) for the correlation length and
frequency scale were used in combination with (4.3) to produce the solid curves.

The wavevector dependence of the spinwave frequency is shown in Fig. 6, for
T = 0.62 and T = 0.85. The solid curves correspond to § = 2.5 in Eq. (4.2), and
B¢ = 0.01 in Eq. (2.4). At higher temperatures it is difficult to consistently fit both
the temperature and wavevector dependence of w, using Eq. (4.3). This is probably
because that equation is & low temperature prediction, rather than a signature of any
lack of scaling.

Figure 7 shows the wavevector dependence of the spinwave linewidth 44, for several
temperatures, The solid curves are a comparison to the formula of THC;

Pes To(l + pg? )1 /? N
[1+ §1n(1 + ¢ ]]M"

(4.4)
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where g, 41, and @ are adjustable parameters. For the curves shown, these were set
to yo = 1.7, p = 1.7, and # = 0.7. These values are somewhat different [rom those
used by THC for the CLRM (v, = 0.86, u = 1.4, and # = 0.08.) However, there was
considerable freedom in choosing these parameters to reasonably fit the data, and the
choice shown here is a rough fit by eye, with the parameters chosen to have the curves
fit well at the lower temperatures. It was difficult to simultaneously fit the data at high
temperatures using Eq. 4.4.

The temperature dependence of the linewidth is more dramatic, shown in Fig. 8 for
selected wavevectors. For temperatures below T = 0.65, the widths were smaller than
the frequency resolution of this caleulation (Aw = 0.025). In particular, the ¢ = 0 curve
is used to estimate the frequency scale w,(T'), for temperatures T > 0.65. It appears
that w, increases approximately linearly with T', For temperatures greater than T = 0.8,
the linewidth does not rise as fast as the low-T CHN theory predicts. The product, w,£
would vary as 7"/? according to Eq. (2.8); we may have such a behavior for T' < 0.75,

but above this temperature w,f decreases with T (See Table 1),

V. Scaling Functions

The initial estimates of w, were refined by constructing a scaling plot as in Figure
9, where w,/w, is shown as a function of g€, for data obtained at several temperatures
0.62 < T < 0.85. The values of £ and w, used to scale the data, using Ty = 1, are shown
below in Table 1. The w, values were chosen to cause the dispersion curves at the
different temperatures to fall onto the same curve. It was also found necessary to use
correlation lengths closer to those for the infinite system size (see Fig. 2) to get the data
to scale well. The resulting curve is a graphical construction of the scaling frequency,
{1g vs. @, and is strong evidence for a scaling description, but probably with w, varying
somewhat differently than Eq. (2.8), for this temperature range. Similarly, by using the
same parameters to scale the damping rates, Figure 10 was obtained, and represents
the scaling function, I'g. Although there is considerable scatter, the data obtained from
the different temperatures is still fairly well-described by the same function,

With an adequate set of simulation data, it should also be possible to determine

the scaling function ®(Q,2) graphically, by appropriately scaling the original S(q,w)
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data according to Eq. (2.6). With £, w, and 5{q) known, a plot of w,S({q,w)/5(q) vs.
w/w,, for fixed sealed waveveetor, qf, gives #(Q, ). The problem with doing this using
a simulation on a small system is that the finite spacing of the accessible wavevectors
is too large. This makes it difficult to find many cases of data at the same scaled
wavevector, unless the calculations are done for many (closely-spaced) temperatures.
However, there were a few cases obtained here with approximately equal values of @,
allowing us to make the plots in Figure 11, for several values of (). With the appropriate
scaling in amplitude, wavevector, and frequency, the structure functions for different
temperatures are approximately equal. It was found that these curves will not fall onto
each other unless they correspond quite closely to the same value of @, within about
2-4 % , due to the fairly strong dependencies of amplitude and spinwave frequency on
(). Unfortunately, the ratios of correlation lengths at the two temperatures in these

examples are the order of 2; it would be especially useful to study a larger range.

VI. Conclusions

We have used an energy-conserving MC-MD simulation to study spin dynamics in
the classical 2-dimensional isotropic Heisenberg antiferromagnet on a 100 x 100 square
lattice, In particular, we have examined the dynamic structure function S(q,w) near
the antiferromagnetic Bragg point (zone boundary) and find that this is well-described
by a product of Lorentzians. This product form is unlikely to be exact but is clearly
superior to a sum and will be a preferred form for comparison with experimental inelastic
neutron scaltering data.

Although dynamic scaling theory cannot prescribe the functional form of S(q,w), it
does yield the dependence of the spinwave frequency and damping on wavevector (close
to the zone boundary) and temperature (at sufficiently low temperatures). Comparison
of our data with such a scaling theory due to Chakravarty, Halperin and Nelson® is found
to be entirely consistent. Indeed, even for higher temperatures (short correlations) the
same scaling description is quite well satisfied, but with a modified temperature depen-
dent scaling frequency. The scaling theory was developed for a continuum O(3) nonlinear
sigma model, equivalent to the original Heisenberg model. and previously successfully

tested numerically on a classical lattice rotor model.* It is therefore interesting that the
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same dynamic scaling theory is indeed valid (within our numerical accuracy) for the
original, discrete antiferromagnetic spin model with Landau dynamies.

In the context of high-temperature superconductors or other strongly quantum
magnets, numerical progress beyond the present classical level will be possible using
quantum MC simulations and extracting real time evolution from that in hnaginary
time. Such results could directly test approximate quantum extensions of classical
results which have been proposed.!®**!% As in one-dimensional magnets, the major
quantum effect is to reduce the effective magnetic moment and therefore suppress spe-
cific heat or integrated scattering intensities. However, more qualitative quantum effects

may occur in the frequency dependence itself.
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T £ Wy w,
0.62 25 0.066 1.65
0.65 14 0.12 1.68
0.70 TT 0.22 1.69
0.75 5.1 0.34 1.73
.85 2.8 0.55 1.54

Table 1. Scaling Parameters, with Iy = 1.
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Figure Captions

Fig. 1 An Ornstein-Zernicke plot, from data obtained in the Monte Carlo simulation using

Fig.

Fig,.

Fig

a 100x100 lattice. The curves are labeled by values of temperature, T'/JS*. The
slope as ¢° — 0 is the square of the correlation length.

Estimates of the correlation length vs. T (in units of JS?), obtained via Fig.
1 (circles), compared with the low temperature RG prediction, Eq. (2.4), using
Be = 0.01 (solid curve), At low temperature, finite size effects severely limit the
correlation length obtained this way. At high temperature, the RG prediction
underestimates £; the MC results agree with high temperature series.

Typical §(q,w) data and curve fits, for q = (0.1,0.1)7/a, at temperatures T/ 5?
— 0.65 and 0.85. The frequency is in units of JS?/h. The data were generated in
the MC-MD calculation described in the text, The dotted curve is a least squares
fit to a product of Lorentzians (Eq. (2.18)), using spinwave parameters shown.
The dashed curve is a least squares fit to a sum of Lorentzians (Eq. (2.19)), for
comparison (parameters not shown).

More §(q,w) data and curve fits, for q = (0.16,0.16)m /a, at temperatures TIre
= 0.65 and 0.85; as described in Figure 3 caption.

Spinwave frequencies wq vs. temperature T, obtained from least squares fits as in
Figures 3 and 4. The curves are labeled by wavevectors in units of 7/50a. The solid
curves represent the dispersion used by THC, Eq. (4.3), with parameter § = 2.5,
used together with Eq. (2.4) for £.

Spinwave frequencies wq vs. ¢, obtained from least squares fits as in Figures 3 and
4. The MC-MD data are compared with the zero temperature dispersion (dashed
curve, Eq. 4.2), and the dispersion used by THC, (solid curves, Eq. 4.3, with
b = 2.5). '

The spinwave linewidih v, vs. g, for varions temperatures T/JS?, as indicated,
Solid curves are the THC assumption, Eq. (4.4), with parameters 19 = 1.7, = 1.7,
and # = 0.7. The parameters were chosen such that the curves fit well for lower

temperatures, but it was difficult to simultaneously fit the higher temperatures.

. 8 The spinwave linewidth v4 vs. temperature, for selected wavevectors, indicated in
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Fig. 9

Fig. 10

Fig. 11

units of m/50a. The q = (0,0) data is used to give preliminary estimates of the
scaling frequency, w,.

Scaled spinwave frequencies, wq /w, as a function of g, using data derived at tem-
peratures T/J5? = 0.62 (@), 0.65 (+), 0.70 (*), 0.75 (o), and 0.85 (x). Values
of w, for each temperature, given in Table 1, were first estimated from the ¢ = 0
linewidths in Fig. 8, and then corrected slightly such that the scaled frequencies
from different temperatures fall on the same curve.

Scaled spinwave linewidths 4 /w, as a function of ¢¢, using data derived at tem-
peratures T/JS5* = 0.62 (@), 0.65 (+), 0.70 (*), 0.75 (o), and 0.85 (x). Values of
w, used to scale the linewidths are the same as in Fig. 9.

Examples of scaling the raw data for the dynamic structure function in amplitude,
frequency and wavevector, as indicated, for scaled wavevectors Q = 2.25, 4.8, 6.1

and 11.
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